x'=xcosθ-ysinθ, y'=xsinθ+ycosθ, z'=z。
线绕轴旋转
设直线L过原点,方向向量为 (m,n,0),则L绕z轴旋转θ角度后 ,新的方向向量为(m',n',0),其
中m'=mcosθ-nsinθ, n'=msinθ+ncosθ。
面绕轴旋转
设平面S法向量为(a,b,c),则S绕 z轴旋转θ角度后,新的法向量为 (a',b',c'),其中a'=acosθ-bsinθ,
旋转定义与性质课件
目录
CONTENTS
• 旋转基本概念 • 旋转图形绘制技巧 • 旋转对称性质探讨 • 相似变换与旋转变换关系揭示 • 三维空间中旋转变换拓展应用 • 课程总结与思考题布置
01
旋转基本概念
旋转定义及性质
旋转定义
把一个平面图形绕着平面内某一点转 动一个角度,叫做图形的旋转。
旋转性质
学生自我评价报告收集
学生自我评价
请学生对本节课所学内容进行自我评价,包 括知识点掌握情况、课堂参与度、问题解决 能力等方面。
报告收集与整理
收集学生的自我评价报告,进行整理和分析 ,以便更好地了解学生的学习情况和问题所
在。
下节课预告及预备工作提示
要点一
下节课预告
要点二
预备工作提示
介绍下一节课将要学习的内容、重点和难点,以便学生提 前预习和准备。
VS
调整绘制过程
如发现错误或不满意的结果,可调整旋转 中心、角度或使用其他工具进行重新绘制 。
03
旋转对称性质探讨
旋转对称图形特点分析
图形特点
旋转对称图形在平面内,绕着一个定点旋转一定角度后,仍能与原图形重合。