机器振动特征分析齿轮
- 格式:ppt
- 大小:3.83 MB
- 文档页数:38
不同类型机械设备振动限值1、GB/T6075.3一2011/ISO10816-3:2009机械振动在非旋转部件上测量评价机器的振动第3部分:额定功率大于15KW额定转速在120r/min至15000r/min之间的在现场测量的工业机器1)适用范图GB/T6075的本部分给出了现场测量时评估振动水平的准则,该准则适用于功率大于15KW、运行转速在120r/min至15000r/min的机组。
本部分所深盖的机器为:——功率不大于50MW的汽轮机;——汽轮机组功率大于50MW、但转速低于1500r/min或高于3600r/min(即不包括ISO10816-2中涵盖的机组);——旋转式压缩机;——功率不大于3MW的工业燃气轮机;——发电机;——各种类型的电动机;——鼓风机或风机。
注:本部分的振动准则通常仅适用于额定助率大于300KW的风机或非柔性支承的风机。
当条件允许时,准备推荐其他类型的风机,包括那些采用轻型薄金属板结构的风机。
在此以前,制造厂与用户可根据以前的运行经验结果来商定为双方所接受的振动分类,参见ISO1469400。
下列机器不属于本部分的范围:——助率大于50MW陆地安装的汽轮发电机组,其转速为1500r/min、1800r/min、3000r/min、3600r/min(见ISO10816-2)3——功率大于3MW的燃气轮机(见ISO10816-4);——水力发电厂和泵站机组(见ISD10816-5)——与往复式机器联接的机器(见ISO10816-6);——包含集成电动机的转子动力泵,例如,叶轮直接安装在电动机轴上或与其刚性连接(见ISO10816-7);——回转压缩机(例如螺杆压缩机)——往复式压缩机:——往复泵;——潜水电动泵;——风力涡轮机。
本部分的振动准则适用于额定工作转速内、稳定运行状况,在机器轴承、轴承座或机座上现场进行的宽频带振动测量。
它们涉及到验收试验及运行监测。
本部分的评价准则用于连续与非连续监测,情况。
机械设备故障诊断与监测的常用方法及其发展趋势机械设备因为长期使用,存在断裂、腐蚀等故障,影响机器的性能和安全。
因此,机械故障的诊断和监测变得至关重要。
随着技术的发展,越来越多的方法被开发出来用于故障诊断和监测。
以下是机械设备故障诊断和监测的常用方法及其发展趋势。
1. 振动分析振动分析是最常用的机械设备故障诊断方法之一。
通过检测机器运转时产生的振动,可以判断故障的原因。
振动分析包括振动监测、信号分析和频谱分析等子项。
观察机器运行的振动特征,可以诊断出许多故障,如轴承损坏、齿轮啮合不良和不平衡等。
2. 红外热像技术红外热像技术利用红外辐射检测机器的温度差异。
几乎所有的机械设备故障都伴随着温度变化。
红外热像技术可以通过检测温度异常来找到机器的故障来源。
例如,并非所有的机器故障都会导致机器的发热,但是利用热像技术,可以找到由于故障所带来的温度差异,预警相关的故障。
红外热像技术具有快速、非接触、安全等优点,逐渐被广泛应用。
3. 谱系分析谱系分析是通过将信号转换成频域信号,对频率分布进行分析,检测出信号中存在的谐波和振动噪声等,并可确定谐波所对应的故障类型。
谱系分析适用于早期故障的诊断和分析,预测机械设备的寿命,提前预测发生故障的可能性。
4. 声音分析技术声音分析技术通过检测机器工作时所产生的声音情况,以判断最终是否存在故障。
声音分析依靠声音传导、产生时的波形和谱特性等方面的知识,到达诊断机器障碍的目的。
1. 智能化智能化实际上是人工智能技术在机械故障检修领域的运用。
检测设备可以采用大数据云计算、物联网等技术,帮助设备预测维护。
2. 平台化将多种技术整合在一起来识别和解决故障。
人们可以通过一种平台处理和分析数据,得出正确的结论。
3. 无人化节省人工的运用,减少工业重复劳动,提高机器操作的安全性。
总之,机械设备故障诊断和监测的方法正在不断发展壮大,专家也在不断探索其它可能的技术方法。
未来,预计发展将更加智能、自上而下地维修监测、平台化的集成解决方案。
机械振动故障及其特征频谱15类常见的振动故障及其特征频谱:不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:◎振动主频率等于转子转速◎径向振动占优势◎振动相位稳定◎振动随转速平方变化◎振动相位偏移方向与测量方向成正比1、力偶不平衡力偶不平衡症状特征:◎同一轴上相位差180°◎存在1X转速频率而且占优势◎振动幅值随提高的转速的平方变化◎可能引起很大的轴向及径向振动幅值◎动平衡需要在两个修正面内修正2、悬臂转子不平衡悬臂转子不平衡症状特征:◎径向和轴向方向存在1X转速频率◎轴向方向读数同相位,但是径向方向读数可能不稳定◎悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正二、不对中1、角向不对中角向不对中症状特征:◎特征是轴向振动大◎联轴器两侧振动相位差180°◎典型地为1X和2X转速大的轴向振动◎通常不是1X,2X或3X转速频率占优势◎症状可指示联轴器故障2、平行不对中平行不对中症状特征:◎大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率◎2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状◎联轴器的设计可能影响振动频谱形状和幅值3、装斜的滚动轴承装斜的滚动轴承症状特征:◎振动症状类似于角向不对中◎试图重新对中联轴器或动平衡转子不能解决问题◎产生相位偏移约180°的侧面◎对侧面或顶部对底部的扭动运动三、偏心转子偏心转子症状特征:◎在转子中心连线方向上最大的1X转速频率振动◎相对相位差为0°或180°◎试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大四、弯曲轴弯曲轴症状特征:◎弯曲的轴产生大的轴向振动◎如果弯曲接近轴的跨度中心,则1X转速频率占优势◎如果弯曲接近轴的跨度两端,则2X转速频率占优势◎轴向方向的相位差趋向180°五、机械松动1、机械松动(A)机械松动(A)症状特征:◎机器底脚结构松动引起的◎基础变形将产生“软底脚”问题◎相位分析将揭示机器的底板部件之间垂直方向相位差约180°2、机械松动(B)机械松动(B)症状特征:◎由地脚螺栓松动引起的◎可能产生0.5X、1X、2X和3X转速频率振动时,由裂纹的结构或轴承座引起的3、机械松动(C)机械松动(C)症状特征:◎相位经常是不稳定的◎将产生许多谐波频率六、转子摩擦转子摩擦症状特征◎振动频谱类似于机械松动◎通常产生一系列可能激起自激振动的频率◎可能出现转速的亚谐波频率振动◎摩擦可能是部分圆周或整圆周的七、共振共振症状特征:◎当强迫振动频率与自振频率一致时,出现共振◎轴通过共振时,相位改变180°,系统处于共振状态时,将产生大幅值的振动八、皮带和皮带轮1、皮带共振皮带共振症状特征:◎如果皮带自振频率与驱动转速或被驱动转速频率一致,则可能出现大幅值的振动◎改变皮带张力可能改变皮带的自振频率2、皮带磨损、松动或不匹配皮带磨损、松动或不匹配症状特征:◎往往2X转速频率占优势◎振动幅值往往是不稳定的,有时是脉冲、频率或是驱动转速频率,或是被驱动转速频率◎齿形皮带磨损或不对中,将产生齿轮皮带频率大幅值的振动◎皮带振动频率低于驱动转速或被驱动转速频率3、偏心皮带轮偏心皮带轮症状特征:◎偏心或不平衡的皮带轮,将产生1x转速频率的大幅值的皮带轮振动◎在皮带一致方向上的振动幅值最大◎试图动平衡偏心皮带轮要谨慎4、皮带/皮带轮不对中皮带/皮带轮不对中症状特征:◎皮带轮不对中将产生1X转速频率的大幅值的轴向振动◎电动机上振动幅值最大的往往是风机转速频率九、流体动力激振1、叶片通过频率流体动力激振症状特征:◎如果叶片与壳体之间的间隙不均匀,叶片通过频率(BPF)振动的幅值可能很高◎如果摩擦环卡在轴上,可能产生高幅值的叶片通过频率(BPF)振动◎偏心的转子可能产生幅值过大的叶片通过频率(BPF)振动2、流体紊流流体紊流症状特征:◎在风机中,由于流道内气流的压力变化或速度变化,往往会出现气流紊流流动◎将产生随机的,可能在0到30赫兹频率范围的低频振动3、气穴气穴症状特征:◎气穴将产生随机的,叠加在叶片通过频率(BPF)上的高频宽带能量振动◎通常说明进口压力不当◎如果任凭气穴现象存在,将可能导致叶轮的叶片腐蚀和泵壳体腐蚀◎声音听起来像砂石经过泵的声音十、拍振拍振症状特征:◎拍振是两个频率非常接近的振动同相位和反相位合成的结果◎宽带谱将显示为一个尖峰上下,波动本身在宽带谱上存在两个尖峰的频率之差就是拍频十一、偏心转子◎电源频率FL(中国为50赫兹=3000转/分)◎极数P◎转子条通过频率Fb=转子条数*转子转速◎同步转速NS=2XFL/P◎滑差频率FS=同步转速-转子转速1、定子偏心、绝缘短路和铁芯松动定子偏心、绝缘短路和铁芯松动症状特征:◎定子问题产生高幅值的电源频率,二倍(2FL)电磁振动◎定子偏心产生不均匀的气隙,其振动的单向性非常明显◎软底脚可能导致定子偏心2、同步电动机同步电动机症状特征:◎同步电动机的定子线圈松动产生◎高幅值的线圈通过频率振动◎线圈通过频率两侧将伴随1X转速频率的边带3、电源相位故障电源相位故障症状特征:◎相位问题将引起二倍电源频率◎(2FL)伴有(1/3)FL的边带◎如果不修正电源故障,二倍电源频率(2FL)的电磁振动幅值可能超过25毫米/秒峰值◎如果电源接头局部故障只是偶尔接触故障4、偏心转子偏心转子症状特征:◎偏心转子产生旋转的、可变的气隙,它产生脉冲振动◎经常要求进行细化谱分析,以分离二倍电源频率(2F)与旋转转速的谐波频率5、转子断条转子断条症状特征:◎旋转转速及其谐波频率两侧伴随极通过频率(Fp)边带说明转子断条故障◎在转子条通过频率(RBPF)两侧,伴随二倍电源频率(2FL)边带说明转子条松动◎往往是转子条通过频率(RBPF)的二倍(2XRBPF)和三倍(3XRBPF)幅值很高,而转子条通过频率(RBPF)的基频(1XRBPF)的幅值很小十二、直流电机直流电动机故障症状特征:◎利用可控硅整流器频率(SCR)高于正常的幅值可检测直流电动机故障◎这些故障包括:绕组线圈断裂,保险丝和控制板故障,可产生1X 到5X电源频率的高幅值振动十三、齿轮故障正常状态频谱:◎正常状态频谱显示1X和2X转速频率和齿轮啮合频率GMF◎齿轮啮合频率GMF通常伴有旋转转速频率边带◎所有的振动尖峰的幅值都较低,没有自振频率1、齿载荷的影响齿载荷的影响症状特征:◎齿轮啮合频率往往对载荷很敏感◎高幅值的齿轮啮合频率GMF未必说明齿轮有故障◎每次分析都应该在最大载荷下进行2齿磨损齿磨损症状特征:◎激起自振频率同时伴有磨损齿轮的1X转速频率的边带说明齿磨损◎边带是比齿轮啮合频率GMF更好的磨损指示◎当齿轮的齿磨损时齿轮啮合频率的幅值可能不变3、齿轮偏心和侧隙游移齿轮偏心和侧隙游移症状特征:◎齿轮啮合频率GMF两侧较高幅值的边带说明,齿轮偏心侧隙游移和齿轮轴不平行◎有故障的齿轮将调制边带◎不正常的侧隙游移通常将激起齿轮自振频率振动4、齿轮不对中齿轮不对中症状特征:◎齿轮不对中总是激起二阶或更高阶的齿轮啮合频率的谐波频率,并伴有旋转转速频率边带◎齿轮啮合频率基频(1XGMF)的幅值较小,而2X和3X齿轮啮合频率的幅值较高◎为了捕捉至少2XGMF频率,设置足够高的最高分析频率Fmax很重要5、断齿/裂齿断齿/裂齿症状特征:◎断齿或裂齿将产生该齿轮的1X转速频率的高幅值的振动◎它将激起自振频率振动,并且在其两侧伴有旋转转速基频边带◎利用时域波形最佳指示断齿或裂齿故障◎两个脉冲之间的时间间隔就是1X转速的倒数6、齿磨损摆动的齿症状特征:◎摆动的齿轮的振动是低频振动,经常忽略它十四、滚动轴承1、滚动轴承故障发展的第一阶段滚动轴承故障发展的第一阶段症状特征:◎超声波频率范围(>250K赫兹)内的最早的指示,利用振动加速度包络技术(振动尖峰能量gSE)可最好地评定频谱2、滚动轴承故障发展的第二阶段滚动轴承故障发展的第二阶段症状特征:◎轻微的故障激起滚动轴承部件的自振频率振动◎故障频率出现在500-2000赫兹范围内◎在滚动轴承故障发展第二阶段的末端,在自振频率的左右两侧出现边带频率3、滚动轴承故障发展的第三阶段滚动轴承故障发展的第三阶段症状特征:◎出现滚动轴承故障频率及其谐波频率◎随着磨损严重出现故障频率的许多谐波频率,边带数也增多◎在此阶段,磨损可以用肉眼看见,并环绕轴承的圆周方向扩展4、滚动轴承故障发展的第四阶段滚动轴承故障发展的第四阶段症状特征:◎离散的滚动轴承故障频率消失,被噪声地平形式的宽带随机振动取代之◎朝此阶段末端发展,甚至影响1X转速频率的幅值◎事实上,高频噪声地平的幅值和总量幅值可能反而减小十五、滑动轴承1、油膜振荡不稳定性油膜振荡症状特征:◎如果机器在2X转子临界转速下运转,可能出现油膜振荡◎当转子升速到转子第二阶临界转速时,油膜涡动接近转子临界转速,过大的振动将使油膜不能支承轴◎油膜振荡频率将锁定在转子的临界转速。
工程中的振动问题的研究进展摘要:随着科学技术的发展,工程中的振动问题愈来愈受到人们的关注,研究进展也越来越迅猛。
本文将针对工程中的振动问题,结合国内外近年来的研究成果,综述其研究进展。
关键词:振动、问题研究、相关进展引言振动问题是工程学中常见的问题,其出现与各种机械、结构、交通工具等都有关系,因此振动问题的研究具有广泛的应用价值。
工程中的振动问题主要与以下几个方面相关:机械系统的振动、建筑结构的振动、交通工具的振动等。
而随着技术的不断发展,工程中的振动问题的研究也不断深入,涉及到许多新的技术与理论。
本文主要介绍工程中的振动问题的研究进展,包括振动的产生机理、振动测试与分析、振动控制等方面,旨在全面介绍当前振动问题研究的最新进展与趋势。
一、振动理论的发展振动理论是研究振动中物体的固有频率、振幅、相位和波形等基本特性的一门学科。
在振动理论的发展过程中,人们逐渐认识到,振动不仅是一种物理现象,而且也与其他相关学科有着密切的联系。
因此,振动理论呈现出相对于其他学科交叉性、前沿性与综合性的特点。
在振动理论的发展史中,有三个重要的时间节点:牛顿的刚体力学理论、达朗伯的振动理论和拉格朗日的变分方法。
(1)牛顿的刚体力学理论牛顿的刚体力学理论是振动理论发展的起始点。
在牛顿的刚体力学理论中,振动是一种无限小的运动,假设了振动的幅值趋近于零,不会影响刚体的运动,即振动不会使刚体的形状、大小和内部结构发生变化。
(2)达朗伯的振动理论达朗伯是振动理论研究的先驱之一。
他提出了振动现象的均匀机械解释,即振动是一种力的作用,它可以通过连续介质力学来进行描述。
通过分析物体在不平衡力作用下的运动,他发现了很多重要的物理现象,如振动的相位、共振、衰减等。
(3)拉格朗日的变分方法拉格朗日在振动理论中应用了变分方法,创造出了拉格朗日动力学,使振动问题得到了较为客观、简洁、优美的描述。
通过运用拉格朗日方程,可以求解出物体在某一时刻的特定状态下的运动状态,即使在复杂条件下,也可以求解出振动的各种变量。
摘要齿轮箱作为风电机组中最重要的传动部件,负责将风轮叶片的低转速转换为发电机所需要的高转速,实现能量与扭矩的高效传输;振动是风电机组齿轮箱故障失效的主要原因,随着机组容量的增加, 长期处于恶劣条件下的齿轮箱,由于结构体积的增大和弹性增加,更易引发振动问题。
本文主要研究齿轮箱在变速变载下的振动特性,基于Romax软件建立齿轮箱的振动模型,分析齿轮箱各级齿轮的啮合频率和固有频率。
本文研究内容可为风电机组齿轮箱的优化设计、故障、预防和处理提供技术基础。
关键词: 齿轮箱,固有频率,啮合频率,共振,RomaxABSTRACTGear box is the most transmission Parts in the Wind turbine,it is responsible for the low-speed wind turbine blade into the high-speed generator required to achieve the efficient transmission of energy and torque.Vibration is the main reason of wind turbine gear box failure , along with the increase of unit capacity, long-term adverse conditions in the gear box, due to the increase of the structure and flexibility to increase volume, caused more vibration problems.This paper mainly research gear box's vibration characteristics in the speed change, established gearbox vibration model based on Romax software,analysis of gearbox gear mesh frequency and levels of natural frequency.The contents of this paper provide wind turbine gearbox optimized design, failure for technical basis for the prevention and treatment.Key words : Gear Box , Natural frequency , Meshing frequency, Resonance, Romax目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1选题背景和意义 (1)1.2国内外研究现状 (2)1.3本文工作 (3)1.4本章小结 (3)第2章风电机组齿轮箱力学特点 (4)2.1 前言 (4)2.2 风电机组齿轮箱机械结构 (4)2.3 风电机组齿轮箱外部载荷 (5)2.4 风电机组齿轮箱内部激励 (6)2.5 齿轮箱振动机理 (6)2.6 机械振动系统 (8)2.7本章小结 (10)第3章基于romax的风电齿轮箱建模 (11)3.1世界各地对romax的应用 (11)3.2 Romax软件介绍 (11)3.3 Romax建模 (12)3.4本章小结 (17)第4章固有频率和啮合频率分析 (18)4.1传动比及啮合频率计算 (18)4.2固有频率和啮合频率分析比较 (21)4.3本章小结 (22)第5章结论和展望 (23)5.1结论 (23)5.2展望 (23)参考文献 (24)致谢 (25)第1章绪论1.1 选题背景和意义在人类越来越渴望清洁能源和环保能源的大时代背景下,风电作为一种新兴的清洁能源,受到全世界人类的广泛关注。
柔性齿轮运动特性及其振动抑制性能的实验研究目录一、内容概述 (2)1. 研究背景 (3)2. 研究意义 (4)3. 国内外研究现状综述 (5)二、柔性齿轮的理论基础与设计方法 (5)1. 柔性齿轮的定义与特点 (7)2. 柔性齿轮的基本结构与材料选择 (7)3. 柔性齿轮的设计方法与流程 (9)三、柔性齿轮运动特性的实验研究 (10)1. 实验设备与方案设计 (11)2. 实验原理与方法 (12)3. 实验结果与分析 (14)四、柔性齿轮振动抑制性能的实验研究 (14)1. 抑振算法的选择与实现 (16)2. 抑振装置的设计与搭建 (17)3. 实验方案与步骤 (18)4. 实验结果与分析 (19)五、柔性齿轮振动抑制性能的影响因素分析 (20)1. 齿轮结构参数对振动抑制性能的影响 (22)2. 振动频率对振动抑制性能的影响 (23)3. 刚度匹配对振动抑制性能的影响 (24)六、柔性齿轮振动抑制性能的优化设计 (25)1. 优化目标与方法 (27)2. 优化设计过程与结果 (28)3. 优化后柔性齿轮的性能测试与分析 (28)七、结论与展望 (30)1. 研究成果总结 (31)2. 存在问题与不足 (32)3. 后续研究方向与展望 (33)一、内容概述随着科学技术的不断发展,柔性齿轮作为一种具有广泛应用前景的传动装置,其运动特性及振动抑制性能的研究显得尤为重要。
本文通过实验方法,系统地研究了柔性齿轮的运动特性和振动抑制性能。
在柔性齿轮运动特性的研究中,我们重点关注了柔性齿轮的模态特性、频率响应和传动误差等方面。
通过实验获取了柔性齿轮在不同工况下的模态参数,分析了其固有频率和振型特点。
我们还对柔性齿轮的频率响应进行了测量,了解了其在不同激励下的动态性能表现。
我们还对柔性齿轮的传动误差进行了评估,找出了影响传动精度的主要因素。
在振动抑制性能的研究中,我们主要探讨了柔性齿轮的阻尼特性、减振结构和控制策略等方面的内容。
十五种常见的设备振动故障及其特征频谱2020.2.3∙以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:∙振动主频率等于转子转速;∙径向振动占优势;∙振动相位稳定;∙振动随转速平方变化;∙振动相位偏移方向与测量方向成正比。
1、力偶不平衡力偶不平衡症状特征:∙同一轴上相位差180°;∙存在1X转速频率而且占优势;∙振动幅值随提高的转速的平方变化;∙可能引起很大的轴向及径向振动幅值;∙动平衡需要在两个修正面内修正。
2、悬臂转子不平衡悬臂转子不平衡症状特征:∙径向和轴向方向存在1X转速频率;∙轴向方向读数同相位,但是径向方向读数可能不稳定;∙悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。
二、不对中1、角向不对中角向不对中症状特征:∙特征是轴向振动大;∙联轴器两侧振动相位差180°;∙典型地为1X和2X转速大的轴向振动;∙通常不是1X,2X或3X转速频率占优势;∙症状可指示联轴器故障。
2、平行不对中平行不对中症状特征:∙大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;∙2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;∙联轴器的设计可能影响振动频谱形状和幅值。
3、装斜的滚动轴承装斜的滚动轴承症状特征:∙振动症状类似于角向不对中;∙试图重新对中联轴器或动平衡转子不能解决问题;∙产生相位偏移约180°的侧面;∙对侧面或顶部对底部的扭动运动。
三、偏心转子偏心转子症状特征:∙在转子中心连线方向上最大的1X转速频率振动;∙相对相位差为0°或180°;∙试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。
四、弯曲轴弯曲轴症状特征∙弯曲的轴产生大的轴向振动;∙如果弯曲接近轴的跨度中心,则1X转速频率占优势;∙如果弯曲接近轴的跨度两端,则2X转速频率占优势;∙轴向方向的相位差趋向180°。