人教新课标七年级数学上册一元一次方程及解法 PPT课件 (1)
- 格式:ppt
- 大小:570.50 KB
- 文档页数:23
人教版数学七年级上3.2 解一元一次方程(1)课件(共24张PPT)(共24张PPT)3.2解一元一次方程(一)——合并同类项与移项回顾思考:如果a=b,那么有;如果a=b,那么有;如果a=b ,那么有.方程两边都加上或都减去同一个数或同一个整式,方程的解.方程两边乘以同一个数,或除以同一个不为零的数,方程的解.不变不变回顾思考:1、什么是同类项?怎样合并同类项?2、合并同类项① 2x – 5x② 2xy – 3xy – 5xy③ –6x2+8x2某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?设前年购买x台。
可以表示出:去年购买计算机台,今年购买计算机台。
你能找出问题中的相等关系吗?2x4x前年购买量+去年购买量+今年购买量=140台x+2x+4x=140思考:怎样解这个方程呢?“总量=各部分量的和”是一个基本的相等关系.分析:解方程,就是把方程变形,最终变为x = a(a为常数)的形式.合并同类项系数化为1解方程中“合并同类项”起了什么作用?想一想:思考:(1)上述解方程中“合并同类项”起了什么作用?(2)系数化为1的依据是什么?“合并”起了化简作用,把含有未知数的项合并为一项,把方程转化为ax=b的形式,其中a、b是常数.等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果例1:解方程解:解下列方程:(1)x + 3x – 2x = 4(2)6z – 1.5z – 2.5z = 3(3)3x – 4x = – 25 – 20x = 2x = 45练习你发现此类方程的特点了吗?等号的一边是含未知数的项,另一边是常数项。
练一练:1、完成课本P88练习解下列方程:(1)(2)(3)(4)解方程(补充):(1)(2)应用:你了解它吗?足球的表面是由若干个黑色五边形和白色六边形皮块围成的。
你知道黑色与白色各多少吗?足球若知道:黑色与白色皮块的数目比为3:5,一个足球的表面一共有32个皮块,你能求出黑色皮块和白色皮块各有多少吗?小结:1、基本的相等关系:“各部分量的和=总量”.2、解实际问题的一般过程:(1)设未知数(2)分析实际问题中的关系,利用相等关系列方程(3)解方程关键步骤:合并同类项、系数化为1(检验解的合理性)(4)答把一些图书分给某班同学阅读,如果每人3本则剩余20本,若每人4本,则还缺少25本,这个班的学生有多少人?解:设这个班有x人,根据题意,得3x+20 = 4x-25提问1:怎样解这个方程?它与上节课遇到的方程有何不同?3x+20 = 4x-25方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).3x+20=4x-253x+20-4x=4x-25-4x3x+20-4x= -253x+20-4x-20=-25-203x-4x=-25-20(合并同类项)(利用等式性质1)(利用等式性质1)(合并同类项)提问2:如何才能使这个方程向x=a的形式转化?你发现了什么?3x +20 =4x -253x-4x=-25 -20把等式一边的某一项改变符号后移到另一边,叫做移项.(教材P88)3x+20=4x-253x-4x=-25-20-x=-45X=45移项合并同类项系数化为1下面的框图表示了解这个方程的具体过程:移项的目的是为了得到形如ax=b的方程(等号的一边是含未知数的项,另一边是常数项).提问4:“移项”起了什么作用?提问3:以上解方程“移项”的依据是什么?移项的依据是等式的性质1⑴ 方程3x-4=1,移项得:3x=1 .⑴ 方程2x+3=5,移项得:2x= .⑴ 方程5x=x+1,移项得:.⑴ 方程2x-7=-5x,移项得:.⑴ 方程4x+6=3x-8,移项得:.⑴ 方程x-2x+1.5=3.5-5x,移项得:.+45-35x-x=12x+5x=74x-3x=-8-6X-2x+5x=3.5-1.5例1 解方程解:移项,得合并同类项,得系数化为1,得例2:解下列方程解:移项,得即系数化为1,得x = - 2(2)解:移项,得合并同类项,得系数化为1,得(1)移项时应注意改变项的符号“移项”应注意什么?练习解下列方程一起来找茬下面方程的解法对吗?如果不对,应怎样改正?解方程:移项,得合并同类项,得系数化为1,得小结作业:。