基于MBD的三维数字化装配工艺设计及现场可视化技术应用
- 格式:docx
- 大小:223.27 KB
- 文档页数:7
基于MBD的三维工程化设计应用一、引言当前, 国内外大型装备制造企业的数字化技术发展迅速, 三维数字化设计技术得到了广泛的应用。
基于模型定义(Model-Based Definition,MBD)的数字化设计与制造技术已经成为制造业信息化的发展趋势。
企业为什么要推广MBD 技术进行三维工程化设计呢?以二维工程图作为交付物,向工艺、制造、生产和检查等环节传递产品的几何结构及技术要求的传统研制模式存在如下问题。
(1)设计环节:由于以二维图作为交付物,三维模型不作为交付物,二维图更改后三维模型不及时更新,导致数据不一致。
(2)工艺、制造和检测环节:工艺、制造以二维图为准,增加了从图纸到形状的还原过程,容易出现理解歧义,并增加了出错概率。
同时,工艺模型或图纸重建,增加了无价值劳动。
管路、电缆以二维图为主,造成制造、装配误差较大,且不能形象地指导装配过程,导致现场更改较多。
检测以二维图为准,数据手工录入效率低,准确性无法保证。
(3)检查机制:由于设计以二维图作为交付物,因此没有建立三维模型的检查机制,导致工艺、制造和检测等后续环节得不到准确的三维模型。
(4)标准规范:当前产品研发过程中遵循的标准规范是基于二维模式,缺乏三维工程化应用的标准体系规范,导致三维设计模型质量较差。
MBD 技术采用包含了三维几何模型、尺寸和尺寸工差、形位公差、基准、符号、表面粗糙度、属性、注释等产品制造信息的单一主模型来完整表达产品定义信息,并将其作为产品制造过程中的唯一依据,从而实现设计、工艺、制造和检测等环节的高度集成。
采用MBD 技术实现了单一数据源,彻底改变产品数据定义、生成、授权与传递的模式,消除了传统研发模式中的三维模型与二维图纸之间的信息冲突,减少了创建、存储和追踪的数据量,实现三维数字化产品定义、三维数字化工艺开发和三维数字化数据应用,保证了产品制造信息的正确和快速传递,从而有效地缩短了产品研制周期,减少了重复工作,提高了产品质量和生产效率。
《基于MBD的三维装配工艺信息集成技术研究》一、引言随着制造业的快速发展,三维数字化技术在装配工艺中的应用越来越广泛。
其中,基于模型定义(Model Based Definition,MBD)的技术在三维装配工艺信息集成方面发挥着重要作用。
MBD技术以三维模型为基础,实现了产品定义信息的集成和共享,从而提高了装配工艺的效率和精度。
本文旨在研究基于MBD的三维装配工艺信息集成技术,探讨其应用现状、优势及挑战,并提出相应的解决方案。
二、MBD技术概述MBD技术是一种基于三维模型的产品定义方法,它将产品的设计、制造、装配等信息全部集成在单一的三维模型中。
通过MBD技术,可以实现产品信息的全面共享和快速传递,从而提高产品的研发效率和生产效率。
在三维装配工艺中,MBD技术可以提供丰富的装配信息,如装配顺序、装配路径、装配力等,为装配工艺的优化提供了有力的支持。
三、三维装配工艺信息集成技术研究基于MBD的三维装配工艺信息集成技术,是将产品的三维模型、装配信息、工艺信息等进行集成和共享。
通过该技术,可以实现装配工艺的数字化、智能化和可视化,从而提高装配效率和精度。
1. 集成方式基于MBD的三维装配工艺信息集成方式主要包括模型集成、信息集成和过程集成。
模型集成是将产品的三维模型进行整合和优化,形成完整的产品模型;信息集成是将产品的设计、制造、装配等信息进行集成和共享;过程集成则是将产品的生产过程进行数字化建模和优化,实现生产过程的智能化和可视化。
2. 关键技术在基于MBD的三维装配工艺信息集成技术中,关键技术包括三维建模技术、信息提取技术、工艺规划技术和仿真技术等。
其中,三维建模技术是实现信息集成的基础,信息提取技术可以从三维模型中提取出装配信息、工艺信息等;工艺规划技术则根据产品的特点和要求,制定出合理的装配工艺和生产流程;仿真技术则可以对装配过程进行模拟和优化,提高装配效率和精度。
四、应用现状及优势基于MBD的三维装配工艺信息集成技术已经在许多企业中得到了应用。
基于MBD的三维数字化装配工艺设计及现场可视化技术应用基于MBD的三维数字化装配工艺设计技术是现代航空数字化制造中的一门新兴学科,也是未来飞机三维装配工艺设计的发展趋势。
本文介绍了该技术主要通过对DELMIA、3DVIA Composer、CAPP等工艺设计、工艺仿真软件进行客户化定制和多系统集成应用,完成基于MBD三维产品模型的工艺分离面的划分、BOM重构、工艺仿真以及三维装配指令编制等工艺设计工作,并通过生产管理系统将已完成的工艺设计信息传递到生产现场实现可视化装配,打通了基于MBD的产品设计与工艺设计及现场可视化装配的技术路线。
MBD(Model-Based Definition)即基于模型的产品数字化定义,其特点是:产品设计不再发放传统的二维图纸,而是采用三维数字化模型作为飞机零件制造、部件装配的依据。
传统的二维工艺设计模式已经不能适应全三维设计要求。
随着现代计算机技术、网络技术、工艺设计软件技术的发展,以及协同平台的建立,为三维数字化装配工艺设计和并行工程奠定了基础。
1 三维数字化装配工艺设计及现场可视化系统通过采用达索公司三维数字化装配工艺设计平台DELMIA及3DVIA Composer解决方案,构建“数字化装配工艺设计和仿真系统”及“生产现场可视化系统”。
突破DELMIA二次开发及定制技术、3D制造过程仿真验证及优化技术、MBD技术、生产现场可视化技术、Windchill/DELMIA/EPCS/CAPP多系统集成技术等关键技术瓶颈,最终构建符合企业业务需求的“数字化装配工艺设计和仿真系统”及“生产现场可视化系统”。
缩短飞机装配周期,提高装配质量,全面提升飞机的数字化制造能力。
系统流程及集成架构如图1所示。
图1 系统流程及集成框架系统流程及集成工作思路如下:(1)Windchill企业数据管理系统是企业唯一合法的数据来源,管理着各种BOM信息。
通过接口程序,把PBOM以XML的格式输出。
基于mbd的飞机数字化装配工艺设计及应用随着现代工业的发展,数字化装配技术在飞机制造领域中得到了广泛的应用。
数字化装配技术是指将制造过程中的各个环节通过数字化的方式进行管理和控制,以提高生产效率、降低成本、提高产品质量和可靠性。
本文将围绕数字化装配技术在飞机制造中的应用展开讨论,并以基于MBD的飞机数字化装配工艺设计为重点进行研究。
一、数字化装配技术在飞机制造中的应用数字化装配技术在飞机制造中的应用主要包括以下几个方面: 1. 数字化设计数字化设计是指将传统的手工绘图和设计转化为数字化的方式进行,通过计算机辅助设计软件进行建模、分析和验证,以提高设计效率和准确度。
数字化设计技术在飞机制造中的应用可以使设计师更快地完成设计任务,同时减少错误和重复工作,提高设计质量。
2. 数字化加工数字化加工是指通过计算机辅助制造设备进行加工,以提高加工效率和准确度。
数字化加工技术在飞机制造中的应用可以使加工过程更加精确和快速,同时减少浪费和成本,提高产品质量和可靠性。
3. 数字化装配数字化装配是指将制造过程中的各个环节通过数字化的方式进行管理和控制,以提高生产效率、降低成本、提高产品质量和可靠性。
数字化装配技术在飞机制造中的应用可以使装配过程更加精确和快速,同时减少浪费和成本,提高产品质量和可靠性。
4. 数字化测试数字化测试是指通过计算机模拟和仿真技术进行测试,以提高测试效率和准确度。
数字化测试技术在飞机制造中的应用可以减少测试时间和成本,同时提高测试精度和可靠性。
二、基于MBD的飞机数字化装配工艺设计MBD是Model-Based Definition的缩写,意思是基于模型的定义。
MBD是一种新型的数字化装配技术,它将制造过程中的各个环节通过数字化的方式进行管理和控制,以提高生产效率、降低成本、提高产品质量和可靠性。
基于MBD的飞机数字化装配工艺设计是指将数字化装配技术与MBD技术相结合,以实现飞机数字化装配工艺的设计和管理。
基于MBD的三维数模在飞机制造过程中的应用高度集成、协同和融合,建立了三维数字化设计制造一体化集成应用体系,开创了飞机数字化设计制造的崭新模式,确保了波音787客机的研制周期和质量。
随着数字化设计与制造技术在航空制造业的广泛应用,特别是三维CAD技术的日益普及,飞机研制模式正在发生根本性变化,传统的以数字量为主、模拟量为辅的协调工作法开始被全数字量传递的协调工作法代替,三维数模已经取代二维图纸,成为新机研制的唯一制造依据。
在枭龙飞机和ARJ21飞机机头的制造过程中,中航工业成飞公司结合数字化制造技术的发展方向,传统的以数字量为主、模拟量为辅的协调工作法开始被全数字量传递的协调工作法代替,并取得了一些阶段性成果。
但是,与国外发达航空企业相比,仍然存在很大的差距,主要表现在三维数模并没有贯穿于整个飞机数字化制造过程中,基于MBD(Model-Based Definition)技术的产品定义工作尚处于探索阶段,以MBD为核心的数字化工艺设计和产品制造模式尚不成熟,MBD的设计、制造和管理规范还有待完善,三维数字化设计制造一体化集成应用体系尚未贯通。
因此,为了缩短飞机研制周期,提高飞机研制质量,有必要以三维数模为载体,借鉴国外发达航空制造企业MBD技术的成功应用经验,结合飞机数字化制造流程,开展适合于我国国情的飞机三维数字化设计制造技术应用研究。
MBD内涵美国机械工程师协会于1997年在波音公司的协助下开始了有关MBD标准的研究和制定工作,并于2003年使之成为美国国家标准。
MBD的主导思想不只是简单地将二维图纸的信息反映到三维数据中,而是充分利用三维模型所具备的表现力,去探索便于用户理解且更具效率的设计信息表达方式。
它用集成的三维数模完整地表达了产品定义信息的方法,详细规定了三维数模中产品尺寸、公差的标注规则和工艺信息的表达方法。
MBD改变了传统用三维数模描述几何形状信息的方法,而用二维工程图纸来定义尺寸、公差和工艺信息的分步产品数字化定义方法。
《基于MBD的三维装配信息集成技术研究》一、引言随着制造业的快速发展,三维装配技术已成为现代制造过程中的关键环节。
而模型定义(MBD)技术的出现,为三维装配信息集成提供了新的思路和方法。
MBD技术通过将产品信息直接定义在三维模型中,实现了产品信息的全面集成和共享,为三维装配提供了更为高效、准确的信息支持。
本文旨在探讨基于MBD 的三维装配信息集成技术的研究,分析其优势和存在的问题,并针对这些问题提出相应的解决方案。
二、MBD技术的概念及其在三维装配中的应用MBD(Model Based Definition)技术,即基于模型的定义技术,它以数字化产品模型为载体,将产品从设计到制造的整个过程中的信息完整地集成在一起。
这种技术广泛应用于产品设计、工艺规划、制造执行等环节。
在三维装配过程中,MBD技术能够提供详细、准确的产品结构信息、装配顺序、装配工艺等,为装配操作提供全面、有效的信息支持。
三、基于MBD的三维装配信息集成技术(一)研究背景及意义传统的三维装配信息主要通过文本描述或图纸展示,这些方式往往存在信息冗余、表达不直观等问题。
而基于MBD的三维装配信息集成技术,将产品信息直接定义在三维模型中,实现了信息的全面集成和共享。
这种技术能够提高装配效率、降低装配成本,同时还能提高产品的可靠性和稳定性。
因此,研究基于MBD的三维装配信息集成技术具有重要意义。
(二)关键技术分析基于MBD的三维装配信息集成技术主要包括以下几个关键环节:1. 模型构建:通过CAD软件构建产品的三维模型,并确保模型的准确性和完整性。
2. 信息定义:在三维模型中定义产品的结构信息、装配顺序、装配工艺等,实现信息的全面集成。
3. 接口开发:开发与各生产环节的接口,实现与ERP、MES 等系统的数据交互。
4. 集成应用:将集成后的信息应用于实际生产过程中,提高生产效率和产品质量。
(三)研究方法与步骤基于MBD的三维装配信息集成技术的研究主要包括以下几个步骤:1. 分析并总结现有的三维装配技术和MBD技术的应用现状;2. 设计基于MBD的三维装配模型结构,并构建相应的三维模型;3. 在模型中定义产品的结构信息、装配顺序、装配工艺等;4. 开发与各生产环节的接口,实现数据交互;5. 将集成后的信息应用于实际生产过程中,分析其效果并不断优化。
基于MBD技术的三维工艺设计与现场可视化生产
拜明星
【期刊名称】《航空制造技术》
【年(卷),期】2013(000)008
【总页数】6页(P38-43)
【作者】拜明星
【作者单位】中航飞机股份有限公司西安飞机分公司
【正文语种】中文
【相关文献】
1.装甲车三维装配工艺设计与仿真及现场可视化技术 [J], 应小昆;杜增辉;曲强;李济龙
2.基于MBD的三维数字化装配工艺设计及现场可视化技术应用 [J], 胡保华;闻立波;杨根军;黄官平;吴慧;沈波;惠巍
3.基于DELMIA的飞机产品三维可视化装配工艺设计 [J], 耿翔宇;方忆湘;靳江艳
4.基于MBD技术的隔舱分段三维工艺设计 [J], 罗金;夏勇峰;瞿雪刚
5.基于MPMS的可视化三维装配工艺设计及表达方法 [J], 高宇; 赵文军; 马涛; 班永华; 张立宾; 白昂钦
因版权原因,仅展示原文概要,查看原文内容请购买。
基于MBD技术的三维工艺设计与现场可视化生产导读:飞机研制采用MBD技术推进了飞机研制模式的创新,“三维工艺设计平台+DCE平台+ERP生产管控平台”构成的集成化的综合信息管理平台是企业打通产品数字化制造的工具;“MBD模型+三维指令(AO/FO)+检验计划”是企业产品设计、生产、质量控制等产品实现过程所依赖的机制创新。
作者:拜明星 | 来源:航空制造技术基于模型定义(Model Based Definition,MBD)是一种新的产品数字化定义技术,用集成的三维实体模型来完整表达产品定义信息,详细规定了三维实体模型中产品定义、公差的标注规则和工艺信息的表达方法,三维实体模型成为生产制造过程中的唯一依据。
波音公司787客机采用了“基于模型的产品定义”技术,实现了产品关联设计、通过建立全球协同平台(GCE)实现了与合作伙伴协同研制,这彻底地改变了研制流程、研制方法和飞机研发模式。
新飞机工程全面应用MBD技术,采用多厂所异地协同的研制模式,为航空产业的跨越发展提供了难得的机遇。
飞机研制的工艺设计与生产管理现状飞机研制采用了基于MBD技术,构建了设计制造的协同工作平台(简称DCE平台),解决了产品制造的单一数据源,实现了产品协同设计。
DCE平台通过与企业ERP系统的集成,实现了飞机装配现场“无纸化”,取得了非常显著的效果。
01产品的工艺设计在DCE平台中依据产品数据集(EBOM、MBD模型等),完成工艺规划工作:编制工艺总方案、构建了PBOM、划分装配流程、建立顶层MBOM:开展工艺准备工作,完成零组件交接状态/毛料供应状态、工装申请及其技术条件的签审与控制,二维形式指令AO/FO设计、工程更改贯彻、检验计划编制及其签审等,实现了EBOM/PBOM/MBOM的技术状态管理,实现了产品制造的关联工艺设计。
02产品计划编制与过程控制飞机研制中产品检验检测与过程控制采用了检验计划(检验规程)。
检验汁划规范了检查项目、检查方法、俭测工量具、明确了检验活动的具体要求,是检验人员验收产品的标准文件在DCE平台的工艺指令的编制环境中编制检验计划,DCE平台进行审签流程管理,提高了检验设计工作质量。
浅谈基于MBD的数字化仿真技术在航天制造企业应用本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!1引言当前,伴随着三维数字化设计制造技术带来的传统产品研制模式的重大变革,基于模型的定义(ModelBasedDefinition,MBD)技术正向着可以实现产品整个生命周期中各个阶段的数据、过程定义与交换的全数字化方向发展。
近年来我国的航天制造业数字化紧跟现今数字化制造发展方向,在产品的三维数字化协同设计、基于三维产品模型的工艺设计、产品数据和生产过程管理等方面取得了一定的成效,但也应意识到,面向产品全生命周期的数字化尚未实现,全数字化的三维设计制造模式仍未形成,数字化仿真技术对数字化制造的促进效果仍不明显,数字化技术的巨大效能远未发挥。
对于离散型航天制造型企业,应重点从生产系统仿真技术、工艺设计仿真技术、装备设计仿真技术、质量检测仿真技术四方面深入开展数字化仿真技术的探索和应用工作。
现阶段需要着重解决以下几方面的问题:a.如何利用生产系统仿真技术详细验证工厂规划、车间布局方案可行性,降低固定资产投资和技术改进风险;b.如何利用工艺设计仿真技术减少产品研制初期的设计更改、工艺更改和试验件生产,并为产品装配现场提供可视化的三维工艺指导;c.如何通过利用装备设计仿真技术解决大型产品、工装验证成本高,设计周期长的问题;d.如何利用质量检测仿真技术提高产品的尺寸质量,降低产品的生产成本,提高零部件合格率并在产品批产前及时发现质量控制上的潜在隐患。
2生产系统仿真技术生产系统仿真是指利用计算机仿真技术和虚拟现实技术,在虚拟空间内对制造系统元素(包括设备和人)布置的合理性和原材料转化过程(包括加工、流转、装配)的流畅性进行验证和优化,计算各工位产能和物料流动时间并实现最优生产线平衡,以指导工艺布局、工艺物流和生产规划的技术。
基于MBD的三维数字化装配工艺设计及现场可视化技术应用基于MBD的三维数字化装配工艺设计技术是现代航空数字化制造中的一门新兴学科,也是未来飞机三维装配工艺设计的发展趋势。
本文介绍了该技术主要通过对DELMIA、3DVIA Composer、CAPP等工艺设计、工艺仿真软件进行客户化定制和多系统集成应用,完成基于MBD三维产品模型的工艺分离面的划分、BOM重构、工艺仿真以及三维装配指令编制等工艺设计工作,并通过生产管理系统将已完成的工艺设计信息传递到生产现场实现可视化装配,打通了基于MBD的产品设计与工艺设计及现场可视化装配的技术路线。
MBD(Model-Based Definition)即基于模型的产品数字化定义,其特点是:产品设计不再发放传统的二维图纸,而是采用三维数字化模型作为飞机零件制造、部件装配的依据。
传统的二维工艺设计模式已经不能适应全三维设计要求。
随着现代计算机技术、网络技术、工艺设计软件技术的发展,以及协同平台的建立,为三维数字化装配工艺设计和并行工程奠定了基础。
1 三维数字化装配工艺设计及现场可视化系统通过采用达索公司三维数字化装配工艺设计平台DELMIA及3DVIA Composer解决方案,构建“数字化装配工艺设计和仿真系统”及“生产现场可视化系统”。
突破DELMIA二次开发及定制技术、3D制造过程仿真验证及优化技术、MBD技术、生产现场可视化技术、Windchill/DELMIA/EPCS/CAPP多系统集成技术等关键技术瓶颈,最终构建符合企业业务需求的“数字化装配工艺设计和仿真系统”及“生产现场可视化系统”。
缩短飞机装配周期,提高装配质量,全面提升飞机的数字化制造能力。
系统流程及集成架构如图1所示。
图1 系统流程及集成框架系统流程及集成工作思路如下:(1)Windchill企业数据管理系统是企业唯一合法的数据来源,管理着各种BOM信息。
通过接口程序,把PBOM以XML的格式输出。
(2)通过在DELMIA DPE平台上二次开发技术,把XML格式的PBOM及产品三维数据模型调入DPE模块中进行工艺规划,并创建顶层MBOM。
(3)划分哪些工作需要在DELMIA中进行仿真验证,哪些不需要仿真验证,并将创建的顶层MBOM存到Windchill中。
(4)将需要仿真验证的装配件在DELMIA中进行详细的AO划分。
(5)在DELMIA DPM中进行装配仿真验证、人机工程仿真、资源仿真等工作。
(6)利用3DVIA Composer进行细节三维装配指令编制工作。
(7)进行DELMIA与CAPP的接口开发,使三维AO及配套表传入CAPP系统,并最终通过CAPP在Windchill进行流程审签。
(8)开发Windchill和ERP及MES的接口程序,把MBOM和AO信息传递给ERP及MES系统,实现车间现场装配可视化,指导实际生产工作。
2 三维数字化装配工艺设计三维数字化装配工艺设计是通过对飞机产品结构进行分析,在企业现有制造能力(设备、工艺技术能力、人力资源等)及产量要求的基础上,进行组件划分,制定装配流程,确定装配方案,并选择各装配环节所需要的制造资源。
在三维数字化装配工艺设计系统中,工艺设计用树状结构表示,主要由产品结构树、工艺结构树、资源结构树3个分支构成,具体结构特征按企业需求进行工艺模板定制。
基于MBD技术的三维数字化装配工艺设计主要工作流程如图2所示。
图2 基于MBD技术的三维数字化装配工艺设计流程2.1 数据准备工作在三维数字化装配工艺设计中所用的数据格式分为3种,CGR格式、CATIA V5模型、smgxml 格式。
其功能为:CATIA V5模型:来源于产品设计部门,是工艺设计的依据和基础数据。
CCR格式模型:由CATIA V5模型转换而来,轻量化模型,用于大数据量模型的仿真及DPM 环境下产品结构浏览。
smgxml格式模型:由CATIA V5模型转换而来,轻量化模型,用于在WKC中进行三维装配指令的三维视图编辑。
smgxml格式模型转换界面如图3所示。
图3 smgxml格式模型转换界面2.2 PBOM数据导入将来自协同平台的XML格式的PBOM导入DELMIA的DPE中,PBOM中的零组件信息(工艺路线、批架次、工组件等)会通过程序自动关联CGR模型、CATIA V5模型、smgxml模型3种格式的数据。
并导入产品模型的坐标位置信息。
在DPE中构建全机或部件的PBOM结构树。
数据导入流程如图4所示。
图4 PBOM数据导入2.3 工艺分离面的划分完成数据导人工作后,在DELMIA系统的MA(Manufacturing Assembly)中根据三维产品模型在三维数字化环境下进行全机、部组件工艺分离面的划分,结合PBOM结构树确定各工艺装配部件、组合件需要装配的组件及零件项目,构建工艺部件、组件模型结构。
在MA中进行工艺分离面划分如图5所示。
图5 MA中进行工艺分离面划分2.4 全机或部件装配工艺仿真针对工艺分离面划分结果在DPM中进行全机及部件级工艺仿真,验证工艺分离面划分的合理性,并进行优化。
2.5 部件装配方案的设计在工艺分离面划分优化的基础上,在DPE的PROCESS结构树上对各工艺部件进行装配流程设计,划分下一级组件装配单元,确定在各组件装配的零组件项目,构建顶层MBOM结构树,关联来自工艺部件的组件装配工艺模型。
确定装配工艺基准和装配定位方法,并规划各组件之间的装配流程。
2.6 部、组件装配AO的确定在部、组件划分的基础上,依据分配到部、组件项目的装配工艺模型在DPE的PROCESS 结构树上进一步进行部、组件装配过程设计,确定各部、组件所属零组件的装配顺序,规划完成装配的AO项目,编制AO号,关联每本AO需要装配的零组件项目。
2.7 工装订货单的编制及工装设计工艺部门依据工艺设计内容提出装配工装、夹具、刀具的订货技术要求。
工装部门根据订货技术要求,设计装配型架、地面设备、专用工、刀、量具的三维数模。
2.8 工装数据的导入将来自于企业协同平台的工装等资源三维模型数据分别以CATIA V5模型和格式导入DELMIA系统,建立资源结构树,并分别关联到PROCESS工艺设计结构树上的部组件装配项目上。
2.9 详细工艺设计在三维数字化环境下确定该装配工艺过程零组件、标准件、成品等装配顺序,明确装配工艺方法、装配步骤,进行AO下工步的详细设计,完成本装配过程的工步规划设计,并将产品零组件和工步关联。
选定该装配过程所需要的工装、夹具、工具、辅助材料等一系列的制造资源,并将工装与工位关联。
依据产品连接定义分配该过程所需要的标准件,形成用于指导生产的AO装配信息。
2.10 部、组件装配仿真产品及资源三维模型在工步上关联后,依据AO内容及设计好的装配工艺流程,在DPM 中通过对每个零件、成品和组件的移动、定位、夹紧等操作进行产品与产品、产品与工装的干涉检查,当系统发现存在干涉情况时报警,并显示出干涉区域和干涉量,以帮助工艺设计人员查找和分析干涉原因。
同时通过对产品装配和拆卸过程进行三维动态仿真,可以验证每个零件按工艺设计的装配顺序是否能无阻碍的装配上去,以发现工艺设计过程中装配顺序设计的合理性。
对于开敞性、可视性、可达性、可操作性较差的部位可以将标准人体的三维模型放人虚拟装配环境中进行人机工程仿真,模拟操作者的操作过程以便发现操作空间大小是否满足装配需要,操作者身体或肢体能否到达装配位置、是否看得见等问题。
仿真结果通过仿真报告提交产品设计、工装设计等部门进行优化。
2.11 三维装配指令编制通过部、组件装配仿寞,对产品、工装、AO内容及装配顺序等进行优化后,依据优化后的工艺设计结果进入DELMIA的WKC(Work Instruction Composer)中进行各工步三维可视化视图设计,将每个工步所要表达的工艺信息通过三维轻量化视图表达,包括标准件信息、装配尺寸标注、制孔要求、定位要求、工装使用要求,其形式如图6所示。
图6 WKC中三维可视化文件编制3 现场可视化技术应用3.1 现场可视化文件输出、管理由于采用MBD技术以后,生产现场不再发放二维图纸,为了满足装配生产需要,中航工业陕飞采取了利用装配仿真视频、AO和三维工步视图指导现场装配作业的解决方案,具体方法是将在DPE中完成的部组件工艺规划、设计内容提取到CAPP中的AO模板中,包括AO 内容页、辅材配套表、标准件配套表、零件配套表等文档信息,同时输出DPM中部组件的仿真视频和WKC中的三维工步视图,通过Windchill协同制造平台进行审签发放和管理。
3.2 现场可视化应用通过装配现场可视化技术,使MBD技术在车间“落地”,它是将产品的装配仿真验证文件、三维工作指令以及工艺设计文件等工艺信息传递导入到企业的MES系统,发送到车间现场,操作人员通避现场触摸屏,在MES系统里查询产品工艺装配信息,可以直接查看三维装配指令及相关三维仿真,以更直观的方式了解产品的装配属性,理解产品的装配工艺和工艺流程,从而提高装配工作效率和准确性。
MBD技术现场具体应用过程是,首先运行MES系统,通过查询工位设备号,确认某个部件的装配工位,查看AO文件名称、文件号以及装配该部件的工艺装备,然后输入负责该部件装配工作的操作者证件号,进入该产品的具体生产信息界面,对应AO名称和文件号,查看产品的装配仿真验证动画,直观地全面了解产品的装配流程,查看三维工作指令,获取产品的定位、装配尺寸等装配信息,查看AO文件,获取产品的装配零件及详细工作内容,最终完成产品的装配,如图7所示。
图7 现场可视化4 结论通过基于MBD的三维数字化装配工艺设计及现场可视化技术应用研究及实施,打通了基于MBD的产品设计与工艺设计及现场可视化装配的技术路线。
从实施情况看三维数字化装配工艺设计及现场可视化系统在数字化制造中有以下优点:(1)实现了产品设计、工艺设计、工装设计的并行工程,缩短了产品研制周期,减少了开发成本。
(2)通过装配过程三维仿真验证,及时发现了产品设计、工艺设计、工装设计存在的问题,有效地保证了产品装配的质量。
(3)通过现场可视化系统的应用,三维装配仿真通过三维数据直观地显现了装配过程,使装配操作者更容易理解装配工艺,减少了装配过程中的反复和人为差错。
(4)使工艺研制更便捷、更直观,特别在新产品研制中,通过三维数字化装配工艺设计使得工艺方案的制定、技术决策更准确、便捷。
(5)通过多个系统的集成,使设计、工艺、生产的信息可以更方便被调用,数据流通更加畅通。
(6)为企业提供了承上启下的工艺设计平台,便于在此基础上进行创新开发,为企业的质量管理、生产管理等系统提供上游工艺信息。
应用中的不足之处:(1)目前人机仿真操作比较繁琐。