分页存储管理
- 格式:pptx
- 大小:2.06 MB
- 文档页数:20
非连续分配方式1.基本内容:页式存储管理基本思想、数据结构、地址转换过程。
段式存储管理以及段页式存储管理。
2.学习要求:;掌握页式存储管理、段式存储管理以及段页式存储管理的实现原理、数据结构、地址转换机构等内容。
3.教学要求:本单元共安排4学时。
采用教员课堂讲授方法实施教学。
该部分内容抽象,是本章学习重点与难点。
课后可通过课程设计使学员加深对于抽象理论的理解和掌握。
4.重点:各种管理实现原理、数据结构、地址转换机构。
5.难点:段式存储管理。
分页存储管理可重定位分区分配虽然可以解决碎片和共享问题,但由于信息的大量移动而损失了许多宝贵的CPU时间,且存储用户的作业受到实际存储容量的限制。
多重分区分配虽在一定程度上解决了这些问题,但由于要求各分区设置分段的重定位寄存器,存储分配策略较复杂,且需较多的硬件支持。
分页式管理技术通过地址转换机制,能明显消除内、外存之间的差别,将外存看作内存的扩充和延伸。
并能很好解决“外零头”的问题。
一、分页在储管理实现的基本思想:在分页存储管理中,将每个作业的逻辑地址空间分为大小相同的块,称为虚页面或页(page),通常页面大小为2的整数次幂(512K~4K)。
同样地,将物理空间也划分为与页面大小相等的块,称之为存储块或页框(page frame),为作业分配存储空间时,总是以页框为单位。
例如:一个作业的地址空间有M页,那么只要分配给它M个页框,每一页分别装入一个页框即可。
纯分页系统的定义:指在调度一个作业时,必须把它的所有页一次装入到主存的矾框。
若当时页框数不足,则该作业必须等待,系统再调度其他作业。
这里,并不要求这些页框是相邻的。
即连续逻辑地址空间的页面,通过页面地址转换机构可以映射到不连续的内存块中。
对地址空间的分页是由系统自动进行的,其逻辑地址由相对页号和页内位移量(页内地址)两部分组成(下面a)。
图中设逻辑地址长度为16位,可表示64K的逻辑地址空间。
物理地址也由块号及块内移量(块内地址)两部分组成(下图b)。
第十六讲存储器管理之请求分页存储管理方式1 基本概述请求分页管理是建立在基本分页基础上的,为了能支持虚拟存储器而增加了请求调页功能和页面置换功能。
基本原理:地址空间的划分同页式;装入页时,可装入作业的一部分(运行所需)页即可运行。
2 请求分页的硬件支持为实现请求分页,需要一定的硬件支持,包括:页表机制、缺页中断机构、地址变换机构。
2.1 页表机制作用:将用户地址空间的逻辑地址转换为内存空间的物理地址。
因为请求分页的特殊性,即程序的一部分调入内存,一部分仍在外存,因此页表结构有所不同。
如图:说明:(1)状态位P:指示该页是否已调入内存。
(2)访问字段A:记录本页在一段时间内被访问的次数或最近未被访问的时间。
(3)修改位M:表示该页在调入内存后是否被修改过。
若修改过,则换出时需重写至外存。
(4)外存地址:指出该页在外存上的地址。
2.2 缺页中断机构在请求分页系统中,每当所要访问的页面不在内存时,便产生缺页中断,请求OS将所缺的页调入内存。
缺页中断与一般中断的区别:(1)在指令执行期间产生和处理中断信号(2)一条指令在执行期间,可能产生多次缺页中断2.3 地址变换机构请求分页系统的地址变换机构。
是在分页系统地址变换机构的基础上,又增加了一些功能。
例:某虚拟存储器的用户空间共有32个页面,每页1KB,主存16KB。
假定某时刻系统为用户的第0、1、2、3页分别分配的物理块号为5、10、4、7,试将虚拟地址0A5C和093C 变换为物理地址。
解:虚拟地址为:页号(2^5=32)5位页内位移(1K =2^10=1024)10位物理地址为物理块号(2^4=16)4位因为页内是10 位,块内位移(1K =2^10=1024)10位虚拟地址OA5C对应的二进制为:00010 1001011100即虚拟地址OA5C的页号为2,页内位移为1001011100,由题意知对应的物理地址为:0100 1001011100即125C同理求093C。
实验7 分页存储器管理实验性质:验证+设计建议学时:2学时一、实验目的● 学习i386处理器的二级页表硬件机制,理解分页存储器管理原理。
● 查看EOS应用程序进程和系统进程的二级页表映射信息,理解页目录和页表的管理方式。
● 编程修改页目录和页表的映射关系,理解分页地址变换原理。
二、预备知识阅读本书第6章。
了解i386处理器的二级页表硬件机制,EOS操作系统的分页存储器管理方式,以及进程地址空间的内存分布。
三、实验内容3.1 准备实验按照下面的步骤准备本次实验:1. 启动OS Lab。
2. 新建一个EOS应用程序项目。
3.2 查看EOS应用程序进程的页目录和页表使用OS Lab打开本实验文件夹中的memory.c和getcr3.asm文件(将文件拖动到OS Lab窗口中释放即可打开)。
仔细阅读这两个文件中的源代码和注释,main函数的流程图可以参见图16-1。
按照下面的步骤查看EOS应用程序进程的页目录和页表:1. 使用memory.c文件中的源代码替换之前创建的EOS应用程序项目中EOSApp.c文件中的源代码。
2. 右键点击“项目管理器”窗口中的“源文件”文件夹节点,在弹出的快捷菜单中选择“添加”中的“添加新文件”。
3. 在弹出的“添加新文件”对话框中选择“asm 源文件”模板。
4. 在“名称”中输入文件名称“func”。
5. 点击“添加”按钮添加并自动打开文件func.asm。
6. 将getcr3.asm文件中的源代码复制到func.asm文件中。
7. 按F7生成修改后的EOS应用程序项目。
8. 按F5启动调试。
9. 应用程序执行的过程中,会将该进程的二级页表映射信息输出到虚拟机窗口和OS Lab“输出”窗口中,输出内容如图16-2(a)。
10. 将“输出”窗口中的内容复制到一个文本文件中。
图16-2:(a)EOS应用程序进程的二级页表映射信息(b)有应用程序进程时,系统进程的二级页表映射信息图16-2(a)中第一行是CR3寄存器的值,也就是页目录所在的页框号。
实验六:请求分页存储管理一.实验目的深入理解请求页式存储管理的基本概念和实现方法,重点认识其中的地址变换、缺页中断、置换算法等实现思想。
二.实验属性该实验为综合性、设计性实验。
三.实验仪器设备及器材普通PC386以上微机四.实验要求本实验要求2学时完成。
本实验要求完成如下任务:(1)建立相关的数据结构:页表、页表寄存器、存储块表等;(2)指定分配给进程的内存物理块数,设定进程的页面访问顺序;(3)设计页面置换算法,可以选择OPT、FIFO、LRU等,并计算相应的缺页率,以比较它们的优劣;(4)编写地址转换函数,实现通过查找页表完成逻辑地址到物理地址的转换;若发生缺页则选择某种置换算法(OPT、FIFO、LRU等)完成页面的交换;(5)将整个过程可视化显示出来。
实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。
三、设计过程3.1算法原理分析OPT算法是未来最远出现,当当前内存中没有正要访问的页面时,置换出当前页面中在未来的访问页中最远出现的页面或再也不出现的页面。
FIFO算法是先进先出,当当前内存中没有正要访问的页面时,置换出最先进来的页面。
LRU算法是最近最久未使用,当当前内存中没有正要访问的页面时,置换出在当前页面中最近最久没有使用的页面。
3.2数据定义int length,num_page,count,seed; //length记录访问串的长度,num_page页面数,count记录缺页次数int result[20][30],order[30],a[10]; //result记录结果,order存储访问串,a存储当前页面中的值int pos1,flag1,flag2,flag3; //pos1位置变量,flag1等为标志变量 char result1[30]; //记录缺页数组 void opt() //最佳void fifo() //先进先出bool search(int n) //查找当前内存中是否已存在该页3.3流程图与运行截图图6.1 FIFO ()函数流程图;否是 是否 开始得到执行的指令指令是否在内存中最先存入指令被淘汰下面是否还有指令 结束得出命中率图2.2 OPT算法流程图四、小结本次课程设计目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。
存储管理作业(二)1、已知某系统页面长4KB,页表项4B,采用多级页表映射64位虚地址空间。
若限定最高层页表占1页,问它可以采用几级页表?2、设有一页式存储管理系统,向用户提供的逻辑地址空间最大为16页,每页2048B,内存总共有8个存储块。
试问逻辑地址至少应为多少位?内存空间有多大?3、在一分页存储管理系统中,逻辑地址长度为24位,页面大小为4096B,现有一逻辑地址为2FA6H,且第0、1、2页依次存放在物理块10、12、14中,问相应的物理地址为多少4、有一个页式虚存系统,某进程占用3个内存块,开始时内存为空,执行如下访问页号序列:0,1,2,3,4,1,2,0,5,1,0,1,2,3,2,4,5(1) 采用先进先出(FIFO)置换算法,缺页次数是多少?(2) 采用LRU置换算法,缺页次数是多少?(3) 若用最优(OPT)算法呢?5、(8分)设某计算机的逻辑地址空间和物理地址空间均为64KB,按字节编址。
若某进程最多需要6页(Page)数据存储空间,页的大小为1KB,操作系统采用固定分配局部置换策略为此进程分配4个页框(Page Frame)。
在时刻260前的该进程访问情况如下表所示(访问位即(1)该逻辑地址的对应的页号是多少?(2)若采用先进先出(FIFO)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。
46题)10ns,处理一次缺页的平均时间为108ns(已含更新TLB和页表的时间),进程的驻留集大小固定为2,采用最近最少使用置换算法(LRU)和局部淘汰策略。
假设①TLB初始为空;②地址转换时先访问TLB,若TLB未命中,再访问页表(忽略访问页表之后的TLB更新时间);③有效位为0表示页面不在内存,产生缺页中断,缺页中断后,返回到产生缺页中断的指令处重新执行。
设有虚地址访问序列2362H、1565H、25A5H,请问:(1) 依次访问上述三个虚地址,各需多少时间?给出计算过程。
基本分页存储基本分页存储是一种常见的存储方式,它将数据分成固定大小的块,并按照顺序存储在磁盘上。
这种存储方式在计算机领域得到了广泛的应用。
本文将详细介绍基本分页存储的原理、优势和应用场景。
一、基本分页存储的原理基本分页存储将数据划分为固定大小的块,每个块称为一页。
每一页都有一个唯一的页号,用于标识该页在存储中的位置。
数据按照页的顺序存储在磁盘上,当需要访问某一页时,系统可以通过页号来快速找到对应的页,并将其加载到内存中进行操作。
1. 灵活性:基本分页存储可以根据实际需求设置页的大小,因此可以适应不同规模的数据存储需求。
2. 空间利用率高:由于数据被划分为固定大小的块,可以更好地利用磁盘空间,减少存储浪费。
3. 访问效率高:基本分页存储可以通过页号快速找到对应的页,提高数据的访问效率。
4. 管理方便:基本分页存储可以通过简单的算法来管理数据的存储和访问,降低了系统的复杂性。
三、基本分页存储的应用场景1. 数据库管理系统:数据库管理系统通常使用基本分页存储来存储和管理数据,提供高效的数据访问和管理功能。
2. 操作系统:操作系统也常常使用基本分页存储来管理虚拟内存,提供更大的地址空间和更高的访问效率。
3. 文件系统:文件系统可以使用基本分页存储来管理文件的存储和访问,提供快速的文件操作功能。
4. 缓存系统:缓存系统可以使用基本分页存储来管理缓存数据,提高系统的响应速度和性能。
5. 分布式存储系统:分布式存储系统可以使用基本分页存储来管理分布式数据的存储和访问,提供高可靠性和高吞吐量的数据存储服务。
在实际应用中,基本分页存储还可以与其他存储方式结合使用,以满足不同的需求。
例如,可以将常用的数据存储在内存中,将不常用的数据存储在磁盘上,通过基本分页存储来管理和访问这些数据,以提高系统的性能和效率。
基本分页存储是一种常见的存储方式,它通过将数据划分为固定大小的块,并按照顺序存储在磁盘上,提供了灵活性、空间利用率高和访问效率高等优势。
请求分页式存储管理一、问题描述设计一个请求页式存储管理方案,为简单起见。
页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中修改状态位。
而不再判断它是否被改写过,也不将它写回到辅存。
二、基本要求页面尺寸1K,输入进程大小(例如5300bytes),对页表进行初始化页表结构如下:系统为进程分配:任意输入一个需要访问的指令地址流(例如:3635、3642、1140、0087、1700、5200、4355,输入负数结束),打印页表情况。
每访问一个地址时,首先要计算该地址所在的页的页号,然后查页表,判断该页是否在主存——如果该页已在主存,则打印页表情况;如果该页不在主存且页框未满(查空闲块表,找到空闲块),则调入该页并修改页表,打印页表情况;如果该页不在主存且页框已满,则按FIFO页面淘汰算法淘汰一页后调入所需的页,修改页表,打印页表情况。
存储管理算法的流程图见下页。
三、实验要求完成实验内容并写出实验报告,报告应具有以下内容:1、实验目的。
2、实验内容。
3、程序及运行情况。
4、实验过程中出现的问题及解决方法。
#include<stdio.h>#include<stdlib.h>int PUB[20][3];int ABC[3][2]={{0,1},{1,1},{2,1}};//物理块int key=0;void output(int size){//打印int i,j;printf("页号\t\t物理块号\t\t状态位\n\n");for(i=0;i<size;i++){printf(" %d\t\t%d\t\t\t%d\n\n",PUB[i][0],PUB[i][1],PUB[i][2]);}printf("物理块号\t\t是否空闲\n\n");for(i=0;i<3;i++){printf(" %d\t\t\t%d\n\n",ABC[i][0],ABC[i][1]);}}void main(){int size;int i,j;int address=0;int select=0;printf("请输入进程大小\n");scanf("%d",&size);if(size<=0 || size>20000){printf("进程大小超出范围\n");exit(0);}size%1000==0 ? size=size/1000 : size=size/1000+1;for(i=0;i<size;i++){PUB[i][0]=i; //页号PUB[i][1]=0; //物理块号PUB[i][2]=0; //状态位}output(size);while(1){printf("输入指令地址\n");scanf("%d",&address);if(address<0 || address>20000){printf("地址超出范围\n");exit(0);}address%1000==0 ? address=address/1000 : address=address/1000;if(PUB[address][2]==0) //不在主存{if(ABC[2][1]==0) //满了{printf("满了\n");if(select!=address) key++;for(i=0;i<size;i++){if(PUB[i][1]==key){PUB[i][1]=0;PUB[i][2]=0;}}PUB[address][1]=key;PUB[address][2]=1;key++;if(key>3) key=1;}if(ABC[2][1]==1) //没满{printf("没满\n");for(i=0;i<3;i++){if(ABC[i][1]==1){ABC[i][1]=0;PUB[address][1]=i+1;PUB[address][2]=1;break;}}}output(size);}else{printf("该页已在内存\n");output(size);}select=address;}}。
一、实验目的1. 理解存储器管理的概念和作用。
2. 掌握虚拟存储器的实现原理。
3. 熟悉存储器分配策略和页面置换算法。
4. 提高动手实践能力,加深对存储器管理知识的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发环境:GCC编译器三、实验内容1. 虚拟存储器实现原理(1)分页式存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页。
内存与外存之间通过页表进行映射,实现虚拟存储器。
(2)页表管理:包括页表建立、修改和删除等操作。
(3)页面置换算法:包括FIFO、LRU、LRU时钟等算法。
2. 存储器分配策略(1)固定分区分配:将内存划分为若干个固定大小的分区,每个分区只能分配给一个进程。
(2)可变分区分配:根据进程需求动态分配内存,分为首次适应、最佳适应和最坏适应等策略。
(3)分页存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页,通过页表进行映射。
3. 页面置换算法(1)FIFO算法:根据进程进入内存的顺序进行页面置换,最早进入内存的页面将被淘汰。
(2)LRU算法:淘汰最近最少使用的页面。
(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,通过一个时钟指针实现页面置换。
四、实验步骤1. 编写程序实现虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。
2. 编写测试程序,模拟进程在虚拟存储器中的运行过程,观察不同页面置换算法的效果。
3. 分析实验结果,比较不同页面置换算法的性能差异。
五、实验结果与分析1. 实验结果通过模拟实验,验证了虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。
实验结果显示,不同页面置换算法对系统性能的影响较大。
2. 实验分析(1)FIFO算法:实现简单,但可能导致频繁的页面置换,影响系统性能。
(2)LRU算法:性能较好,但实现复杂,需要额外的硬件支持。
(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,在性能和实现复杂度之间取得平衡。
一、实验目的1. 理解操作系统存储管理的概念和作用。
2. 掌握存储管理的基本算法和策略。
3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。
二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。
2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。
(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。
五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。
但页式存储管理也存在页面碎片问题,导致内存碎片化。
2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。