第2章——辐射防护中常用的辐射量和单位
- 格式:ppt
- 大小:9.63 MB
- 文档页数:45
辐射剂量与防护的名词解释辐射是指从放射性物质、电磁波等物质或能量传递到周围环境的过程。
在人类活动和日常生活中,我们经常面临各种形式的辐射,包括电离辐射和非电离辐射。
辐射剂量是用于度量辐射的指标,而辐射防护是为了保护人类和环境免受辐射的危害。
本文将解释辐射剂量和辐射防护的相关术语,让读者更加深入地了解这个领域。
一、辐射剂量1. 辐射剂量单位:辐射剂量的单位是希沙(Sievert,缩写为Sv),用于测量辐射对人体组织造成的伤害。
国际协定规定,1希沙等于1焦耳/千克(J/kg)。
为了更好地描述辐射剂量的大小范围,常用微希沙(microSievert,缩写为μSv)或毫希沙(milliSievert,缩写为mSv)。
2. 有效剂量:有效剂量是指考虑不同类型辐射对不同组织的不同影响程度后得出的剂量。
它是以希沙为单位,表示人体接受辐射后受到的影响,包括局部组织损伤、遗传效应等。
有效剂量的计算方法会根据不同类型的辐射进行调整。
3. 等效剂量:等效剂量也是以希沙为单位,用来度量各种不同类型辐射对生物体产生的相同效应。
等效剂量的计算方法会考虑不同类型辐射的能量传递和生物体对辐射的敏感程度。
4. 个人剂量:个人剂量是指个体在一定时间内接受到的辐射剂量,监测个人剂量可以帮助评估他们的辐射暴露情况,从而采取适当的防护措施。
二、辐射防护1. 辐射防护措施:辐射防护措施旨在减少人体暴露于辐射的风险。
这些措施包括保持距离、减少时间和使用防护设备等。
保持距离可以减少辐射暴露,特别是与放射源保持足够距离。
减少时间可以减少接受辐射的时间,例如尽量缩短在受辐射环境中的停留时间。
使用防护设备,如屏蔽材料和防护服,可以减缓辐射对人体的伤害。
2. 辐射防护原则:辐射防护有三个基本原则,即限制时间、最大距离和最小剂量。
限制时间是指尽量减少个人接受辐射的时间,最大距离是与辐射源保持足够的距离,以减少辐射暴露,最小剂量是尽量减少个人接受到的辐射剂量。
辐射量是衡量辐射强度的一种单位,是人类所使用的物理量。
它可以
表示辐射中由于能量的传递而产生的能量效应,这是由于辐射产生的
热量、光、电磁等等。
在实际应用中,由于辐射量可能会带来危害,
因此人们需要熟知一些常用的辐射量和单位。
第一种常见的辐射量是辐射剂量,它的单位是常用的剂量单位“比特”(Bit),它是指一个物质在某一频率辐射中受到的剂量。
另一种常用
的辐射量是衰减系数,它的单位是衰减系数(Attenuation Coefficient),它是用于衡量一种物质在某种频率辐射影响之下的能量传输率。
此外,也有另一种类型的辐射量,称为辐射衰减率。
它以千分之一(pSv / h)为单位,用于表示某一特定位置在某段时间内,某浓度的辐射每小时
减少的数量。
接下来,还有一种常用的辐射量是放射度,它的单位是放射微表(rad),它是指单位时间内,辐射能量发射到特定区域的能量值。
它
与放射率(rad / h)单位相对应,它表示单位时间内从一个物体表面发射的放射能量。
最后,还有一种名为比辐射剂量(DMR)的辐射量,
它可以用来衡量某频率辐射中产生的能量变化,它以比特(Bq / j)为
单位,可以用于评估物体所收到的辐射剂量。
总而言之,辐射量通常有辐射剂量、衰减系数、辐射衰减率、放射度
和比辐射剂量,它们有各自不同的表示方式和单位,也有各自不同的
用途。
这些辐射量均是辐射强度表示的一种单位,其数值及应用都是
研究辐射的重要依据。
辐射剂量与辐射防护中常用量及其单位活度在给定时刻处于一给定能态的一定量的某种放射性核素的活度A定义为:A = dN/dt式中:dN ——在时间间隔dt内该核素从该能态发生自发核跃迁数目的期望值。
活度的单位是秒的倒数,称为贝克(勒尔)(Bq),它与原使用单位居里的关系为:1Ci = 3.7 ×1010Bq照射量照射量是描述X和γ射线辐射场的量。
照射量的国际单位(SI)用每千克空气中的电荷量库仑表示,即C·kg-1。
照射量的专用单位是R(伦琴)。
1R=2.58×10-4C·kg-1或1C·kg-1=3.877×103R伦琴单位使用历史悠久,它不是受照物质吸收的能量,应称为照射量,而不是一度被误称的剂量和照射剂量。
用于描述辐射场时它只适用于空气,而且只能用于度量10 KeV-3 MeV能量范围的X或γ射线。
吸收剂量吸收剂量是描述辐射场内受照物体接受的能量。
吸收剂量是与辐射效应有联系的辐射防护中使用的最基本的剂量学量。
吸收剂量使用与比释动能相同的SI单位和专用单位,即J·kg-1和Gy(戈瑞)。
吸收剂量的旧单位是rad(拉德),1Gy=100rad。
对X射线、γ射线,吸收剂量在0.25戈瑞以下时,人体一般不会有明显效应;但是,剂量再增加,就可能出现损伤。
当达到几个戈瑞时,就可能使部分人死亡。
接受同样数量的“吸收剂量”,受照射时间越短,损伤越大;反之,则轻。
吸收同样数量剂量,分几次照射,比一次照射损伤要轻。
α粒子穿透能力弱(一张纸就可以阻挡),不会引起外照射损伤。
β粒子穿透能力也较弱,外照射时只能引起皮肤损伤。
γ射线穿透能力强,人体局部受到它照射,吸收2~3戈瑞剂量时不会出现全身症状,即使有人出现也很轻微。
但是,全身照射就可能会引起放射病。
辐射权重因数、剂量当量和当量剂量吸收剂量表示受到辐射照射后人体组织器官的能量沉积。
辐射照射后引起的生物效应及其严重程度不仅取决于能量沉积,还取决于辐射的种类。
照射量(X):是指X射线或γ射线的光子在单位质量空气中释放出来的全部电子完全被空气阻止时,在空气中产生同一种符号离子的总电荷的绝对值。
照射量只用于X射线或γ射线在空气中的辐射场的量度,不能用于其他类型辐射和其他物质。
照射量的SI单位是库仑每千克(C·kg-1)。
吸收剂量(D):指电离辐射与物质相互作用时,单位质量的物质中吸收电离辐射能量多少的一个辐射量。
吸收剂量的SI单位是焦耳每千克(J·kg-1),称为戈瑞(Gy)。
1戈瑞(Gy)的吸收剂量等于1千克受照射物质吸收1焦耳的辐射能量。
1 Gy=103mGy=106μGy。
剂量当量(H):相同的吸收剂量(D)未必产生同样程度的生物效应,因为生物效应受到辐射类型、剂量与剂量率大小、照射条件、生物种类和个体生理差异等因素的影响。
为了比较不同类型辐射引起的有害效应,在辐射防护中引进了一些系数,当吸收剂量乘上这些修正系数后,就可以用同一尺度来比较不同类型辐射照射所造成的生物效应的严重程度或产生机率,这种修正后的吸收剂量就称为剂量当量。
剂量当量的SI单位是焦耳每千克(J·kg-1),称为希沃特(Sievert),符号为Sv。
剂量当量率:是指单位时间内剂量当量。
它的SI单位是焦耳每千克每秒(J·kg-1·s-1),称为希沃特每秒(Sv·s-1)。
当量剂量(HT,R):当量剂量等于辐射在某一组织或器官中产生的平均吸收剂量,经辐射权重因数加权处理的吸收剂量。
当量剂量的SI单位是焦耳每千克(J·kg-1),称为希沃特(Sievert),符号为Sv。
有效剂量(E):人体各组织或器官的当量剂量乘以相应的组织权重因数后的和。
有效剂量的SI单位是焦耳每千克(J·kg-1),称为希沃特(Sievert),符号为Sv。
放射性活度(A):是单位时间内该放射性核素发生自发衰变的次数。
是度量放射性物质在单位时间内原子核衰变数的物理量,放射性物质在单位时间内发生核衰变数目越多,这种放射性物质的放射性强度就越强。