初等几何研究综合测试题(二十)
- 格式:doc
- 大小:135.10 KB
- 文档页数:5
《初等几何研究》综合测试题(十三)适用专业:数学教育专业考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.已知一个三角形的周长为15cm,且其中两边都等于第三边的2倍,那么这个三角形的最短边为___________。
A.1cm;B.2cm;C.3cm;D.4cm。
2.n边形对角线条数是__________。
A.;B.;C.;D.。
3. 在Rt AB C中,CD是斜边AB上的高,CD=6,且AD:BD=3:2,则斜边AB上的中线长等于________________。
A.;B.;C.;D..4.一个三角形的周长为偶数,其中两边分别为2和5,则第三边应是_________。
A.5;B.6;C.3;D.4.5.一正方形同时外切和内接于两个同心圆,当小圆的半径为r时,大圆的半径应为________。
A. ;B.1.5r;C. ;D.2r。
6.下列命题中能用来判断一条线段是半径的命题是__________。
A.过圆心且垂直于切线的直线必经过切点;B.过切点且垂直于切线的直线必经过圆心;C.圆的切线垂直于过切点的半径;D.过半径的外端且垂直于这条半径的直线是圆的切线。
7.不能判定直线MN是线段AB的垂直平分线的是_________。
A.MA=MB ,NA=NB ;B.MA=MB,MN⊥AB;C.MA=NA,BM=BN;D.MA=MB,MN平分AB。
8.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在_________。
A.在AC、BC两边高线的交点处;B.在AC、BC两边中线的交点处;C.在AC、BC两边垂直平分线的交点处;D.在∠A、∠B两内角平分线的交点处。
二、判断题(本题共5小题,每小题2分,共10分)1.棱形既是中心对称图形又是轴对称图形。
()2.将一个图形经过平移后再旋转得到另一个图形,则这个图形的位置不变。
《初等几何研究》作业一、填空题1、对直线a上任意两点A、B,把B以及a上与B在A同侧的点的集合称作,并记作。
2、在绝对几何中,外角定理的内容是:。
3、第四组公理由条公理组成,它们的名称分别是。
4、欧氏平行公理是:。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是,不同之处是。
6、几何证明的基本方法,从推理形式上分为法与归纳法;从思维方向上分为法与分析法;从命题结构上分为证法与间接证法,其中间接证法包括法与法。
7、过反演中心的圆,其反演图形是(过或不过)反演中心的。
8、锐角三角形的所有内接三角形中,周长最短的是三角形。
9、锡瓦定理:设⊿ABC的三边(所在直线)BC、CA、AB上分别有点X、Y、Z,则AX、BY、CZ三线共点(包括平行)的充要条件是。
10、解作图问题的常用方法有:、、、等。
11、数学公理系统的三个基本问题是性、性和性.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的,否则称A、B在a的 .13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是定理的推论.14、证明直线和圆的连续性时,主要依据了原理.15、罗氏平行公理是: .16、在罗氏几何中,共面的两条直线有种关系,它们分别是17、几何证明的通用方法一般有法、法、法、法、法、法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有的关系.19、尺规可作图的充要条件是 .20.由公理可以证明,线段的合同关系具有性、性、性和性.21.如果线段与角对应,那么线段的中点与角的对应.22.命题:“线段小于任意一条连接其两个端点的折线”是定理的推论.23.绝对几何包括有组公理,它们分别是 .24.写出一条与欧氏平行公理等价的命题: .25.在罗氏几何中,两条直线为分散线的充要条件是 .26、.常用的几何变换有等27.托勒密定理:四边形ABCD是圆内接四边形,则 .28.请写出两条作图公法: .29.在希尔伯特给出的欧几里得公理系统中,三角形的定义是:。
《初等几何研究》综合测试题(十八)适用专业:数学教育专业 考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.下列命题是假命题的是( )A .直角的补角是直角;B .钝角的补角是锐角;C .两直线被第三条直线所截,同旁内角互补;D .过直线外的一点到直线上点的连线中,垂线段最短。
2.命题“同角的余角相等”的题设是( )A .同角;B .余角;C .等角的余角;D .同角的余角3.举反例说明“一个角的余角大于这个角”是假命题,错误..的是( ) A .设这个角是045,则它的余角为045,但045=045; B .设这个角为030,则它的余角为060,但030<060; C .设这个角为050,则它的余角为040,但050>040; D .设这个角为060,则它的余角为030,但060>030. 4.下列说法错误..的是( ) A .到已知角两边距离相等的点都在同一条直线上;B .一条直线上有一点到已知角的两边的距离相等,这条直线平分已知角;C .到已知角两边距离相等的点与角的顶点的连线平分已知角;D .已知角内有两点各自到两边的距离相等,经过这两点的直线平分已知角。
5.用反证法证明“三角形中必有一个内角不小于060”,先应假设这个三角形中有( ) A .每一个内角都小于060;B .有一个内角小于060; C .有一个内角大于060; D .每一个内角都大于060。
6.如图1所示,直线BD 与直线CE 相交于点O ,且∠AOE=090,则∠AOB 的余角是( ) A .∠BOC ;B .∠AOE ; C .∠AOD ; D .∠BOC 与∠EOD 。
7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向 相同,这两次拐弯的角度是( )A.第一次向左拐030,第二次向右拐030; B.第一次向右拐050,第二次向左拐0130;C.第一次向右拐050,第二次向右拐0130; D.第一次向左拐050,第二次向左拐0130.8.如图2所示,在平行四边形ABCD 中,E 是AD 上一点,连结CE 并延长交BA 的延长线于点F ,则下列结论中错误的是( ) A .∠AEF=∠DEC; B .FA:CD=AE:BC; C.FA:AB=FE:EC; D.AB=AC. 二、判断题(本题5小题,每小题2分,共101.如果两个相等的角有公共顶点,且有一条边互为反向延长线,则 这两个角一定是对顶角( )2.一个角的余角的2倍和它的补角的1/2互为补角,则这个角的度数是36°。
习题1.设梯形两底之和等于一腰,则此腰两邻角的平分线必通过另一腰的中点。
已知:如图,梯形ABCD 中,AD ∥BC,AB=AD+BC,E 是DC 中点求证:∠DAB 与∠ABC 的平分线必经过E 点。
证明(同一法):设∠DAB 与∠ABC 的角平分线交于E ′点,只需证E ′点与E 点重合。
∵AD ∥BC∴∠DAB+∠ABC=180° ∵∠1=∠2, ∠3=∠4, ∴∠2+∠3=90° ∴∠A E ′B=90°作Rt △ABE ′的斜边AB 上的中线 FE ′,则 FE ′=21AB=AF=BF∴∠2=∠A E ′F, ∠3=∠B E ′F ∴∠1=∠2=∠A E ′F , ∴E ′F ∥AD ∥BC连结EF,则EF 为梯形 ABCD 的中位线, E F ∥AD ∥BC ∴E ′F 与EF 共线∵FE ′=21AB=21(AD+BC), FE =21(AD+BC)∴E ′F = E F∴E ′与E 重合,证毕.习题2.A 是等腰三角形ABC 的顶点,将其腰AB 延长至D ,使BD=AB 。
知CD=10厘米,求AB 边上中线的长。
解:过B 作BF ∥AC 交CD 于F , 则BF 是△DAC 的中位线。
∴BF 21AC∴∠FBC=∠ACB又∠ACB=∠ABC ,AB=AC ∴∠FBC=∠ABC ,BF=21AB=BE21∴△EBC ≌△FBC (SAS ) ∴CE=CF=21CD=21×10=5cm即△ABC 中边上的中线CE 的长为5厘米。
习题3.证明:等腰三角形底边延长线上任一点到两腰距离之差为常量。
已知:如图,等腰三角形ABC 中,AB=AC 。
D 为BC 延长线上一点,过D 作DE ⊥ AB 于E ,作DF ⊥ AC 延长线于F 。
求证:DE -DF 为常量。
证明:作△ABC 的边AB 上的高CH ,再作CG ⊥DE 于G ,则四边形CHEG 为矩形。
《初等几何研究》综合测试题(十六)适用专业:数学教育专业 考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.已知ABCD 为平行四边形,下列判断正确的是__________。
A.若∠A=90°,则ABCD 为正方形;B.若AB=BC ,则ABCD 为菱形;C.对角线互相平分垂直;D.以上都不对。
2. 下列判断正确的是_________。
A.任意两个等腰三角形都相似;B.任意两个直角三角形都相似; C .有一个角相等且有两边对应成比例的两个三角形都相似; D.任意两个等腰直角三角形都相似。
3.如图,Rt AB C 中,CD 是斜边AB 上的高,DE ⊥AC 于E,AC:CB=4:5,则AE:EC 等于_______。
A.4:5;C.16:25;D.以上都不对。
4.等腰三角形一腰上的高与底边所成的角等于__________。
A.顶角的一半;B.底角的一半; C.90°减去顶角的一半;D. 90°减去底角的一半。
5.如图,圆锥的底面半径OA=3cm ,高SO=4cm ,则它的侧面积 为__________2cm .A.12π;B.15π;C.16π;D.20π.6. 6.下列命题中能用来判断一条线段是半径的命题是__________。
A.过圆心且垂直于切线的直线必经过切点;B.过切点且垂直于切线的直线必经过圆心;C.圆的切线垂直于过切点的半径;D.过半径的外端且垂直于这条半径的直线是圆的切线。
7.下列图形中,不一定为轴对称图形的是_________。
A.直角;B.线段;C.直角三角形;D.等腰直角三角形。
8.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在_________。
A.在AC 、BC 两边高线的交点处; B.在AC 、BC 两边中线的交点处;C.在AC 、BC 两边垂直平分线的交点处;D.在∠A 、∠B 两内角平分线的交点处。
1.(证明线段相等)例1:在ABC ∆的两边AB 、AC 上向外做正方形ABEF 和ACGH ,则BC 边上的高线AD 平分FH 。
证明:过点F 作PQ FQ ⊥,过点H 作DP HP ⊥在ΔADB 和ΔFQA 中⎪⎩⎪⎨⎧=∠=∠=∠=∠AB AF DBA QAF ADB FQA90AD FQ ΔADB ΔFQA =⇒≅∴在中ΔCAD 和ΔAFP⎪⎩⎪⎨⎧=∠=∠=∠=∠AC AH DAC PHA 90CDA APHAD PH ΔCAD ΔAHP =⇒≅∴HP FQ =∴在中和HPM FQM ∆∆⎪⎩⎪⎨⎧=∠=∠∠=∠HP FQ HMP FMQ PHM QFM ΔH P M ΔF Q M ≅∴ HM FM =∴即M 为FH 的中点。
2:C 是弦AB 的中点,通过C 引弦PQ ,并在此弦两端作圆的切线PX 和QY 。
它们交直线AB 于X 、Y 。
证PX=QY 、AX=BY 。
3:AB 是圆的直径,从圆上一点C 作AB CD ⊥于D 。
且在A 、C 两点的切线相交于E ,证明:BE 平分CD 。
证明:过点B 作AB BF ⊥交EC 于FEA//CD//BF ∴ECDM AE DM AB BD EF CF EF BF EC CM ===== DM CM =∴即BE 平分CD 。
4:设AD 、BE 、CF 是ABC ∆的高线,则DEF ∆称为ABC ∆垂足三角形。
证明这些高线平分垂足三角形的内角或外角。
证明: FCDM 共圆FDM FCM ∠=∠∴DBEM 共圆EDM EBM ∠=∠∴90BAC EBM BAC FCM =∠+∠=∠+∠EBM FCM ∠=∠∴EDM FDM ∠=∠∴即AD 平分FDE ∠同理可得BF 平分DFE ∠,CE 平分FED ∠即这三条高线平分DEF ∆的内角或外角。
5:二圆外切于P ,一圆在其上一点C 的切线交另一圆于A 、B 。
求证:PC 是APB ∠的外角平分线。
6:等边三角形外接圆周上任意一点到顶点连线中最长的等于其余两线之和。
初等几何研究试题一、选择题 (5分⨯4=20分)1. 如图,CD EF AB ||||,已知20=AB ,,80=CD 100=BC 那么,EF 的值是____. A. 10, B.12, C.16, D.20第1题图 第2题图 2. 如图,在ABC ∆中,P 是AC 上的点,取BP 的中点Q ,连结CQ 并延长与AB 交于D ,则ABP S ∆与ACD S ∆的关系是_____.A. ABP ACD S S ∆∆<B. ABP ACD S S ∆∆=C. ABP ACD S S ∆∆>D. 不能确定.3. 如图,在ABC ∆中,BE 、CF 分别是AC 、AB 边上的高,o A 45=∠,那么,FBCE AEF S S :=______.A 1:1B 2:1C 3:1D 4:1第3题图 第4题图4. 如图,ABCD 是面积为1的正方形,PCB ∆是正三角形,PBD ∆的面积为_____.A.213- B. 8132- C. 43D. 413-二、填空题 (5分⨯4=20分)1.如图,已知正方形ABCD 的边长为1,E 为AD 的中点,P 为CE 的中点,F 为BP 的中点,则BFD S =_____.第1题图 第2题图 2.如图,AB 是圆O 直径,4=AB ,弦3=BC ,ABC ∠的平分线交半圆于D ,BC AD ,的延长线交于E ,DCE ABCD S S :=______.3.已知圆O 是ABC ∆的外接圆,半径为r ,CO BO AO ,,分别交对边于F E D ,,, 则:CF BE AD 111++=______.(用r 表示)4.ABC ∆的三条高分别为c b a h h h ,,,又ABC ∆内任一点P 到三边距离分别为c b a p p p ,,,则=++c c b b a a h p h p h p ______.三、证明题(12分⨯5=60分)1. 在ABC ∆中,过点A 作直线BC l ||,B ∠的平分线交AC 于D ,交直线l 于E ,C ∠的平分线交AB 于F ,交直线l 于G ,且FG DE =,求证: ABC ∆是等腰三角形.2.M是以AB为直径的上不同于BA、的任一点,C是直径AB上的定点,过M作CM 垂直的直线交过处BD、,求证:A、的切线于E(1)ED,成等比数列;BM,EC(2)BEAD⋅是定值.3.三条中线把ABC∆分成6个三角形,若这6个三角开的内切圆中有4个相等,求ABC∆是正三角形.4.从等腰ABC ∆的底边AC 上的中点M 作BC 边的垂线MH ,点P 为线段MH 的中点,求证:BP AH ⊥.5.已知: ABC ∆内接于圆O ,N M L ,,分别是弧AB CA BC ,,的中点,连结LM NM ,分别交BC AB ,于E D ,;I 是ABC ∆的内心,求证: (1)BC DE ||;(2)IE DI DE +=.。
初等几何研究综合测试题(三)《初等几何研究》综合测试题(三)适用专业:数学教育专业考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.两个三角形有两边和一角对应相等,则两个三角形__________。
A.一定全等;B.一定不全等;C.可能全等,可能不全等;D.以上都不是。
2.在在正三角形、等腰梯形、矩形和圆这四种图__________。
第3题图A.1种;B.2种;C.3种;D.4种。
3.如图,在等腰梯形ABCD中,AD//BC,AC与BD 相交于点O,则图中面积相等的三角形共有___________。
A.1对;B.2对;C.3对;D.4对。
4. 在正三角形、等腰梯形、矩形和圆这四种图形中是轴对称图形,又是中心对称图形的有__________。
A.1种;B.2种;C.3种;D.4种。
5.如图,在V ABC中,DE//BC,如果AE:EC=3:2, 那么DE:BC等于________。
A.3:5;B.3:2; C.2:3;D.2:5。
6.⊙O中,AB、CD是两条平行弦,位于圆心的两侧,AB=40cm,CD=48cm,AB、CD的距离为22cm,则⊙O的半径是__________。
A.15cm;B.20cm;C.25cm;D.30cm。
7.在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C.互相平行(或在同一条直线上)且相等;D.以上都不对。
8.下列关于平移的说法中正确的是___________。
A.原图形中两个顶点连成的线段长是平移的距离;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.以对应点中的一点为端点的射线是平移的方向。
D.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;二、判断题(本题共5小题,每小题2分,共10分)1.角的大小与边的长短有关。
()2.一个钝角减去一个直角,其差必为一个锐角。
()3.两直线被第三条直线所截,同位角相等,内错角不相等。
中考数学模拟题《几何综合》专项测试题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
动态几何问题经常在各地以中考试卷解答压轴题出现也常会出现在选择题最后一题的位置考察知识面较广综合性强可以提升学生的空间想象能力和综合分析问题的能力但同时难度也很大令无数初中学子闻风丧胆考场上更是丢盔弃甲解题思路1 熟练掌握平面几何知识﹕要想解决好有关几何综合题首先就是要熟练掌握关于平面几何的所有知识尤其是要重点把握三角形特殊四边形圆及函数三角函数相关知识.几何综合题重点考查的是关于三角形特殊四边形(平行四边形矩形菱形正方形)圆等相关知识2 掌握分析问题的基本方法﹕分析法综合法“两头堵”法﹕1)分析法是我们最常用的解决问题的方法也就是从问题出发执果索因去寻找解决问题所需要的条件依次向前推直至已知条件例如我们要证明某两个三角形全等先看看要证明全等需要哪些条件哪些条件已知了还缺少哪些条件然后再思考要证缺少的条件又需要哪些条件依次向前推直到所有的条件都已知为止即可综合法﹕即从已知条件出发经过推理得出结论适合比较简单的问题3)“两头堵”法﹕当我们用分析法分析到某个地方不知道如何向下分析时可以从已知条件出发看看能得到什么结论把分析法与综合法结合起来运用是我们解决综合题最常用的办策略3 注意运用数学思想方法﹕对于几何综合题的解决我们还要注意运用数学思想方法这样会大大帮助我们解决问题或者简化我们解决问题的过程加快我们解决问题的速度毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化类比归纳等等模拟预测1 (2024·江西九江·二模)如图 在矩形()ABDC AB AC >的对称轴l 上找点P 使得PAB PCD 、均为直角三角形 则符合条件的点P 的个数是( )A .1B .3C .4D .52 (2024·江西吉安·模拟预测)如图 在平面直角坐标系中 边长为23ABC 的顶点A B ,分别在y 轴的正半轴 x 轴的负半轴上滑动 连接OC 则OC 的最小值为( )A .2B .3C .33D .333 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = 点E 在矩形的边上 则当BEC 的一个内角度数为60︒时 符合条件的点E 的个数共有( )A .4个B .5个C .6个D .7个4 (2023·江西·中考真题)如图 在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为 .5 (2024·江西吉安·二模)如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 点P 在AE 下方矩形的边上.当APE 为直角三角形 且P 为直角顶点时 BP 的长为 .6 (2024·江西九江·二模)如图 在平面直角坐标系中 已知矩形OABC 的顶点()20,0A ()0,8C D 为OA 的中点 点P 为矩形OABC 边上任意一点 将ODP 沿DP 折叠得EDP △ 若点E 在矩形OABC 的边上 则点E 的坐标为 .7 (2024·江西·模拟预测)如图 ABC 中 AB AC = 30A ∠=︒ 射线CP 从射线CA 开始绕点C 逆时针旋转α角()075α︒<<︒ 与射线AB 相交于点D 将ACD 沿射线CP 翻折至A CD '△处 射线CA '与射线AB 相交于点E .若A DE '是等腰三角形 则α∠的度数为 .8 (2024·江西赣州·二模)在Rt ABC △中 已知90C ∠=︒ 10AB = 3cos 5B = 点M 在边AB 上 点N 在边BC 上 且AM BN = 连接MN 当BMN 为等腰三角形时 AM = .9 (2024·江西吉安·模拟预测)如图 在矩形ABCD 中 6,10AB AD == E 为BC 边上一点 3BE = 点P 沿着边按B A D →→的路线运动.在运动过程中 若PAE △中有一个角为45︒ 则PE 的长为 .10 (2024·江西吉安·三模)如图 在ABC 中 AB AC = 30B ∠=︒ 9BC = D 为AC上一点 2AD DC = P 为边BC 上的动点 当APD △为直角三角形时 BP 的长为 .11 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = E 为CD 的中点 连接BE 点P 在矩形的边上 且在BE 的上方 则当BEP △是以BE 为斜边的直角三角形时 BP 的长为 .12 (2024·江西九江·二模)如图 在等腰ABC 中 2AB AC == 30B ∠=︒ D 是线段BC 上一动点 沿直线AD 将ADB 折叠得到ADE 连接EC .当DEC 是以DE 为直角边的直角三角形时 则BD 的长为 .13 (2024·江西·模拟预测)如图 在菱形ABCD 中 对角线AC BD 相交于点O 23AB = 60ABC ∠=︒ E 为BC 的中点 F 为线段OD 上一动点 当AEF △为等腰三角形时 DF 的长为 .14 (2024·江西上饶·一模)如图 在三角形纸片ABC 中 90,60,6C B BC ∠=︒∠=︒= 将三角形纸片折叠 使点B 的对应点B '落在AC 上 折痕与,BC AB 分别相交于点E F 当AFB '为等腰三角形时 BE 的长为 .15 (2024·江西抚州·一模)课本再现(1)如图1 CD 与BE 相交于点,A ABC 是等腰直角三角形 90C ∠=︒ 若DE BC ∥ 求证:ADE 是等腰直角三角形.类比探究(2)①如图2 AB 是等腰直角ACB △的斜边 G 为边AB 的中点 E 是BA 的延长线上一动点 过点E 分别作AC 与BC 的垂线 垂足分别为,D F 顺次连接,,DG GF FD 得到DGF △ 求证:DGF △是等腰直角三角形.②如图3 当点E 在边AB 上 且①中其他条件不变时 DGF △是等腰直角三角形是否成立?_______(填“是”或“否”).拓展应用(3)如图4 在四边形ABCD 中 ,90,BC CD BCD BAD AC =∠=∠=︒平分BAD ∠ 当1,22AD AC == 求线段BC 的长.16 (2023·江西·中考真题)课本再现思考我们知道菱形的对角线互相垂直.反过来对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理小明同学画出了图形(如图1)并写出了“已知”和“求证”请你完成证明过程.已知:在ABCD中对角线BD AC⊥垂足为O.求证:ABCD是菱形.(2)知识应用:如图2在ABCD中对角线AC和BD相交于点O586AD AC BD===,,.①求证:ABCD是菱形②延长BC至点E连接OE交CD于点F若12E ACD∠=∠求OFEF的值.17 (2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处 并绕点O 逆时针旋转 探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1 若将三角板的顶点P 放在点O 处 在旋转过程中 当OF 与OB 重合时 重叠部分的面积为__________ 当OF 与BC 垂直时 重叠部分的面积为__________ 一般地 若正方形面积为S 在旋转过程中 重叠部分的面积1S 与S 的关系为__________(2)类比探究:若将三角板的顶点F 放在点O 处 在旋转过程中 ,OE OP 分别与正方形的边相交于点M N .①如图2 当BM CN =时 试判断重叠部分OMN 的形状 并说明理由②如图3 当CM CN =时 求重叠部分四边形OMCN 的面积(结果保留根号)(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处 该锐角记为GOH ∠(设GOH α∠=) 将GOH ∠绕点O 逆时针旋转 在旋转过程中 GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S 请直接写出2S 的最小值与最大值(分别用含α的式子表示)(参考数据:6262sin15tan1523-+︒=︒=︒=18 (2024·江西吉安·二模)如图 在ABC 和ADE 中 (),AB AC AD AE AD AB ==< 且BAC DAE ∠=∠.连接CE BD .(1)求证:BD CE =.(2)在图2中 点B D E 在同一直线上 且点D 在AC 上 若,AB a BC b == 求AD CD的值(用含a b 的代数式表示).19 (2024·江西九江·二模)初步探究(1)如图1 在四边形ABCD 中 ,AC BD 相交于点O AC BD ⊥ 且ABD CBD S S = 则OA 与OC 的数量关系为 .迁移探究(2)如图2 在四边形ABCD 中 ,AC BD 相交于点O ABD CBD SS = (1)中OA 与OC 的数量关系还成立吗?如果成立 请说明理由.拓展探究(3)如图3 在四边形ABCD 中 ,AC BD 相交于点O 180,ABD CBD BAD BCD S S ∠∠+=︒=△△ 且 33OB OD == 求AC 的长.20 (2024·江西九江·二模)课本再现如图1 四边形ABCD 是菱形 30ACD ∠=︒ 6BD =.(1)求,AB AC 的长.应用拓展(2)如图2 E 为AB 上一动点 连接DE 将DE 绕点D 逆时针旋转120︒ 得到DF 连接EF .①直接写出点D 到EF 距离的最小值②如图3 连接,OF CF 若OCF △的面积为6 求BE 的长.21 (2024·江西赣州·三模)某数学小组在一次数学探究活动过程中经历了如下过程:AB=P为对角线AC上的一个动点以P为直角顶问题提出:如图正方形ABCD中8△.点向右作等腰直角DPM(1)操作发现:DM的最小值为_______ 最大值为_______(2)数学思考:求证:点M在射线BC上=时求CM的长.(3)拓展应用:当CP CM22 (2024·江西赣州·二模)【课本再现】 思考我们知道 角的平分线上的点到角的两边的距离相等 反过来 角的内部到角的两边的距离相等的点在角的平分线上吗?可以发现并证明角的平分线的性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.【定理证明】(1)为证明此逆定理 某同学画出了图形 并写好“已知”和“求证” 请你完成证明过程.已知:如图1 在ABC ∠的内部 过射线BP 上的点P 作PD BA ⊥ PE BC ⊥ 垂足分别为D E 且PD PE =.求证:BP 平分ABC ∠.【知识应用】(2)如图2 在ABC 中 过内部一点P 作PD BC ⊥ PE AB ⊥ PF AC ⊥ 垂足分别为D E F 且PD PE PF == 120A ∠=︒ 连接PB PC .①求BPC ∠的度数②若6PB=23PC=求BC的长.23 (2024·江西吉安·模拟预测)一块材料的形状是锐角三角形ABC下面分别对这块材料进行课题探究:课本再现:(1)在图1中若边120mmBC=高80mmAD=把它加工成正方形零件使正方形的一边在BC上其余两个顶点分别在AB AC上这个正方形零件的边长是多少?类比探究(2)如图2 若这块锐角三角形ABC材料可以加工成3个相同大小的正方形零件请你探究高AD与边BC的数量关系并说明理由.拓展延伸(3)①如图3 若这块锐角三角形ABC材料可以加工成图中所示的4个相同大小的正方形零件则ADBC的值为_______(直接写出结果)②如图4 若这块锐角三角形ABC材料可以加工成图中所示的()3n m≥相同大小的正方形零件求ADBC的值.24 (2024·江西吉安·三模)课本再现 矩形的定义 有一个角是直角的平行四边形是矩形.定义应用(1)如图1 已知:在四边形ABCD 中 90A B C ∠=∠=∠=︒用矩形的定义求证:四边形ABCD 是矩形.(2)如图2 在四边形ABCD 中 90A B ∠=∠=︒ E 是AB 的中点 连接DE CE 且DE CE = 求证:四边形ABCD 是矩形.拓展延伸(3)如图3 将矩形ABCD 沿DE 折叠 使点A 落在BC 边上的点F 处 若图中的四个三角形都相似 求AB BC的值.25 (2024·江西吉安·一模)课本再现在学习了平行四边形的概念后进一步得到平行四边形的性质:平行四边形的对角线互相平分.=(1)如图1 在平行四边形ABCD中对角线AC与BD交于点O 求证:OA OC =.OB OD知识应用=延长AC到E 使得(2)在ABC中点P为BC的中点.延长AB到D 使得BD AC∠=︒请你探究线段BE与线段AP之间的BACCE AB=连接DE.如图2 连接BE若60数量关系.写出你的结论并加以证明.26 (2024·江西九江·二模)问题提出在综合与实践课上 某数学研究小组提出了这样一个问题:如图1 在边长为4的正方形ABCD 的中心作直角EOF ∠ EOF ∠的两边分别与正方形ABCD 的边BC CD 交于点E F (点E 与点B C 不重合) 将EOF ∠绕点O 旋转.在旋转过程中 四边形OECF 的面积会发生变化吗?爱思考的浩浩和小航分别探究出了如下两种解题思路.浩浩:如图a 充分利用正方形对角线垂直 相等且互相平分等性质 证明了OEC OFD ≌ 则OEC OFD S S = OEC OCF OFD OCF OCD OECF S S S S S S =+=+=四边形.这样 就实现了四边形OECF 的面积向OCD 面积的转化.小航:如图b 考虑到正方形对角线的特征 过点O 分别作OG BC ⊥于点G OH CD ⊥于点H 证明OGE OHF ≌△△ 从而将四边形OECF 的面积转化成了小正方形OGCH 的面积.(1)通过浩浩和小航的思路点拨﹐我们可以得到OECF S =四边形__________ CE CF +=__________.类比探究(2)①如图⒉ 在矩形ABCD 中 3AB = 6AD = O 是边AD 的中点 90EOF ∠=︒ 点E 在AB 上 点F 在BC 上 则EB BF +=__________.②如图3 将问题中的正方形ABCD 改为菱形ABCD 且45ABC ∠=︒ 当45EOF ∠=︒时 其他条件不变 四边形OECF 的面积还是一个定值吗?若是 请求出四边形OECF 的面积 若不是 请说明理由.拓展延伸(3)如图4 在四边形ABCD 中 7AB = 2DC = 60BAD ∠=︒ 120BCD ∠=︒ CA 是BCD ∠的平分线 求四边形ABCD 的面积.27 (2024·江西九江·模拟预测)【课本再现】(1)如图1 四边形ABCD 是一个正方形 E 是BC 延长线上一点 且AC EC = 则DAE ∠的度数为 .【变式探究】(2)如图2 将(1)中的ABE 沿AE 折叠 得到AB E ' 延长CD 交B E '于点F 若2AB = 求B F '的长.【延伸拓展】(3)如图3 当(2)中的点E 在射线BC 上运动时 连接B B ' B B '与AE 交于点P .探究:当EC 的长为多少时 D P 两点间的距离最短?请求出最短距离.28 (2024·江西上饶·一模)课本再现:(1)如图1 ,D E 分别是等边三角形的两边,AB AC 上的点 且AD CE =.求证:CD BE =.下面是小涵同学的证明过程:证明:ABC 是等边三角形,60AC BC A ACB ∴=∠=∠=︒.AD CE =()SAS ADC CEB ∴≌CD BE ∴=.小涵同学认为此题还可以得到另一个结论:BFD ∠的度数是______迁移应用:(2)如图2 将图1中的CD 延长至点G 使FG FB = 连接,AG BG .利用(1)中的结论完成下面的问题.①求证:AG BE ∥②若25CF BF = 试探究AD 与BD 之间的数量关系.参考答案考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
第 1 页 (共 2 页)4一、填空题(本大题共 8 题,每空 2 分,共 20分)1、当结论的反面只有一款时,否定了这一款便完成证明,这种较单纯的反证法叫做; 2、设CM 是ABC ∆的中线,则当12CM AB >时,C ∠是 角; 3、两个平行平面的距离等于12cm ,一条直线和它们相交成60,则这条直线夹在两平面间的线段长为 ;4、一些作图题中,往往可先作成图形的一个三角形,其余部分可由此三角形陆续作出,这种作图方法称为 ,此三角形称为 ;5、在ABC ∆中,若AB AC >,CD BE 、分别是C ∠和B ∠的平分线,则CD 与BE 的大小关系是 ;6、已知ABC ∆的三边分别为3cm ,5cm ,6cm ,则ABC ∆的内切圆半径r= ;7、到两定点A 、B 的距离之比为定比k 的点的轨迹是 和 ;8、设圆内接正五、六、十边形的边长分别为5a 、6a 、10a ,则它们之间的关系为 。
二、计算题(本大题共 2 题,每题8 分,共 16 分)1、在直二面角的棱上有两点A 、B ,AC 和BD 各在这个二面角的一个面内,并且都垂直于棱AB ,设8,6,24AB cm AC cm BD cm ===,求CD 的长。
2、设正方形ABCD 内接于O ,P 为DC 上一点,2PA PC ==,求P B P D ⋅的值。
三、证明题(本大题共 4 题,每小题10 分,共40 分)1、四边形ABCD 中,设AB CD =,M ,N 分别是AD 、BC的中点,证明直线MN 与AB 、CD 所成的交角相等。
2、证明:梯形两腰的中点,两对角线的中点,四点共线。
C第 2 页 (共 2 页)3、设BE 、CF 是ABC ∆的高,在射线BE 上截取BP AC =,在射线CF 上截取CQ AB =,证明AP 与AQ 相等且垂直。
4、在圆内接四边形ABCD 中,BC CD =,求证:22AB AD BC =AC ⋅+四、轨迹(本大题共 1 题, 12 分)1、设定圆中互相垂直的两弦的平方和是常数,则此两弦所在直线交点的轨迹是一圆。
除书上的例题外,下例复习题希望大家认真完成一、两条线段相等的证明方法证明这类问题,常用如下的思考方法:1.证其为两个全等三角形的对应边.若无现成的全等三角形可用,则可添加辅助线,构造出需要的全等三角形.2.证其为等腰三角形的两腰,如无现成的等腰三角形可用,则可添加辅助线造成必要的等腰三角形.3.证其为平行四边形中有关相等的线段,有时也要利用辅助线作成平行四边形.4.证其为同圆或等圆中的有关相等的线段.5.利用三角形中位线或梯形中位线的性质.6.利用相似形.7.利用等量的传递性等等.二、线段与角不等的证明方法要证明两条线段或两个角不等,一般利用已有的线段或角的不等关系定理,或应用不等量公理.如果不好直接利用,那么可以作辅助图形,创造出能够利用已知不等定理和公理的条件,再加以证明.常用的定理有:1.三角形两边之和大于第三边,两边之差小于第三边.2.在一个三角形中,大边所对的角较大,反之大角所对的边较大.3.从直线外一点连结直线上所有各点的线段中,以垂直线段为最短.且斜线长者,其射影较长,反之射影长者,斜线较长.4.在两个三角形中,如果两边对应相等,则其夹角大者,第三边大,反之第三边大者,其夹角大.5.三角形的外角大于不相邻的内对角.6.在同圆或等圆中,关于弦、弧、弦心距、圆心角、圆周角比较大小的有关性质等等.行线的证明方法证明两条直线平行,常常利用下述定理进行思考.1.两条直线被第三条直线所截:(1)同位角相等,则两条直线平行;(2)内错角相等,则两条直线平行;(3)同旁内角互补,则两条直线平行.2.平行于同一条直线的两条直线平行.3.垂直于同一条直线的两条直线平行.4.平行四边形的对边平行.5.三角形的中位线与底边平行.6.梯形中位线与两底平行.7.利用比例线段.即如果在图1-30(1)~(4)中AB∥CD,共点线的证明方法所谓共点线就是指这些直线通过同一点.要证明三线共点,常常采用以下方法思考.1.证直线a、b、c共点,可先确定a、b交于一点P,然后在直线c上取两点Q、R,证明P、Q、R共线.这样就把共点线问题转化为共线点问题来解决了.2.证直线a、b、c共点,可先证a、b交于某点P,然后将P与c上一点Q连结,证明PQ与c 重合.3.证明若干条直线共点,可证它们都通过某一特殊点.4.应用已知共点线定理等等.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC中,C=90°,角A、B、C的对边分别是a、b、c.那么利用以下关系式:1.A+B=90°;2.a2+b2=c2;3.a=csinA=ccosB=b·tgA;4.b=ccosA=csinB=actgA.可分四种情况来解直角三角形.1.已知斜边和一锐角;2.已知一条直角边和一锐角;3.已知一斜边和一直角边;4.已知两条直角边.一、概念1、定义9.1.1若一图形上的各点都具有某种性质,同时具有该性质的点又都在该图形上,则称此图形为具有该性质的点的轨迹。
《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。
2. ①两,②度量公理(或阿基米德公理)和康托儿公理。
3.①前4组公理(或绝对几何),②平行公理。
4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。
6.①交轨法,②三角奠基法,③代数法,④变换法。
7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。
14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。
24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC). 3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。
4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。
《初等几何研究》综合测试题(十四)适用专业:数学教育专业 考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.等腰三角形的两条边的长为___________。
A.B. ;C.D.或 2.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分之差为3cm ,则腰长为__________。
A.2cm ;B.8cm ;C.2cm 或8cm ;D.以上结论都不对。
3.下列四组图形中,是相似形的一组是_________。
A.各有一个角是30°的两个等腰三角形;B.底角为40°的两个等腰三角形;C.各有一个角是120°的两个等腰三角形;D.邻边之比都等于2的两个平行四边形。
4.三条线段长度分别是3,4,6,则以此三条线段为边___________。
A.能构成锐角三角形;B.能构成钝角三角形;C.能构成直角三角形;D.不能构成三角形。
5.扇形的面积为S ,弧长为l ,则扇形中心角的度数为________。
A.2180()l S π ;B. 2180()S l π ;C. 290()l Sπ;D. 290()S l π 。
6.下列命题中能用来判断一条线段是半径的命题是__________。
A.过圆心且垂直于切线的直线必经过切点;B.过切点且垂直于切线的直线必经过圆心;C.圆的切线垂直于过切点的半径;D.过半径的外端且垂直于这条半径的直线是圆的切线。
7下列图形中,轴对称图形有__________。
①角 ② 三角形 ③ 圆 ④线段 ⑤正方形 ⑥扇形 ⑦平行四边形 ⑧等腰梯形 A.3个;B.4个;C.5个;D.6个。
8.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在_________。
A.在AC 、BC 两边高线的交点处; B.在AC 、BC 两边中线的交点处;C.在AC 、BC 两边垂直平分线的交点处;D.在∠A 、∠B 两内角平分线的交点处。
2020中考数学几何综合探究专题练习例题1.如图,在等腰梯形仙CD中,AD//BC,AB=DC=5O,AD=75,BC=135,点F从点3出发沿折线段BA-AD-DC以每秒5个单位长度的速度向点C匀速运动,点。
从点。
出发沿线段CB方向以 每秒3个单位长度的速度匀速运动,过点Q向上作射线QK±BC,交折线段CD-ZM-AB于点E,点P、。
同时开始运动,当点F与点C重合时停止运动,点。
也随之停止,设点P、。
运动的时间是,秒(r>0)(1)当点P到达终点C时,求I的值,并指出此时3Q的长;(2)当点P运动到AD上时,I为何值能使PQ。
?(3)设射线好扫过梯形ABCD的面积为S,分别求出点E运动到CD,D4上时,S与t的函数关系式;(不必写出f的取值范围)【答案】⑴7=5。
+;+50=35($)时,点p到达终点。
,此时,QC=35x3=105,所以3Q的长为135—105=30.⑵如图1,PQ//DC,又曷〃8C,则四边形FQC£>为平行四边形,从而PD=QC,由QC=3t,BA+AP=5ti?5得50+75-5r=3r,解得t=—,8125经检验:当r时,有PQ//DC.⑶①当点E在CD上运动时,如图2,分别过点A、。
作AFXBC于点F,DHLBC于点H,则四边形为矩形,且AABF^ADCH,从而FH=AD=Y5,于是BF=CH=30,..Z)H=*=40.又QC=3t,从而QE=QC tanC=3t—=4t(注:用相似三角形求解亦可)CH19■■S=S AQCE=-QE.QC=6t2.②当点E在ZM上运动时,如图1,过点。
作DH.LBC于点H,由①知DH=40,CH=30,又QC=3t,从而ED=QH=QC-CH=3t-3OS=S梯形“庞=!(网+四)质=120—600•4例题2.如图,E 、F 分别是边长为4的正方形ABCD 的边3C, C£>上的点,CE = 1, CF = 一,直线EF 交 3垂足分别为M , N ,设加的延长线于G,过线段FG 上的一个动点H 作HML4G, HNLAD,HM = x,矩形钢切V 的面积为y (1) 求v 与x 之间的函数关系式;(2) 当x 为何值时,矩形雄HN 的面积最大,最大面积为多少?4 【答案】(1)・.・正方形ABCD 的边长为4, CE = 1, CF = — 3BE = 3CF CF 又 AG//CF, AFEC^AGEB, ——=——,BG = 4BG BE义 HM//BEA AHMG^AEBG, —BG BE4 4:.MG =—x, AM =8——x 3 39y =尤 84 9 / \%2 + 8x (0 <x<4)4 4 9(2)V y = --x 2+8x = --(x-3)+12.•.当x = 3时,矩形面积最大,最大面积为12例题3.如图,在平面直角坐标系中,点A(0,O), B(30,2), C(0, 2),动点Z)以每秒1个单位的速度从点。
《初等几何研究》综合测试题(九)适用专业:数学教育专业 考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.下列命题中正确的是__________。
A.两个全等的三角形是关于某直线对称的轴对称图形;B.两个全等的等腰三角形是关于某直线对称的轴对称图形;C.关于某直线对称的两个三角形是全等形;D.关于某直线对称的两个三角形不一定是全等形。
2.如果一个多边形的内角和等于外角和得4倍,那么这个多边形是________。
A.四边形;B.六边形;C.八边形;D.十边形。
3.如图,平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E,则∠DAE 为________。
A.20°;B.25°;C.30°;D.35°。
4.如果 AB C 和 A ′B ′C ′面积相等,且AB: A ′B ′=9:25, 那么AB 与A ′B ′边上的高的比是________。
A.9:25;B.25:9;C.3:5;D.5:3。
5. AB C 的三边长分别为6,8,10,并且以A ,B ,C ,三点为圆心, 作两两相外切的圆,那么这三个圆的半径分别为__________。
A.3,4,5;B.2,4,6;C.6,8,10;D.4,6,8.6.两个同心圆的半径分别是3cm ,6cm ,大圆的一条弦AB=10cm ,小圆和AB 的位置关系是______。
A.相离;B.相切;C.相交;D.不能确定。
7.如图, AB C 和 ADE 均为正三角形,则图中可看作是旋转关系的三角形是________。
A . ABC 和 ADE ;B. AB C 和 ABD ;C. AB D 和 ACE;D. A CE 和 ADE 8.如图,CD 是Rt AB C 斜边AB 上的高,将 B CD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于_________。
《初等几何研究》综合测试题(一)适用专业:数学教育专业 考试时间:120分钟一、 选择题(本题共8小题,每小题3分,共24分)1.在 ABC 中,AB=AC ,高BF 、CE 交于高AD 上一点O ,图中全等三角形的对数是_____。
A.4;B.5;C.6;D.7.2.已知:如图, ABC 中,∠BAC=90°,AD ⊥BC 于D, 若AB=2,BC=3,则DC 的长度是________。
A.83; B.23; C.43; D.53。
3.下面4个图形中,不是轴对称图形的是_________。
A.有两个内角相等的三角形;B.有一个内角是45°的直角三角形;C.有一个内角是30°的直角三角形;D.有一个内角是30°,一个内角是120°的三角形。
4.下列条件中,不能判别四边形是平行四边形的是_________。
A.一组对边平行,另一组对边相等;B.两组对边分别平行;C.对角线互相平分;D.一组对边平行且相等。
5.若一个四边形既是轴对称图形,又是中心对称图形,则这个四边形是_________。
A.直角梯形;B.等腰梯形;C.平行四边形;D.矩形。
6.下列语句正确的是________。
A.圆可以看作是到圆心的距离等于半径的点的集合。
B.圆的内部可以看作是到定点的距离小于定长的点的集合。
C.圆的一部分叫做弧。
D.能够互相重合的弧叫做等弧。
7.在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C.互相平行(或在同一条直线上)且相等;D.以上都不对。
8.下列关于平移的说法中正确的是___________。
A.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.原图形中两个顶点连成的线段长是平移的距离;D.以对应点中的一点为端点的射线是平移的方向。
二、 判断题:(本题共5小题,每小题2分,共10分)1.如图1,直线a ,b ,c 在同一平面内,a//b ,a 与c 相交于P ,则b 与c 也一定相交。
《初等几何研究》综合测试题(二十)
适用专业:数学教育专业考试时间:120分钟
一、选择题(本题共8小题,每小题3分,共24分)
1.两个三角形有两边和一角对应相等,则两个三角形__________。
A.一定全等;
B.一定不全等;
C.可能全等,可能不全等;
D.以上都不是。
2.在在正三角形、等腰梯形、矩形和圆这四种图形中是轴对称图形,又是中心对称图形的有__________。
A.1种;
B.2种;
C.3种;
D.4种。
3.如图,在等腰梯形ABCD中,AD//BC,AC与BD相交于点O,
则图中面积相等的三角形共有___________。
A.1对;
B.2对;
C.3对;
D.4对。
4. 在正三角形、等腰梯形、矩形和圆这四种图形中是轴对称图形,又是中心对称图形的有__________。
A.1种;
B.2种;
C.3种;
D.4种。
5.如图,在 ABC中,DE//BC,如果AE:EC=3:2, 那么DE:BC等于________。
A.3:5;B.3:2; C.2:3;D.2:5。
6.⊙O中,AB、CD是两条平行弦,位于圆心的两侧,AB=40cm,CD=48cm,AB、CD的距离为22cm,则⊙O的半径是__________。
A.15cm;
B.20cm;
C.25cm;
D.30cm。
7.在平移过程中,对应线段
A.互相平行且相等;
B.互相垂直且相等;
C.互相平行(或在同一条直线上)且相等;
D.以上都不对。
8.下列关于平移的说法中正确的是___________。
A.原图形中两个顶点连成的线段长是平移的距离;
B.平移后的两个图形中两个顶点连成的线段长是平移的距离;
C.以对应点中的一点为端点的射线是平移的方向。
D.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;
二、判断题(本题共5小题,每小题2分,共10分)
1.正方形形既是中心对称图形又是轴对称图形。
(√)
2.位似中心一定在两个图形之间。
(×)
3.位似中心在连接两个对应点的线段之外的位似图形叫做外位似。
(√)
4.两个位似图形对应点连线的交点个数为1或2。
(×)
5.设点A与B关于x轴对称,点A与点C关于y轴对称,则点B与点C关于x对称。
(×)
三、填空题(本题共4小题,每小题4分,共16分)
1.一个角的补角和它的余角的3倍的和等于它的周角的11
12
,则这个角的度数是________.
2. 如图,铁路上A、B两站(视为直线上两点)相距25km,C、D为两村庄(视为两个点),
D A ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建设一个土特产品收购站
E ,使C 、D 两村到E 站的距离相等,则E 站应建在距A 站__________km 处 3.若两个三角形全等,则它们对应高、对应中线、对应角的平分线
分别___________
4.在等腰三角形ABC 中, ∠C=90°,BC=2厘米,如果以AC 的中点O 为 旋转中心,将这个三角形旋转180°,点B 落在B ′处. 那么点B ′与B 相距______厘米.
四、计算题(本题共8分)
如图,斜边长为6厘米, ∠A=30°的直角三角板ABC 饶C 顺时针方向旋转
90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角板ABC 的斜边AB 上.求三角板向左平移的距离。
五、证明题(本题共27分)
第2题图
A '
1.A B AC AD ∠∠两圆相交于两点、,在每一圆中各作一弦、使切于另一圆,求证:ABC=ABD.
22222.,,,,1, 1.: 1.a b c d a b c d ac bd +=+=+≤设为正实数且求证
3.,,AE ABC CAF BD AE ∠⊥ 如图是的一个外角的平分线于和CD 交于O,求证
:OA//BD.
六、探究题(本题15分)
六、探究题(本题15分)
如图,有一块半圆形的木板,现要它截成三角形板块,三角形的两个顶点分别为A ,B ,另一个顶点在AB
上,问:怎样截取才能使截出的三角形的面积最大?
A
B
附:参考答案
一、选择题(本题共8小题,每小题3分,共24分) 1C ;2B ;3C ;4B ;5A ;6C ;7C ;8D 。
二、判断题(本题共5小题,每小题2分,共10分) 1√;2×;3√;4×;5×。
三、填空题(本题4小题,每小题4分,共16分) 1. 30°. 2. 10 km 。
3. 相等。
四、计算题(本题8分)
如图,斜边长为6厘米, ∠A=30°的直角三角板ABC 饶C 顺时针方向旋转
90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角板ABC 的斜边AB 上.求三角板向左平移的距离。
解略。
答案是3
五、证明题(本题27分)
分析:所证结论与托勒密定理较接近,可设法构造圆内接四边形
得出一种几何证法. 证明:由题意知,0<a,b,c,d<1,故可设a,b,c,
d 依次为直径为1的圆内接四边形的四边(如图).
3.,,,AE ABC CAF BD AE CE AE ∠⊥⊥ 如图是的一个外角的平分线于D 于E,BE 和CD 交于O,求证:OA//BD.
A '1.A
B A
C A
D ∠∠两圆相交于两点、,在每一圆中各作一弦、使切于另一圆,求证:ABC=ABD.
0..180()().DAB C CAB D C CAB D DAB ABC CAB C DAB D ABC ABD ∠=∠∠=∠∴∠+∠=∠+∠∠=-∠+∠∠-∠+∠∴∠=∠ 0
证明:, 又 ABD=18022222.,,,,1, 1.: 1.a b c d a b c d ac bd +=+=+≤设为正实数且求证
,,,.,AB a BC b CD c AD d ====≤≤≤2222不妨设因为a +b =1,c +d =1,故AC=1,0<BD 1.由托勒密定理得ac+bd AC*BD=BD 1.
六、探究题(本题15分)
如图,有一块半圆形的木板,现要它截成三角形板块,三角形的两个顶点分别为A ,B ,另一个顶点在AB ⋂
解:作O C ⊥AB 交AB ⋂
于点C ,连结AC, BC ,则依样裁出的 ⊿ABC 的面积最大。
现证明如下:
在AB ⋂
上任意一点1C (不同于点C),连结A 1C ,B 1C ,
过点1C 作1C D ⊥AB ,垂足为D ,则
1111,22
ABC ABC S AB CO S AB C D ∆∆=
= . 连结O 1C ,则O 1C =OC ,在11111,ABC ABC Rt ODC OC C D OC C D S S ∆∆∆>∴>∴>中,,
⎫⇒
⎬
⎭
⎫
⇒⇒
⎬⎭
⎫⇒⎬⇒⎭⇒证0明:∠FAE =∠CAE ∠FAE =∠BAD ∠CAE =∠BAD △CEA:△BDA ∠CEA =∠BDA =90AE:AD =CE:BD AE:AD =OE:OB CE//BD CE:BD =OE:OB OA//BD.A B
A
B
C。