聚晶金刚石PCD和聚晶金刚石复合片PDC的优缺点
- 格式:pdf
- 大小:136.93 KB
- 文档页数:2
86近几年来,PCD及PDC钻头被广泛应用于地质勘探中,PDC钻头常被用在中硬地质的钻井中,这种地质形态比较特殊,在钻井过程中受地质影响的程度较大,深部钻井的速度会降低。
采用PDC钻头进行钻井可以取得较好的效果。
PCD则多用于钻头扩孔器的保径中,效果显著。
1 PCD及PDC钻头优缺点分析人造金刚石具有比硬质合金更高的耐磨性,PDC探头主要优点是钻头的结构相对简单,PDC切削齿为其主要工作部件,耐磨性较强,钻头自身无旋转部件,因此也被称为“固定式探头”。
早期这一探头只可在软页岩地层内使用,后来随着其性能逐渐提升,同时钻头结构不断优化,故现阶段PDC钻头已可在硬夹层、长段中硬岩地层中使用。
另外,PDC钻头对于地层有很强的针对性,在应用时需根据地层深度、各区块地层特征展开针对性工艺试验,并对PDC钻头进行合理选型。
PDC钻头比牙轮钻头的机械钻速更高,在较小钻压下即可实现高压牙轮钻头所实现的机械钻速,且可促使钻机负荷降低,同时可降低整个系统的运行成本。
聚晶PCD主要拉拔用有色金属和黑色金属线材,与硬质合金拉丝模相比,其耐用度要高出数百倍,且比人造及天然大颗粒单晶金刚石拉丝模更高。
目前市场中所用PCD是由钴做结合剂的,这是因其具有较好的耐磨性、强度较高,使用使命较长,且拉丝的成本较低。
2 适合PCD及PDC钻头的地质分析对于石油工业的钻井而言,选择合适的钻头至关重要,对于深井且地质为岩石的区域需选择PDC钻头以及与之相应的钻井工具。
例如胜利油田,它的地层较为复杂,多为沉积岩。
岩石的直径较大,粗砂岩的分布密度较强,对钻头的磨损强度相对较强,而PCD及PDC钻头以破岩为主,面对强大的岩石也会受到一定的损害,因此PDC钻头在进行钻井的过程中,选取适合型号的钻头是非常重要的。
对于胜利油田而言,应选择刮刀式的PDC钻头。
3 PCD及PDC钻头在石油钻井中的具体应用以胜利油田为例,分析其应用的效果,选用PCD及PDC钻头进行下井200次,共使用钻头90个,进井的长度为60000.25米,共用时间为6252小时左右,平均的钻进速度相对较高,总体费用有所降低,整体的效益得到了增加。
174PDC钻头代表了钻头的一个新的发展阶段。
这种钻头通过破碎岩石作用钻进岩石。
安全系数高,风险低。
金刚石复合片为聚晶片,后约1/32in,镶嵌在已植入钻头本体预先所钻的洞内的碳化物金属块里。
1 PDC钻头的结构PDC钻头结构有钢体与胎体两种类型,其中胎体钻头的材料为铸造碳化钨粉,经烧结制成钻头,在烧结时钻头工作面留下窝槽,然后再在窝槽上直接焊接复合片。
钢体钻头的材料为整块合金钢经机械加工铸成,然后在碳化钨齿柱上将复合片制成切削齿,并将切削齿镶嵌在钻头体上,保径部位也是将金刚石块或其他耐磨性材料镶嵌在钻头体上,为防止冲蚀,可在钻头工作面上喷涂一层耐磨材料。
PDC钻头工作面的几何形状其对钻头的稳定性、井底清洗、钻头磨损及钻头各部荷载的分布都有明显的影响。
钻头工作面性状有五个基本要素,包括顶部、内锥、肩部、侧面与保径。
2 PDC钻头的工作原理PDC钻头实际上就是微型切削片刮刀钻头,所以PDC 钻头的工作原理基本与刮刀钻头的基本相同,在软至中硬的地层中钻头通过剪切方式将岩石破碎,在较小的钻压下就能够完成高机械钻速。
由于聚晶金刚石层极薄(1mm)左右、极硬,且比碳化钨衬底的耐磨性高100倍以上,因此在切削岩石过程中刃口能保持自锐。
3 PDC钻头的特点PDC钻头特点主要有以下几个方面:即没有活动的零件,切削钻用能力强,钻头有较长的使用寿命,和比其它类型钻头相比较其机械钻速和抗冲击性更高,最适合于井下动力钻井。
获得极高的机械钻速,与牙轮钻头相比,PDC钻头本身没有活动件,可防止掉牙轮等井下事故与复杂情况的发生。
4 PDC钻头适用性PDC钻头主要在软至中硬地层中比较适用,地层有适度的研磨性,PDC钻头在砾石、燧石及大段不均质地层中应该避免使用。
同时根据地层的具体情况要选择合适的PDC钻头,当遇到硬且脆的地层则要选择布齿密度大、切削齿初刃小的钻头类型;遇到软土地层则需要选择布局密度小、切削齿初刃大的钻头,增加钻头的吃入深度以及有助于井底清洗,防止钻头泥包。
PCD及PDC钻头在石油钻井中的应用作者:张文敏来源:《中小企业管理与科技·上中下旬刊》 2017年第7期1 引言PCD 钻头即金刚石聚晶钻头,PDC 钻头即金刚石复合片钻头,两者在硬度上很大,因此目前在石油钻井的硬地层中得到了十分广泛的应用。
在应用PCD 及PDC 钻头对硬地层复杂地质环境的石油钻井时,虽然具备诸多优势,但在一些特殊的地质环境中却并不适用,因此对PCD 及PDC 钻头在石油钻井中的应用展开分析具有十分重要的现实意义。
基于此,文章重点就PCD 及PDC 钻头在石油钻井行业中的应用分四个部分展开了分析,提出了一些可供参考的观点和建议,以下是具体内容。
2 PCD 及PDC 钻头在石油钻井应用的特点PCD 钻头采用的是金刚石聚晶模式,在聚晶过程中采用的是黑色金属线和有色金属线材料,和一般的硬质合金拉丝模相比,其在耐用度上提升了数百倍。
因此,PCD 钻头在使用钻井中应用的主要优势,即在保障硬度的前提下耐用性极高。
目前钴是最为常用的一种PCD 钻头结合剂,其具有强度高、耐磨性好等诸多优势,同时拉丝的成本也很低,十分适用于石油钻井作业中。
PDC 钻头的优点主要集中于钻头结构简单和耐磨性高两点上。
PDC 钻头所采用的人造金刚石,其比硬质合金的耐磨性更高,在钻头构成上,切削齿是其主要部件,在工作中无需钻头自身钻头,因此PDC 钻头也被称作固定式探头。
在PDC 钻头的使用早期,主要是在一些软页岩层中使用,而随着PDC 钻头在性能和结构上的不断优化。
目前PDC 钻头已经可以在长段中硬岩地层和硬夹层中使用。
此外,PDC 钻头还有高针对性的优势,可根据钻进地层的各区块地质特征以及地层的深度采用针对性的钻进工艺,选择更为合理的钻进方案[1]。
3 PCD 及PDC 钻头应用于石油钻井中的适用地质环境PCD 及PDC 钻头在石油钻井作业的使用中,并不是所有的地质环境都可以发挥出最大的使用效果,在具体的使用过程中也需要基于不同的地质环境选择不同的PCD 及PDC 钻头类型。
PDC钻头的特点
1973年美国开发了聚晶金刚石复合片钻头,国外广泛应用于软-中硬地层。
在中东和北海的深井及海洋钻井中首先获得了高井尺、高钻速,大大缩短了建井周期,降低了钻井成本,受到了钻境界的广泛重视,成为钻井工具的一项重大成就。
国内对PDC钻头也引起了极大
的关注和兴趣,随着钻井技术人员对PDC钻头的认识和实践,它正在逐步取得较好的使用效果。
按钻头材料及切削齿结构划分,PDC钻头有钢体和胎体两大类别(间上图1-2)
胎体钻头用碳化钨粉末烧结而成,用人造聚晶金刚石复合片钎焊在碳化钨胎体上,用天然金刚石保径。
碳化钨胎体耐冲蚀、耐磨、强度高、保径效果好。
钻头水眼水道面积可以根据钻井工艺需要的水力参数来设计,有较大的灵活性。
胎体外形可以根据地层特点设计,变化胎体形状只要改变模具而不需要增加设备。
钢体PDC钻头,是用镍、铬、钼合金机械加工成形。
经过热处理后在钻头体上钻孔,强人造聚晶金刚石复合片压入(紧配合)钻头体内,用柱状碳化钨保径。
它比胎体钻头成本低20%左右,但不耐磨且易被冲蚀。
PCD及PDC钻头在石油钻井中的应用【Abstract】This paper first introduces the advantages of PCD and PDC drills, then analyzes the geological environment of PCD and PDC drills applied to, and then analyzes the parameter selection of PCD and PDC drills in the oil field drilling in detail,finally analyzes the application effect and prospect of the PCD and PDC drills in the oil field drilling,in order to provide reference for the PCD and PDC drills in the oil field drilling, to promote the further development of oil drilling industry in China.【Keywords】 PCD drill; PDC drill; oil drilling;geological environment1 引言PCD钻头即金刚石聚晶钻头,PDC钻头即金刚石复合片钻头,两者在硬度上很大,因此目前在石油钻井的硬地层中得到了十分广泛的应用。
在应用PCD及PDC钻头对硬地层复杂地质环境的石油钻井时,虽然具备诸多优势,但在一些特殊的地质环境中却并不适用,因此对PCD及PDC钻头在石油钻井中的应用展开分析具有十分重要的现实意义。
基于此,文章重点就PCD及PDC钻头在石油钻井行业中的应用分四个部分展开了分析,提出了一些可供参考的观点和建议,以下是具体内容。
PDC钻头英文:Polycrystalline Diamond Compact聚晶金刚石复合片钻头的简称。
是石油钻井行业常用的一种钻井工具。
PDC产品性能不断改进。
在过去的几年间,PDC切削齿的质量和类型都发生了巨大的变化。
如果将20世纪80年代的齿与当今的齿进行比较的话,差异是相当大的。
由于混合工艺与制造工艺的变化,当今的切削齿的质量性能要好得多,使钻头的抗冲蚀以及抗冲击能力都大为提高。
工程师们还对碳化钨基片与人造金刚石之间的界面进行了优化,以提高切削齿的韧性。
层状金刚石工艺方面的革新也被用于提高产品的抗磨蚀性和热稳定性。
除了材料和制造工艺方面的发展以外,PDC产品在齿的设计技术和布齿方面也实现了重大的突破。
现在,PDC产品已可被用于以前所不能应用的地区,如更硬、磨蚀性更强和多变的地层。
这种向新领域中的扩展,对金刚石(固定切削齿)钻头和牙轮钻头之间的平衡发生了很大的影响。
8-1/2TD164A 4刀翼PDC钻头2TD194B 4刀翼PDC钻头8-1/2TD165A 5刀翼PDC钻头8-1/2TD196A 6刀翼PDC钻头9TD195A5刀翼PDC钻头9-1/2TD166A 6刀翼PDC钻头最初,PDC 钻头只能被用于软页岩地层中,原因是硬的夹层会损坏钻头。
但由于新技术的出现以及结构的变化,目前PDC 钻头已能够用于钻硬夹层和长段的硬岩地层了。
PDC 钻头正越来越多地为人们所选用,特别是随着PDC 齿质量的不断提高,这种情况越发凸显。
由于钻头设计和齿的改进,PDC 钻头的可定向性也随之提高,这进一步削弱了过去在马达钻井中牙轮钻头的优势。
目前,PDC 钻头每天都在许多地层的钻井应用中排挤掉牙轮钻头的市场。
PDC 钻头厚层砾岩钻进技术探索与实践:为了降低海上钻井作业成本、提高作业效率,开发了PDC 钻头厚层砾岩钻进技术.在保持普通PDC 钻头快速切削性能的基础上,通过优选新型高强度PDC 切削 齿、改进钻头切削结构提高钻头的整体强度,通过采用后倾角渐变、力平衡设计、加强切削齿保护等方法提高钻头的稳定性,并且在使用中通过优化钻具组合、采用 合理的钻井参数和"中低排量-中低转速-中高钻压"的平稳钻进模式预防PDC 钻头在砾岩段的先期破坏,有效延长了钻头在砾岩钻进中的寿命.应用该技术实现 了用PDC 钻头在辽东湾一次性钻穿馆陶组和东营组上部疏松地层中垂厚近80 m 的砾岩段,有的井钻穿砾岩段后又直接钻下部中硬地层至完钻井深.采用PDC 钻头厚层砾岩钻进技术,可以大量节省海上钻井作业时间,显著降低钻井费用.PDC 钻头工程技术措施石油钻井装备:1)、首先做好PDC 钻头的选型工作,钻头水眼、流道设计应利于排屑;2)、下入PDC 钻头之前,应充分循环泥浆,清洗井眼,防止起钻后滞留在井眼内的钻屑继续水化分散;3)、下钻时钻头不断刮削井壁,井壁上的泥饼或滞留于井内的钻屑会在钻头下堆积,到一定程度便会压实在钻头上,那么下钻中途进行循环,将钻头 冲洗干净也是有其必要的;4)、下钻过程中还应适当控制速度,防止钻头突然冲入砂桥,钻进一堆烂泥中;另外如果速度恰当,PDC 钻头会顺着上一只钻头所钻的螺旋形井眼轨道行 进,而不是在井壁上划拉下大量泥饼。
PDC钻头使用技术探索一.PDC钻头的主要特点1.PDC钻头所采用的聚晶金刚石复合片是由薄层人造金刚石和碳化钨片基体组成的,该复合片经高温高压粘合为不可分割的整体,金刚石层由许多小晶粒组成,晶粒以不规则的方式组合在一起,使复合片的强度和耐磨性达到最佳。
与牙轮钻头靠牙齿对岩石的冲击、压碎作用破碎岩石不同,PDC钻头主要依靠切削齿对岩石的剪切作用破碎岩石,利用剪切作用破碎岩石比压裂作用破碎岩石所需能量小得多,所以PDC钻头能以很小的钻压实现更有效的钻进,这一点对井斜的控制尤为重要。
2.PDC钻头在钻进中磨损缓慢而且具有自锐性,所以钻头在使用寿命期内,可保持切削齿锐利,可一直保持较高的机械钻速。
3. PDC钻头没有活动部件,所以钻头使用寿命长,没有金属物落井的危险。
4. PDC钻头依靠剪切作用破碎岩石,井底压差对钻头破碎岩石影响小,因而有利于在深井、高密度钻井液条件下获得较高的机械钻速。
5. PDC钻头对提高钻速、降低成本是十分有利的,但也有一些缺点:一是使用范围有局限性,对地层的选择性太强,一般只适宜在砂、泥岩地层使用;二是价格较高,有时使用PDC钻头在经济上不一定合算。
二. 根据地层特性选型地层硬度表1.地层级别为1—2的软地层,选用排屑空间大,清洗条件好,复合片直径不小于19毫米的大复合片钻头。
2.地层级别为3的软地层,选用低密度布齿,排屑空间大的常规复合片金刚石钻头或相当的大复合片金刚石钻头。
3.地层级别为4的软地层和5的中硬地层,选用中密度布齿或高密度布齿,排屑空间适中的常规复合片金刚石钻头。
4.对于含硬夹层的软--中硬地层,选用混合齿(热稳定聚晶金刚石和常规复合片金刚石)钻头和抗回旋钻头等。
5.对于易缩径地层,选用双心或偏心钻头;6.含砾或高研磨性岩石地层,不宜选用PDC钻头。
三.PDC钻头使用中易出现的问题及对策1.泥包问题。
产生钻头泥包现象的原因一般是泥浆性能差和操作不当所至,表现为泥浆高粘切、送钻切菜式,建议所用钻井液流变性要好,粘切一定要低,送钻力求均匀。
关于聚晶金刚石复合片,最全的都在这里~聚晶金刚石复合材料是将聚晶金刚石薄层附着黏结在硬质合金衬底上的复合材料。
聚晶金刚石复合片兼有聚晶金刚石极高的耐磨性以及硬质合金的高抗冲击性。
金刚石层刃口锋利而且具有自锐性,能够始终保持切削刃的锐利,因此非常适用于石油和地质钻探中的软地层直至中硬地层的勘探,效果非常好。
聚晶金刚石复合片中的金刚石含量高达99%,故金刚石层硬度极高、耐磨性极好,其努氏硬度为6.5×104~7.0×104MPa,甚至更高。
硬质合金基体克服了聚晶金刚石硬而脆的不足,大大提高了产品整体的抗冲击韧性。
硬质合金的易焊接性则解决了聚晶金刚石很难通过焊接方法与其他材料结合的难题,可以使聚晶金刚石复合片竖直镶焊在钻头上。
聚晶金刚石复合片因自身性能优越,国内外竞相研制和生产,从而品种规格日益繁多,如图1所示。
主要特性:1 ) 具有极高的硬度。
聚晶金刚石的硬度为HV7500~9000,仅次于天然金刚石。
而且其硬度和耐磨性各向同性,不需选向。
其强度由于有韧性较高的硬质合金支撑,复合抗弯强度可达1500 MPa。
2 ) 具有很高的耐磨性。
聚晶金刚石的耐磨性一般为硬质合金的60~80倍。
在切削硬度较高(>HV1500)的非金属材料时,耐用度极高。
3) 具有较低的摩擦因数。
聚晶金刚石与有色金属的摩擦因数为0.1~0.3,而硬质合金与有色金属的摩擦因数是0.3~0.6。
由聚晶金刚石(简称PCD)材料制作的PCD刀具,与硬质合金刀具相比可降低切削力和切削温度约1/2~1/3。
4) 具有很高的导热性。
聚晶金刚石的导热系数是硬质合金的1.5~7倍,可以大大降低切削区的温度,提高刀具耐用度。
5) 具有较小的膨胀系数。
聚晶金刚石的线膨胀系数很小,约为一般钢的1/10。
另外,因为刀刃锋利,已加工表面加工硬化程度仅为硬质合金刀具的1/3左右,所以加工精度好。
6) 可以根据需要制作成各种尺寸和形状。
一文读懂聚晶金刚石PCD聚晶金刚石(Polycrystalline Diamond,简称PCD)是20世纪70年代以来国际上开始研究使用的新型超硬材料,它是在高温1400℃、高压6GPa下烧结形成的。
聚晶金刚石既是工程材料,又是新型的功能性材料;既是高新技术产品,又是高效益的产品。
随着现代工业和科学技术的发展,聚晶金刚石以其优良的力、热、化学、声、光、电等性能,在现代工业、国防和高新技术等领域中得到日益广泛的应用。
聚晶金刚石刀具已成为现代切削加工中不可缺少的必要手段。
这主要体现在以下几个方面:(1) 高速切削、高稳定性加工(2) 超精密镜面加工(3) 干式切削、清洁化加工性能介绍(1) 高的硬度和耐磨性聚晶金刚石的硬度高达10000HV左右,是目前世界上人造物质中最硬的材料,比硬质合金及工程陶瓷的硬度高得多,由于聚晶金刚石硬度极高,并且各向同性,因而具有极佳的耐磨性。
(2) 摩擦系数低聚晶金刚石与一些有色金属的摩擦系数比其它材料都低,约为硬质合金的1/2左右。
低的摩擦系数不仅使变形和切削力降低,而且使切削时不产生积屑瘤,因而降低了加工表面粗糙度。
(3) 导热率高聚晶金刚石的导热率很高,比银、铜还要好,比一般硬质合金高得多,因此在切削过程中切削热容易散出,故切削温度较低。
(4) 加工精度高由于聚晶金刚石刀具具有较低的热膨胀系数和很高的弹性模量,因而在切削过程中刀具不易变形,在切削力的作用下刀具能保持其原始参数,长期保持锋利,切削精度高。
所以使用PCD刀具进行加工时,可以减小切削力和降低切削温度,提高刀具耐用度和切削率,获得良好的加工表面。
主要问题:PCD材料的高硬度和高耐磨性造成成型和表面光整加工非常困难,严重妨碍了它的推广应用。
常用加工方法:电火花加工、激光加工、化学加工、超声加工。
理想加工方法:磨削或研磨加工。
加工工艺介绍磨削加工鉴于聚晶金刚石的高硬度和耐磨性,其磨削加工主要有金刚石砂轮磨削、放电磨削和电解磨削等方式,其中最简单、有效的磨削加工方式是金刚石砂轮磨削。
金刚石刀具金刚石刀具具有极高的硬度和耐磨性、低摩擦系数、高弹性模量、高热导、低热膨胀系数,以及与非铁金属亲和力小等优点。
可以用于非金属硬脆材料如石墨、高耐磨材料、复合材料、高硅铝合金及其它韧性有色金属材料的精密加工。
金刚石刀具类型繁多,性能差异显著,不同类型金刚石刀具的结构、制备方法和应用领域有较大区别。
天然金刚石刀具目前主要用于紫铜及铜合金和金、银、铑等贵重有色金属,以及特殊零件的超精密镜面加工,如录相机磁盘、光学平面镜、多面镜和二次曲面镜等。
但其结晶各向异性,刀具价格昂贵。
PCD的性能取决于金刚石晶粒及钴的含量,刀具寿命为硬质合金(WC基体)刀具的10~500倍。
主要用于车削加工各种有色金属如铝、铜、镁及其合金、硬质合金和耐磨性极强的纤维增塑材料、金属基复合材料、木材等非金属材料。
切削加工时切削速度、进给速度和切削深度加工条件取决于工件材料以及硬度。
人造聚晶金刚石复合片(PDC)性能和应用接近PCD刀具,主要用在有色金属、硬质合金、陶瓷、非金属材料(塑料、硬质橡胶、碳棒、木材、水泥制品等)、复合材料等切削加工,逐渐替代硬质合金刀具。
由于金刚石颗粒问有部分残余粘结金属和石墨,其中粘结金属以聚结态或呈叶脉状分布会减低刀具耐磨性和寿命。
此外存在溶媒金属残留量,溶媒金属与金刚石表面直接接触。
降低(PDC)的抗氧化能力和刀具耐热温度,故刀具切削性能不够稳定。
金刚石厚膜刀具制备过程复杂,因金刚石与低熔点金属及其合金之间具有很高的界面能。
金刚石很难被一般的低熔点焊料合金所浸润。
可焊性极差,难以制作复杂几何形状刀具,故TDF焊接刀具不能应用在高速铣削中。
金刚石涂层刀具可以应用于高速加工,原因是除了金刚石涂层刀具具有优良的机械性能外,金刚石涂层工艺能够制备任意复杂形状铣刀,用于高速加工如铝钛合金航空材料和难加工非金属材料如石墨电极等。
显示为纯金刚石。
ND是目前已知矿物中最硬的物质,主要用于制备刀具车刀。
天然金刚石刀具精细研磨后刃口半径可达0.01~0.002µm。
收稿日期:2001209226.作者简介:李国安(19452),男,高级工程师;武汉,华中科技大学模具技术国家重点实验室(430074).聚晶金刚石复合片(PDC )钻头的失效分析李国安 宋全胜(华中科技大学模具技术国家重点实验室)摘要:对PDC 钻井钻头的失效形式进行了分析,并对每种失效形式的形成机理进行了研究.结果表明,PDC 钻头切削齿的微断屑、宏观破裂及剥离失效形式是造成PDC 钻头早期失效的主要形式和原因.预防PDC 钻头的早期失效,应从设计、材料制造及使用方面采取改进措施.关 键 词:PDC 钻头;失效分析;微断屑;宏观破裂;剥离中图分类号:TG 142 文献标识码:A 文章编号:167124512(2002)0120062203 聚晶金刚石复合片钻头(简称PDC 钻头)是近些年来研制发展的新型钻井钻探钻头,它采用人造聚晶金刚石制作的复合片(PDC )作为切削齿(结构见图1).本研究对生产现场收集到的有代表性的典型失效PDC 钻头进行了全面分析,借助图1 PDC 结构示意图于宏观和微观分析手段找出了PDC 钻头失效的主要形式,并从力学、材料学等角度对失效的机理进行了研究.1 失效钻头的选取与工况分析从钻井现场回收的相当数量的失效钻头中,选取最具代表性的4只失效钻头作为失效分析对象.对每只失效钻头的失效部位(全部为PDC 切削齿失效)进行取样.取样钻头A ~D 失效前钻探总进尺分别为:486m ,532m ,109m 和173m.PDC 钻头的工况条件是很苛刻的.钻头工作中不但承受巨大的压力同时还承受巨大的冲击力;不但承受泥浆的冲蚀作用,同时还承受切削过程中的磨擦、冲击而产生的热效应,尤其是因切削齿的局部高温而伴随发生材料热化学作用.因此,PDC 钻头尤其是作为切削齿的金刚石复合片(PDC )既要求具有高的强度、硬度,又要求具有足够的韧性;既要求具有较好热震性,又要求具有一定的抗腐蚀性.2 失效的主要形式及机理2.1 平滑磨损如图2所示,PDC切削齿的平滑磨损的特征图2 平滑磨损PDC 磨损平面形貌(A 钻头SEM )是磨损面宏观上表现为较为平整,其金刚石层和WC 基托均在切削过程中被磨损而形成磨损平面(图3).平滑磨损的过程(图4)如下:切削过程中,因为WC 硬度低于金刚石,所以率先遭磨损的是WC 基托,这样临近WC 基托的金刚石就失去了WC 的有效支撑,形成金刚石“唇”边.在切削力的作用下,唇边承受着拉应力,并导致拉应力裂纹萌生,扩展,最终唇边断裂,导致未破裂的金刚石层与岩石接触面积减少,承受应力更大,又加速导致第30卷第1期 华 中 科 技 大 学 学 报(自然科学版) Vol.30 No.12002年 1月 J.Huazhong Univ.of Sci.&Tech.(Nature Science Edition ) Jan. 2002图3 平滑磨损金刚石唇中拉应力裂纹形貌(A 钻头SEM )图4 PDC 切削齿平滑磨损示意图[2]金刚石片的破裂,一旦金刚石片整个接触面均遭到破坏,则WC 基托又重新有效地接触岩石,接着又发生WC 基托优先被磨损掉,形成平滑磨损过程的循环.但比较其他失效形式,平滑磨损过程是缓慢的,属正常的失效形式.正由于“唇”区域的形成,使余下的金刚石与岩石的接触面积减小,使单位面积的切削力增大,而形成自锐效应[1].自锐效应有利于保持钻头的有效切削能力.2.2 微断屑微断屑表现为金刚石片近似地沿切削方向形成微尺度(μm ~mm )的片状断裂.其裂纹起源于金刚石片的圆平面上,继而向纵深发展而导之微片状断裂.图5为其断口形貌图,图6为微断屑产生过程示意图.微断屑常常在钻头工作一定时间之后发生,由于钻头工作时,承受的负荷的交变以及PDC 表面局部的高温与冷却的交变,因此,PDC 承受机械疲劳与冷热疲劳的共同作用,达到一定周期,萌生裂纹,继而扩展导致微断屑断裂.由于切削过程中,PDC 平面与切削平面的法向成一定角度(称后倾角),有研究表明[2],对中软岩层,小的后倾角,可减少微断屑的发生.需要指出的是,微断屑失效发展速度比平滑磨损快,损害也严重得多.图5 PDC 微断屑断口形貌(B 钻头)图6 微断屑产生过程示意图2.3 宏观破裂宏观破裂表现为大尺寸的金刚石层的破断,其裂纹起源于金刚石片的圆柱面上.它是PDC 切削齿破环最为严重的一种失效形式,通常导之钻头报废.图7为典型宏观破裂断口形貌,图8为其示意图.由于钻头在钻进过程中遇到硬质岩石或岩性变化较大的岩层时,钻头受到较大的冲击负图7 宏观破裂形貌(C 钻头)图8 宏观破裂示意图36第1期 李国安等:聚晶金刚石复合片(PDC )钻头的失效分析 荷,尤其是PDC 切削齿与岩石接触面较小时,致使切削齿在短时间内承受超负荷而导致发生大尺度的宏观破裂,导致钻头的报废.现场使用经验表明,当井底存在有破损的钻头碎块或刚性物而未被及时打捞清理时,也会导致工作钻头遭受非正常的冲击,使钻头发生宏观断裂.此外,保持稳定的钻压,钻速,尽力避免大的冲击,也是减少发生宏观破裂的措施.2.4 剥离剥离表现为金刚石层与碳化钨基托的粘接破坏造成剥离.致使刃口不复存在而失去切削能力.图9为D 钻头上的剥离失效PDC 宏观形貌.在切削过程中,切削齿因磨擦热而升到高温,而当钻头因振动等短时脱离与岩层接触时,又被冷却泥浆急冷.而由于PDC 各层间热膨胀系数差异,导致PDC 各层的热胀冷缩的差异,造成极大的内应力[3],当其超过粘结层结合强度时,就造成剥离.在研究分析中,发现剥离失效的钻头,常伴随有宏观破裂的失效,因此可认为钻头承受的短时冲击超负荷也是促使剥离失效的因素之一.因此,预防剥离可从材料制造过程中提高各层间的结合力,改善材料间的热胀系数的匹配,避免冲击载荷发图9 金刚石层的剥离(D 钻头)生等方面着手.2.5 热龟裂热龟裂表现为PDC 材料表面形成一定深度的网状龟裂纹(图10).在WC 基托层及金刚石层均会发生热龟裂.它是冷热应力的交变作用的结果,尤其是材料表面,冷热应力最高,故热裂纹萌生于材料表面.图10 金刚石层的热裂纹形貌(B 钻头)可以看出,首先要形成大面积的磨损平面而产生足够的热量,接着才会在多次冷热循环中,因热应力足够大导致材料表面热龟裂的发生.因此,热龟裂也是磨损失效的必然结果.参考文献[1]缪青维.钻井条件下复合片的自锐问题.磨料磨具与磨削,1992(67):24~28[2]Lin T P ,Hood M ,Cooper A G ,et al.Wear and failuremechanism of polycrystalline diamond compact bits.Wear ,1992,156:133~148[3]Krawitz A D ,Andrew R.Residual stresses in polycrys 2talline diamond compacts.International Journal of Re 2fractory Metals &Hard Materials ,1999,17:117~122The analysis of failure of PDC w ell bitsL i Guo ′an Song Q uanshengAbstract :The failure types of PDC well bits are analyzed.The failure mechanisms has been studied.The results show that main failure types of PDC well bits are microchipping ,gross fracturing and delamination.Some improvements on the designing ,material manufacturing and the usage for the bits should be made to prevent PDC well bits from earlier failures.K ey w ords :PDC well bit ;failure analysis ;microchipping ;gross fracture ;delaminationLi G uo ′an Senior Engineer ;State K ey Lab.of Die &Mould Tech.,HUST ,Wuhan 430074,China.46 华 中 科 技 大 学 学 报(自然科学版) 第30卷。
第34 卷第3 期2014 年06 月矿冶工程MINING A ND ME T ALL URG ICA L E N GINE ERIN GV o l〃 34 №3June 2014金刚石复合片( P D C) 的缺陷分析及优化制备①贾洪声1 ,谭莹莹1 ,徐长彬1 ,闫海1 ,李海波1 ,贾晓鹏2 ,马红安2 ,郑友进3(1〃吉林师范大学功能材料物理与化学教育部重点实验室,吉林四平136000; 2〃吉林大学超硬材料国家重点实验室,吉林长春130012; 3〃牡丹江师范学院新型炭基功能与超硬材料省重点实验室,黑龙江牡丹江157011)摘要: 针对高温高压( HPHT) 合成金刚石复合片( PDC) 常出现的缺陷问题,对PDC 腔体组装及制备工艺进行了优化。
结果表明,稳定均一的温度、压力场以及适量的烧结助剂是合成优质PDC 的关键。
在HPHT 条件下(5〃 2 ~ 5〃 6 GPa,1 400 ℃,5 min) ,通过选用传压保温效果好的绝缘坩埚及屏蔽材料作为腔体组装,采用Ni、Fe 基合金高压熔渗法及保压慢降温工艺,成功制备了Φ8、Φ15 mm 的PDC,其具有致密的组织结构,缺陷几率明显降低;PDC 磨耗比为104 数量级,热稳定温度约为800 ℃,金刚石层具有较低的残余压应力( 低于0〃 16 GPa)。
最后选用优质PDC 样品进行了刀具试制,刀具的实际使用效果良好。
关键词: 金刚石复合片; 高温高压; 缺陷; 组装; 优化中图分类号: TQ163;O521〃 3文献标识码: A d o i:10〃 3969 / j〃 issn〃 0253 - 6099〃 2014〃 03〃 030文章编号: 0253 -6099(2014)03 -0112 -04Defects Analysis and Optimal Preparation ofPolycrystalline Diamond Compacts ( PDC)JIA H o n g-shen g1 ,T A N Y in g-y in g1 ,X U C han g-bin1 ,Y A N H ai1 ,L I Hai-b o1 ,JIA X ia o-pen g2 ,M A H o n g-an2 ,Z H E NG Y o u-jin3 (1.K ey Laborat ory of F unct i onal M ater i al s P hys i cs and C hem i stry of t he M i ni stry of E duc at i on,Jili n N orm al Uni vers i ty,Siping 136000,Jili n,China; 2.St ate K ey Laborat ory of Super hard M ater i al s,Jili n Uni vers i ty,Changc hun130012,Jili n,China; 3. P rov i nc i al K ey l aborat ory of N ew Car bon-base F unct i onal and Super hard M ater i al s,M udanj i ang N orm al Col l ege,M udanj i ang 157011,H e il ongj i ang,China)A b s t ract: Aiming at the com mon d efects o f p olycr ystalline d iamond c ompacts( PD C) synthesi z ed by high-temperature and high-pressure( HPH T) process,the chamber assembl y and preparation technol ogy f or PD C w ere optimi z ed〃 T he results s how that stable and uni f orm pressure and temperature f ields,as w ell a s proper a mount o f s intering a dditives are key f actors t o the synthesis of high-qualit y PD C〃Under the condition of HPH T (5〃2~5〃6GPa,1400℃,5min) ,Φ8mm andΦ15mm of PD C s w ere success f ull y prepared by adopting an insulating crucible w ith good pressure- transmitting and insulation ef f ects and shielding m aterial a s c hamber a ssemblies a nd using Ni and Fe-based all oy high- pressure melt infiltration method and pressure-maintaining sl ow-cooling technique〃 T he prepared PD C has a dense structure and signi f icantl y-decreased defect probabilit y〃 T he abrasion rati o of PD C is104 orders of magnitude〃 T he thermall y stable temperature is about800℃〃M eanwhile,the diamond layer has a l ow residual compressive stress( less than0〃16G Pa)〃Finall y,high-qualit y P D C sam ples w ere used fo r m akin g cuttin g t oo ls,w hich has goo d practicale ff ects〃K ey w ord s: PD C; HPH T; defect; assembl y; optimi z ation金刚石复合片( PDC) ,是金刚石微粉和硬质合金基体( W C-Co) 在高温高压( H PHT) 条件下通过烧结助剂烧结复合而成的超硬材料,该材料具有金刚石超硬、超耐磨、耐高温、耐腐蚀、高热导率等优异性能且力学各向同性,并兼具基体材料的韧性和可焊接性,在高精密机械加工、石油与地质钻探、特种材料的切割、磨削等领域具有重要的应用[1 -4]。
一、产品图片:二、产品规格表:三、产品简介:金刚石复合片(PDC)是在高温条件下,由人造金刚石与硬质合金一次性合成的特殊超硬材料,它不但具有金刚石硬度高、耐磨等优点,同时还具备了硬质合金抗冲击性强、出刃大等特点,用它做钻头的刀翼可大大提高钻头的工作效率,是钻进中硬岩层和坚硬岩层的理想钻头。
四、产品优势:金刚石复合片钻头拓体采用优质钢材煅压成型,经过真空全自动热处理设备进行增加机械性能处理。
普通型采用国内优质复合片做刀翼,超强型采用美国GE公司生产的刀片,根据地质条件的不同选用相应的质量等级,可达到更高的产品性价比,达到节能高效的经济指标。
金刚石复合片钻头遍布全国煤田、石油钻探、地质勘探、水利水电、铁路公路、隧道建设等行业。
两翼PDC锚杆钻头(半片标准型)适应岩层八级以下,在同等岩层条件下钻进寿命是普通合金钻头的10-30倍,效率至少提高60%以上,不需修磨,大大降低工人的劳动强度,节约工时。
两翼PDC锚杆钻头(半片加强型)刀翼关键原材料由美国GE公司生产,其金刚石含量是普通钻头的1.5倍,耐磨性极好,效率显著提高,综合成本降低,适应12级以下中硬岩层。
高强型金刚石钻头刀翼采用最新研制的球型金刚石刀片,特点是钻进速度快,抗冲击能力强。
当钻头钻进时,唇边用于正常均匀地层岩石的刮削,突出部分可以抑制钻头钻进过程中遇到缝隙时瞬间大幅度进尺,大大降低了钻头的意外损坏,提高了应对复杂岩层的钻进水平。
五、钻头使用注意事项:1.正常作业时,严禁突然反转改变运行方向,以防止复合片钻头脱落;2.在正常作业时,空压机主风路不能有漏气现象,要保证足够的风量与风压,以延长金刚石复合片钻头的使用时间;3.新复合片钻头第一次使用时、要低速磨合半个小时,再逐步正常使用;4.在地质恶劣的环境中运行,要降低轴压和转速,防止钻头断裂;5.在正常的钻孔作业时,若中途须更换钻头,要严格检查孔内是否有杂物,须保证孔内干净方可使用新的复合片钻头;6.新复合片钻头第一次使用时,要注意打孔部位的清洁,防止有杂物影响正常的使用;7.在正常的钻孔作业时,若中途须更换钻头,要严格检查孔内是否有杂物,须保证孔内干净方可使用新的复合片钻头;8.严禁使用弯曲的钻杆,以避免钻头因受力不均而加速钻头的损坏,影响正常的使用时间。
聚晶金刚石PCD和聚晶金刚石复合片PDC的优缺点与大单晶金刚石相比,作为刀具材料的聚晶金刚石PCD以及聚晶金刚石复合刀片PDC具有以下优点①晶粒呈无序排列,各向同性,无解理面,因此它不像大单晶金刚石那样在不同晶面上的强度、硬度以及耐磨性有较大区别,以及因解理面的存在而呈现脆性。
②具有较高的强度,特别是PDC材料由于有硬质合金基体的支撑而有较高的抗冲击强度,在冲击较大时只会产生小晶粒破碎,而不会像单晶金刚石那样大块崩缺,因而PCD或PDC刀具不仅可以用来进行精密切削加工和普通半精密加工,还可用作较大切削量的粗加工和断续加工如铣削等),这大大扩充了金刚石刀具材料的使用范围。
③可以制备大块PDC金刚石复合片刀具坯料,满足大型加工刀具如铣刀的需要。
④可以制成特定形状以适合于不同加工的需要。
由于PDC刀具大型化和加工技术如电火花和激光切割技术的提高,三角形、人字形以及其他异形刀坯均可加工成形。
为适应特殊切削刀具的需要还可设计成包裹式、夹心式与花卷式PDC刀具坯料。
⑤可以设计或预测产品的性能,赋予产品必要的特点以适应它的特定用途。
比如选择细粒度的PDC刀具材料可使刀具的刃口的质量提高,粗粒度的PDC刀具材料能够提高刀具的耐用度,等等。
总之,随着PCD、PDC金刚石复合片刀具材料的研究进展,其应用已经迅速扩展到许多制造工业领域,广泛应用于有色金属铝、铝合金、铜、铜合金、镁合金、锌合金等)、硬质合金、陶瓷、非金属材料塑料、硬质橡胶、碳棒、木材、水泥制品等)、复合材料纤维增强塑料、金属基复合材料MMCs等)的切削加工,尤其在木材和汽车加工业,已经成为传统硬质合金的高性能替代产品。
切削刀具用PDC、PCD材料要求①金刚石颗粒间能广泛地形成D-D自身结合,残余粘结金属和石墨尽量少,其中粘结金属不能以聚结态或呈叶脉状分布,以保证刀具具有较高的耐磨性和较长的使用寿命。
②溶媒金属残留量少。
最好是在烧结过程中能起溶媒作用,而在烧结过程完成后将以不起溶媒作用的合金形式充填于烧结金刚石晶粒间隙中,或烧结后残留的溶媒性金属被隔离,避免溶媒金属与金刚石表面直接接触,以提高PCD的抗氧化能力,从而保证刀具具有足够的耐热温度。
前言自PDC钻头问世以来,以其优良的性能及随之而带来的经济效益,越来越多的受道现场作业队的青睐。
然而美中稍有不足的是,在现场的应用中,PDC只是PDC 而以,也就是说,作业人员对其了解还不是很深刻。
鉴于此,本人欲从其特点,包括PDC钻头的设计特点和它的结构特点,还有其破岩机理上给予归纳、总结和分析、推理,以期望能为现场作业提供一点技术上的借鉴和参考。
PDC钻头的特点和破岩机理摘要:本文在简要介绍了PDC钻头的物质成份,两大类别(胎体钻头和刚体钻头)及其不同物质在钻井作业过程中所起的作用的基础上,归纳、总结了PDC钻头特点,包括其设计特点和结构特点;同时较详细地分析了在打定向井时,PDC钻头的结构特征因素对造斜率的影响;另外也在分析、归纳、总结国内外专家、学者的独特见解的基础上,对PDC钻头的破岩机理,也在一定程度上给予阐述。
并在此基础上,最后也提出了一些PDC钻头的选型依据。
关键词: PDC钻头; 特点; 机理分析Abstract:This themsis briefly introduces which materials PDC bit is made from,how it is manufactured,and the different types of PDC bits,also shows you the principal functionsof the different materials of PDC bit in drilling----on the basis of these,summaries the characteristics of PDC bit,including its designing characteristics and structural characteristics,and specificly analyses the effect of its structural characteristics on the leaning ration in the controlled directional drilling。
PDC切磨工具的研制摘要:本文对PDC切磨工具研制现状进行了综合评述, 阐述影响PCD工具质量有焊接加热方式、刃磨工艺等,分析了工具失效原因。
关键词:聚晶金刚石复合片, 切磨工具制作一、引言金刚石复合片(PDC:Polycrystalline diamond compacts)是一种金刚石微粉在超高压、高温条件下与硬质合金基体烧结在一起的复合材料,在保持了金刚石单晶的高硬度,高弹性模量等性能外,还具有各向同性,抗冲击强度高等特点;其形状、尺寸乃至某些性能如可焊接性、可切割性、耐热性等,可以按照使用要求进行设计与制造。
在许多工业领域已经替代传统的工具材料,如石油和地质钻头,切削刀具、木材加工工具等等。
但在建材、石材加工等领域,传统加工工具是把金刚石烧结结块焊接在基体上,金刚石烧结结块的金属胎体及所用金刚石的性能决定了产品的效率低、寿命短,而PDC产品具备锋利、高效、长寿命的优点。
目前国际上已开始研发以PDC 代替金刚石烧结块的切、磨工具,并投入使用。
在切削人造板等木质复合材料时目前使用的刀具材料主要是硬质合金,虽然硬质合金的耐磨性、耐热性和硬度很高,但由于木材本身具有很高的各向异性结构,使得与刀具的摩擦系数很大,而且木质复合材料本身既含有造成刀具机械擦伤的硬质点和表面还有难以加工的硬质涂层,又有引发刀具发生化学腐蚀的酸性介质,这些都会加剧刀具磨损和腐蚀,既大大缩短了使用寿命,又会严重降低了产品的质量。
市场迫切需要高性能的、高质量的木工加工刀具。
在1979年,德国蓝帜公司首先制造出了PCD木工刀具,在加工PB(particle board)时,其寿命是常规硬质合金刀具的125倍。
克服了硬质合金刀具在耐磨和耐腐蚀性方面不足,达到良好的经济效益和社会效益。
二、PDC材料的选用目前PCD、PDC材料根据制造方法、复合途径、结构特征、聚结烧结机理大致可分为固相烧结型、生长聚结型、扩散浸渍型、熔融再结晶型、中介结合型、混合型六种类型。
浅谈聚晶金刚石复合片(PDC)钻头失效的原因及解决对策作者:冯强【摘要】聚晶金刚石复合片目前应用广泛,但是仍有存在钻头失效的问题,本文将就PDC钻井钻头的设计及生产工艺进行分析,并对失效形式和形成原因进行探讨,一定程度上预防PDC钻头的早期失效。
【关键词】聚晶金刚石、复合片、失效、钻头、完善一、聚晶金刚石PDC钻头设计及生产工艺。
1、聚晶金刚石复合片(Poly crystalline Diamond Compact ),简称PDC。
随着材料工业技术水平和PDC 钻头设计技术的发展,硬地层PDC钻头技术也随之出现了较快的发展。
它可用较低钻压和较高转速,钻头进尺高,单位进尺成本低。
中国某些油田利用金刚石聚晶复合片镶焊在刮刀上,也获得了良好的效果。
复合片外形是圆形被镶焊在圆柱的切削具上,将切削具镶装在钻头体上,成为PDC钻头。
PDC钻头远比天然金刚石钻头成本低,但是只适用于软到中硬地层。
随着石油勘探工业的发展及其相关技术水平的不断提高,加上目前钻探深探井的数量逐年增加,钻井难度也在逐步加大。
因此,钻头的设计和生产工艺成为提高深探井钻探的钻井速度、降低全井钻进成本的关键因素。
2、在材料性质而言,聚晶金刚石复合片是一种新型复合材料,已经广泛应用于是有钻探、地质勘探等多方面领域,并已经开始逐渐涉及到一些需要的材料切削加工领域等。
无论是油井复合片钻头或地勘复合片钻头,其钻头通常都是由复合片和钻头基体两部分组成。
聚晶金刚石复合片也是,聚晶金刚石和硬质合金层是聚晶金刚石复合片的主要材料,需要通过高温高压压制而成的,其中金刚石层是厚度较薄的一层,钨钻类硬质合金材料的厚度一般稍厚作为基底,聚晶金刚石复合片具有很多有益的性能,比如有比硬质合金更高的硬度和耐磨性,强于硬质合金的抗冲击性。
3、钻头设计方面的问题,钻头的设计包括有复合片的定向、排粉、保径的方法、冲洗等。
其中钻头的基体是复合片的载体,是钻头的主要部分。
因此它的质量问题直接影响了钻头的使用效果。
第25卷第3期1996年8月人 工 晶 体 学 报JOU RN AL O F SYN THET IC CR YSTA LSVol.25 No.3August,1996T i中介的聚晶金刚石复合片(PDC)界面结构与性能研究*王明智 王艳辉 臧建兵(燕山大学,秦皇岛066004)提要:本文在高温、超高压条件下,制出了以T i为中介物的金刚石聚晶与硬质合金衬底的复合片(Poly cr ystalline Diamo nd Compact,PDC)用剪切、压溃、淬火急冷等方法测定了PDC的结合性能及抗热冲击性能,用XR D、SEM、EP MA等方法研究了复合界面处的结构,并分析了对PDC复合性能的影响与T i在界面的作用及存在形式。
关键词:金刚石;金刚石复合片;钛;界面;结构Study on Interface Structure and Bond Properties of Polycrystalline Diamond Combined with Titanium as BonderWang M ingz hi Wang Yanhui Zang Jianbing(Yanshan University,Qinhuangdao066004,China)(Received12Sep tember1995,accepted1April1996)AbstractPolycrystalline diamond layer and tungsten carbide-base layer com bined w ith Ti as bonder is manufactured at high temperature and ultra-high pressure.The bond streng thand heat shock resistance of the combined-interface are measured by compress test and quenching test,interface structure,and properties of the combined-interface are investigated by XRD,SME and EPMA.T he behavior and distribution of Ti on interface of the compact are analyzed.Key words:diamond;poly crystalline diamond compact;titanium;interface,structure1 引 言金刚石微粉与粘结剂(Si Ni B)混合,装入叶蜡石传压模中,在高温(1200~1550 )、超高压(4.5~ 6.25GPa)条件下,粘结剂中Si熔化,在与金刚石接触部分形成SiC,经一定时间保温,制成金刚石聚结体 1 (Polycrystalline diamond,PCD)。