《数值分析》课程思政教学改革研究与实践
- 格式:docx
- 大小:36.58 KB
- 文档页数:1
数值分析课程教学改革的探讨与实践摘要:基于数值分析课程的特点和教学中存在的一些问题,文章对数值分析课程教学改革作了探讨。
在完善教学内容体系,改进教学方法等方面提出了一些改革措施,强调了激发学生学习兴趣的重要性,提出了加强理论与实验相结合,重视建模思想。
关键词:数值分析;教学改革;数值计算中图分类号:G642.0文献标志码:A 文章编号:1674-9324(2020)15-0187-02收稿日期:2019-06-11基金项目:北京信息科技大学2017年度教学改革立项项目(2017JGYB76)作者简介:左军(1967—),男,山东青州人,北京信息科技大学理学院副教授,主要从事数值代数研究。
一、引言当前数值分析课程是高等院校多数理工科专业的必修课程,该课程的教学旨在使学生掌握各种常用的数值算法的构造原理和过程分析,将理论应用于实践,运用数值计算方法,达到解决实际问题的目的。
传统的教学模式较多地注重定理的证明和计算公式的推导,学生往往理解困难,对算法理论缺乏直观和深入理解,理论常与应用脱节,往往学生学完后仍不知道数值分析中的方法该怎么用,用在哪里。
因此深入进行本课程教学改革,对提高课程的教学质量,培养学生分析问题和解决实际问题的能力,以及加强学生的创新意识都具有一定的现实意义。
二、数值分析课程的特点数值分析课程既具有纯数学的高度抽象性与严密科学性,又具有解决实际问题的实用性和实验性,具有如下特点:(一)内容丰富,涉及面广该课程知识面跨度大,涉及了数学分析、代数、微分方程等众多数学学科。
开设这门课程之前要求学生必须修过数学分析、高等代数等基础学科,客观上要求学生应具有扎实的数学理论基础。
(二)知识点多,公式多且复杂课程涉及科学计算和工程应用背景,学生普遍反映定理多,计算公式(过程)冗长复杂,不容易记忆。
数值分析课程的主要内容是研究算法,而算法的推导与分析有一定难度,这些特点增加了教学难度,本身对教师和学生都提出了较高要求。
数值分析课程教学改革的探讨与实践一、引言数值分析是应用数学中一门重要的学科,广泛应用于工程、科学等领域。
数值分析课程涉及到数值计算方法、数值逼近、差分方程、常微分方程的数值解法等内容,是培养学生计算能力和解决实际问题的数学工具的重要途径。
然而随着时代的发展和技术的更新,传统的数值分析课程教学方式已经不能满足现代学生的需求,教育教学改革是大势所趋。
本文将探讨如何对数值分析课程进行教学改革的相关问题,并结合实际案例进行具体的实践探讨。
二、数值分析课程教学改革的必要性1. 适应时代需要随着科技和工程的不断发展,数值计算已经成为解决问题的重要手段,因此对学生进行数值计算能力的培养已经成为当务之急。
传统的数值分析课程教学多以理论为主,缺乏与实际应用的结合,不能很好地满足时代的需求。
2. 提高教学质量传统数值分析课程教学方式单一,缺乏灵活性,不能很好地吸引学生的兴趣。
教学质量得不到有效保障。
3. 培养学生的创新能力传统的数值分析课程注重基础理论知识的传授,但缺乏启发学生的创新能力的教学方法。
而当今社会对于创新人才的需求日益增长,因此培养学生的创新能力成为数值分析课程教学改革的重要环节。
1. 引入实际案例在数值分析课程中适当引入一些实际的数值计算问题,通过实际案例的讲解,可以更好地将理论知识和实际应用相结合,激发学生的学习兴趣。
在讲解数值逼近的内容时,可以引入一些实际的函数逼近问题,让学生通过计算机软件进行实际操作,加深对知识的理解。
3. 注重创新教育创新教育是培养学生创新能力的关键环节,数值分析课程教学中可以引入一些创新教育的内容,如组织学生进行一些课外的创新性实践项目,鼓励学生进行自主探索,培养其创新能力。
本文以某高校的数值分析课程教学改革为例,对以上提出的对策进行实践探讨。
1. 引入实际案例在该高校的数值分析课程中,老师结合自身的研究和应用经验,引入了一些实际的数值计算问题,如空气动力学中的数值模拟、材料力学中的数值分析等。
《数值分析》课程思政的一个探索案例
现在,基础数学教育越来越重视对学生思想政治的培养和训练。
随着社会发展,基础数学教育也不断向前发展,更多的偏重于思想政治的教育。
《数值分析》课程也不例外,我们将以《数值分析》课程中一个探索案例为例,介绍如何利用数值分析思维来培养学生的思想政治。
在《数值分析》课程中,我们将以一个关于选举的探索案例为例,开展一场思想政治教育实践活动。
首先,请学生准备一份选举投票表,其中包括参选者的姓名和其他信息,以及各个参选者得票数。
然后,将投票表上的数据用数值分析的方法进行统计分析,比如,某个参选者的总票数、根据选民类别对其票数的统计结果等等。
接下来,要求学生根据统计分析的结果,从不同的角度和侧面来解释这次选举中不同参选者的得票情况,以及这次选举的结果如何体现社会的现状和发展趋势。
比如,可以从多种视角来分析,如影响选举结果的政治背景、各参选者政策的对比,以及选举活动本身的成功与否等等。
通过以上实践活动,学生可以掌握基础数学数学分析的知识,同时,也能培养学生的思想政治素养,启发学生正确认识和理解各种政治事件的动机、背景、政治效应。
此外,让学生通过图形介绍选举结果也是一个不错的实践活动,可以更形象地向学生描述不同参选者的得票情况和结果。
如果学生有兴趣,可以将其作品整理发表到论文集中,以展示数学与思想政治教
育的紧密结合。
以上就是《数值分析》课程中一个探索案例的介绍,通过结合数学和思想政治教育,不仅可以提高学生对基础数学的理解,同时也可以培养学生的思想政治素养,更好地适应时代的发展。
《数值分析》课程思政优秀案例一、课程简介计算数学是当代数学科学的重要分支,是伴随着计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机实现其在高科技领域应用的必不可少的纽带和工具。
计算与理论和实验相并列,已经成为当今世界科学活动的第三种手段,这是二十世纪后半叶最重要的科技进步之一。
“数值分析”作为计算数学专业主干课,研究分析利用计算机、通过有效的科学手段求解数学模型,这些模型来源于和人们日常生活密切相关的自然科学及社会科学,如天气预报、飞行器轨道计算、流体运动规律、股票市值及其变异程度、航空公司作业研究及保险精算等。
随着计算科学与技术的进步与发展,数值分析的应用范围已扩大到许多学科领域。
数值分析的主导思想是唯物辨证法,通过分析、解决矛盾并最后将思想付诸实践,因此该门课程与马克思主义哲学一样,具有育人功能。
课程思政元素:文化自信、爱国情怀二、教学目标如同马克思主义哲学,“数值分析”课程在了解和认识事物及其运动规律,遵循由个体特殊事物扩大到一般事物,由个体特殊本质概括归纳出一般事物的共同本质;课程中的学习内容都是从客观存在出发,发现规律,升华抽象为理论;在将其中的理论方法运用到解决实际问题时,依据客观实际判定认识或理论是否正确等。
我国古代数学家刘徽等,近代冯康先生为代表的数学家们都在这个领域中取得了许多世界先进成果,他们的人格魅力、科研成果以及锲而不舍及勇于探索的科学态度,能够增强学生的爱国主义意识和民族自信心。
文化自信:冯康学派对计算数学发展的贡献一、案例(材料)简介冯康先生祖籍浙江绍兴,1920年9月9日出生于江苏南京,6岁迁居苏州。
1939年毕业于省立苏州中学,1944年毕业于中央大学物理系。
1945年起先后在复旦大学物理系、清华大学物理系和数学系任教。
1951年转到刚组建的中国科学院数学研究所,不久便赴苏联斯捷克洛夫数学研究所工作。
1953年回国。
1957年调入中国科学院计算技术研究所。
数值分析课程中的思政案例教学探究摘要:数值分析是高等数学必修核心课程,在高等数学课程中占有很重要的地位。
教师要深入学习课程的思想和思想要素,体现在课堂案例教学中,使学生接受道德教育和价值观教育。
关键词:数值分析;课程思政;案例教学;立德树人随着教育理念的不断深化,教育部明确提出了“提倡文化育人,加强思政教育”的教育指导。
这为“如何办好具有中国特色的社会主义大学、如何培养社会主义合格建设者和接班人”打开了一扇新的大门,给了教育工作者们一个全新的思考方向,引发了全国各高校的积极探索,掀起了一场“课堂改革”。
全国各大院校积极响应国家的教育号召,深化落实改革要求,将思想政治教育进一步的延伸,在高校各课程教学中融入思政教育,使学生在接受科学文化知识的同时,身心也能得到滋养,成长为合格的社会主义建设者。
一、课程思政教学内涵在教育部“关于现代大学生思想政治性质和思想政治课建设工作”会议中,习近平总书记强系统地指出,高校思政课程是思想政治建设的基本指导方针,并揭示了不同课程的思想政治要素。
思想政治教育涵盖高校各类知识教育课程的专业课和实践课,有效地拓展了当今思想政治教育的学习平台,实现了逐步从单一课程向全课程方向的转变。
“课程思政”不同于“思政课程”,它不是思想政治课的生搬硬套,而是要将思政元素“润物细无声”般地融入到各学科当中去。
“课程思政”是一个宏观概念,思政点的巧妙融入使课堂不再单纯地传播科学文化知识,它需要教师立足于教学内容本身,从中挖掘思政点,活跃课堂气氛,激发学生学习和探索的积极性,使学生在提高“智育”的同时,“德育”也能得到潜移默化的发展,真正实现专业课教育与政治理论课的同向同行。
二、数值分析课程中的思政元素《数值分析》课程是理工科许多专业开设的基础课,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。
该课程的研究结果既能直接应用于一些工程实际问题,也是学习偏微分方程数值解法等后续课程和从事专业技术工作必需的基础。
《数值分析》课程教学改革探析结合高等学校21世纪人才的培养目标,根据本校的特点及多年的教学经验,对《数值分析》课程的教学改革进行了探讨,分别从教学思想和教学模式、教学内容、教学方法与手段、实践教学与考核方法等方面进行了论述。
建立了“问题驱动式”的教学思想,实施了以“案例为主线,实验为指导,融知识传授与能力培养于一体”的教学模式,并针对《数值分析》涉及面广的特点,设计了分层次、分专业、分模块的立体结构式教学。
计算机教学数值分析课程教学改革一、引言“数值分析”作为计算数学的一个主要分支,是研究如何利用计算工具(如计算器、计算机等)求出数学问题的数值解(如数据、表格、图形等)的学问,是科学与工程计算的基础。
“数值分析”既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的、实用性和实践性很强的数学课程。
通过本课程的学习,能使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据实际问题建立数学模型,然后提出相应的数值计算方法,并能编写程序在计算机上算出结果。
这既能为学生在理论学习方面以及在计算机上解决实际问题等方面打下良好的基础,同时又能培养学生的逻辑思维能力和提高解决实际问题的能力。
在我校,《数值分析》课程是信息与计算科学专业的专业基础课,是数学与应用数学、计算机科学技术等本科专业的专业必修课,是工程力学、交通运输工程、通信工程等本科专业的专业必修课或选修课,也是控制科学与工程、机械工程、信息与通信工程、矿业工程、土木工程等学科的硕士研究生的公共基础课。
课程涉及面广,实用性强,为此,研究本课程的教学改革具有重要的意义。
著名数学家李大潜院士倡导“问题驱动的应用数学”,我们以此作为指导思想,进行了数值分析课程的教学改革。
利用实际问题引出所要讨论的计算方法,并且对计算方法进行理论和实践两方面的研究,最后解决实际问题。
《数值分析》课程教学改革研究摘要:基于《数值分析》课程的主要特点,结合教学实际,列举了几类行之有效的教学改革方法。
实践证明,这些方法对提高学生学习兴趣、培养创新能力,有一定的指导作用。
关键词:数值分析;能力;方法一、前言《数值分析》是高等学校信息与计算科学专业数学课程的专业必选课之一,地位十分重要。
数值计算是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法。
其内容包括误差知识、一元非线性方程的解法、线性方程组的解法、插值数值逼近、数值微积分等。
通过本课程的学习,使学生能掌握一些最基本、最常用的数值计算方法,同时有助于自身数学能力的提高,及应用计算机解决实际问题的能力,为以后的学习工作奠定坚实的基础。
课程致力于培养具备较好数学基础,在计算机算法及程序设计方面具有较完备专业素质的复合型人才。
因此教学改革对提高课堂教学效果、启迪学生的创新思维、锤炼学生分析和解决问题的能力,具有重要的意义。
下面就笔者三年来在信息与计算科学专业的教学经验与心得,结合学生的反馈与建议,论述该门课程的特点,并提出几种实际效果较好的教学改革方法。
二、课程现状与特点2.目前的数值分析教学实践中,教师基本能运用恰当的教学方式、方法,对教学内容进行推陈出新。
教学内容与专业培养目标基本契合。
但是在教学模式、方法、课程内容和考核方式方面,因课堂教学时间的局限,依然存在较大的改进空间;教材方面,由于数值分析课程的教与学难度很大,学生理解掌握基本知识较为困难,这对教材建设提出了更高的要求等等。
基于此,我们认为进行课程的教学方法和教学手段的改革十分必要。
3.课程要求较高。
数值分析是集合数学理论、计算机编程于一体的一门课程,要求学生具备较为坚实的数学理论基础和较强的计算机编程能力。
大部分内容都涉及到数学分析和高等代数内容的深刻理解,所以对学生的数学基础有一定的要求。
此外,还需要学生熟练掌握一门软件,比如Matlab、Mathematica或者c语言。
计算机专业中“数值分析”课程的教学改革与实践摘要:本文基于数值分析的特点,从计算机专业教学的角度出发,介绍了“数值分析”课程传统教学中存在的常见问题,并从问题出发,分析了问题存在的原因,针对性地探讨了“数值分析”课程教学手段、教学方法、考核方式等的改革思路,最后通过教学实践证明了教学方法的有效性。
关键词:数值分析教学方法教学改革科学计算是以实际应用为牵引,以计算机为依托而快速发展的一门交叉学科,已经在科学研究与科学工程等方面发挥了重要的作用。
目前,数值计算已成为理论分析和科学实验之外第三种科学研究的方法与手段[1]。
科学计算由于具有研究成本低、周期短、风险少等特点,因而受到广泛的重视。
而计算能力是计算工具和计算方法的效率的乘积,因此除了改善硬件计算环境之外,计算方法的研究在我国越来越被广泛重视。
数值分析课程正是培养从事科学计算能力的一门重要的主干基础课程,由于历史的原因,这门课程有时也叫《计算方法》,它不仅内容丰富、研究方法深刻、有着自身的理论体系,而且与计算机密切相关,是一门理论性与实践性很强的课程。
数值分析是偏重于应用的一门课程,其中的理论和方法不仅在其他专业课程中常常运用,而且在解决实际问题中也常常用到,数值分析的基础是数学分析、线性代数、微分方程等数学理论,这些理论都为普通工科高等数学教育所覆盖[2]。
该课程的理论与方法除了在许多专业课程中常常运用之外,也是解决科学和工程实际问题的重要手段。
目前,作为介绍科学计算的基础理论与基本方法的课程,数值分析已成为计算机专业学生的重要课程。
如何进行教学改革,进一步提高数值分析课程的教学质量,增强学生的科学计算意识、提高他们解决实际问题的能力,是“数值分析”课程改革的一个重要课题。
1 数值分析课程的教学特点传统的“数值分析”课程教学方式是以教师为中心,要求学生做大量的练习,很少联系现实世界中的问题,这造成很多同学认为虽然它是有用的,但是比较抽象难学,理论性太强,不知道如何将所学知识应用到现实社会中。
《数值分析》课程设计实践教学改革的研究作者:袁海燕来源:《读写算》2013年第19期摘要:本文结合多年的教学经验和学生的实际情况,针对《数值分析》课程设计教学过程中出现的问题,进行尝试和探索,总结了改革经验。
关键词:课程设计实践教学课程考核《数值分析》是信息与计算科学专业的一门必修的专业基础课。
这门课主要解决各类数学问题的数值计算,是研究适合于计算机使用的数值计算方法。
这门课内容丰富、研究方法深刻、有自身理论体系,既有纯数学的抽象性与严密科学性的特点,又有应用的广泛性与实际生产生活高度结合的特点,是一门与计算机使用密切结合的课程。
《数值分析》课程设计教学时间往往只有一周,在这一周的时间内要求学生掌握大量的解决各类数学问题的算法程序,会做到实际应用,有相当的难度,所以尝试寻找改善教学的方法。
1教学中存在的问题1.1时间短,涉及的算法多,学生接受较差《数值分析》的内容包括方程(组)、函数逼近、计算积分、常微分方程的数值解等部分。
涉及到微积分、线性代数、微分方程等多个高等数学的分支。
对于每个知识点都有其相应的数值解法,对于学生来说,这些知识以前学过但印象不深,要学习其数值算法必须熟练相关的数学知识。
时间短,内容多,学生接受的很差。
1.2缺乏合适的教材数值分析是一门与计算机使用密切结合的实用性很强的课程。
现在使用的教材虽说在编写的时候已考虑到这个特点,不要求学生在理论上花费过多地时间,并提供了算法相应的框图,希望学生自己通过编程实现。
但这些算法形式单一,内容与实际应用脱离,以至于学生无法全面理解和运用算法。
1.3考核中的问题在考试中,传统的笔试方法同样不能真正反映出这门课的特点。
如果在机房考试,会减少一天学习时间,不能完成教学任务,如果在试卷上考试,虽然允许使用计算器,但计算器的计算与数值分析算法在计算机上的实现是两码事。
无法调动学生的学习积极性。
其实通过本课程的学习,学生只需要掌握相应的算法就行。
而考试则对计算过程、计算结果更感兴趣。
㊀[收稿日期]2020G04G26;㊀[修改日期]2020G06G18㊀[基金项目]安徽省重大教学改革研究项目(2018j y x m 0663);安徽省重大线上教学改革研究项目(2020z d x s j g077);安徽建筑大学教学研究项目(2019j y 12,2019j y 02,2017j y 26,2020k j15)㊀[作者简介]闵杰(1978-),男,博士,教授,从事大学数学类课程教学及运筹优化应用研究.E m a i l :m i n j i e @a h j z u .e d u .c n 第36卷第6期大㊀学㊀数㊀学V o l .36,ɴ.62020年12月C O L L E G E MA T H E MA T I C S D e c .2020«数值分析»课程思政教学改革研究与实践闵㊀杰,㊀李㊀璐,㊀欧㊀剑(安徽建筑大学数理学院,合肥230601)㊀㊀[摘㊀要]从课程思政的本源出发,通过多个层次和角度深度挖掘课程思政元素,提出«数值分析»课程思政建设的七个方面内容,并分别给出了具体的课程思政的教学案例,为«数值分析»课程思政教学提供了素材,也试图为大学其他数学类课程思政教学提供借鉴.[关键词]大学数学类课程;数值分析;课程思政[中图分类号]O 13㊀㊀[文献标识码]C ㊀㊀[文章编号]1672G1454(2020)06G0040G061㊀引㊀㊀言习近平总书记强调,要用好课堂教学这个主渠道,思想政治理论课要坚持在改进中加强,提升思想政治教育亲和力和针对性,满足学生成长发展需求和期待,其他各门课都要守好一段渠㊁种好责任田,使各类课程与思想政治理论课同向同行,形成协同效应.课程思政就是以构建全员㊁全程㊁全课程育人格局的形式,深入挖掘各类课程的思政元素和丰富内涵,着力将思想政治教育贯穿于课堂教学的主渠道中,实现立德树人.目前不少学者和教师已将思想政治教育融入到大学数学课程自身的各环节和各方面,以隐性思政的功能,与显性思政一起产生合力[1-6].例如,秦厚荣等提出,要丰富数学文化与课程思政的 触点 ,推动大学数学教学与课程思政的融合发展[1].刘淑芹认为要充分挖掘蕴含在专业知识中的德育元素,实现通识课与德育的有机结合[2].目前课程思政教学没有统一的模板,如何做好顶层设计,在课程㊁专业㊁学校三个层面,从教学目标㊁教学内容和教学策略等方面制定试点方案,让课程思政理念深入人心㊁形成可复制㊁可推广的方案是亟需解决的问题.课程的思想政治教育功能还需要进一步推进,大学数学课程中的思政元素未得到充分挖掘和提取,也未推广应用于大学数学教学实践中,因此开展数学类课程思政研究具有重要的现实意义.本文在思想政治教育原则指引下对«数值分析»课程的思政内容在 深 字上做足功夫,基于课程论视角,结合不同学段㊁专业的学习对象,科学设计了24个课程思政案例,丰富了课程的自身内涵,同时也赋予思想政治教育以鲜活的生命力.在课程教学中,通过启发式㊁讨论式等方法,营造积极学习的氛围,激发学生的学习兴趣,提高课堂学习效率,有效开展课程思政教学.在课程思政实施过程中,笔者根据问卷调查和分组统计分析法,评价课程思政教学改革效果,从而对思政教学的实施点,与课程教学的结合度是否合适进行反思,不断改进其中的思想政治教育的要点设计.2㊀«数值分析»课程特点分析高校«数值分析»课程具体研究各种数学问题求解的数值计算方法,是一门教学内容丰富㊁研究方法深入㊁自成理论体系的课程,它一方面具有传统数学课程的高度抽象性与严密科学性,另一方面又具有应用的广泛性与技术性,是培养学生思维能力㊁计算能力㊁应用能力和创新能力的重要载体[7-10].此门课程的主要内容包括插值方法㊁曲线拟合法㊁数值积分法㊁数值微分法㊁解线性方程组的直接方法㊁解线性方程组的间接法㊁非线性方程求根法㊁矩阵特征值求解法㊁常微分方程的数值解法等,各章节内容既有一定的相对独立性又有一定的循序渐进性.«数值分析»具有开展课程思政教育改革的条件和优势,一方面是因为该课程本身重要,属于大学期间重要的数学基础课,是数学本科专业核心课程,也是理工科类专业研究生公共基础课程,课程教学对象人数较多,所以在此课程中展开思政教育并把课程思政做好就更有现实意义.另一方面,«数值分析»课程是解决数学实际问题的一门课程,与实际联系较为密切,相对于理论类数学课程而言更 接地气 ,可以更好地结合实际中的人和事进行思政教育.笔者从事«数值分析»课程教学多年,一直努力尝试教学改革研究,本文试图在«数值分析»课程思政教学改革方面进行一些探索.3㊀«数值分析»课程思政的探索与实践在«数值分析»课程教学中,充分利用本课程开展思政教育的条件和优势,从课程思政的本源出发,深入挖掘㊁系统梳理和精准厘定«数值分析»课程中蕴含的思政教育资源及其核心内容,将爱国主义教育元素,马克思主义哲学思想,中国传统文化教育,做人做事道理和人生价值追求,科学研究和创新创造精神,数学家励志奋斗故事和美学教育等,自然融入到课堂教学中,努力实现润物细无声,发挥 小课堂 的立德树人 的 大作为 .3.1㊀融入爱国主义教育元素习近平总书记十分重视爱国主义教育,曾在不同场合多次强调让广大青少年培养爱国之情㊁砥砺强国之志㊁实践报国之行.在讲授«数值分析»课程时可以挖掘知识点本身的故事进行爱国主义教育,比如讲解高斯消元法时,强调我国早在公元前250年就掌握了求解方程组的消去法,在讲解避免误差危害的原则时,重点介绍减少运算次数以减少计算误差的典型案例 秦九韶算法,介绍秦九韶是我国南宋时期著名的数学家,其代表作«数书九章»标志着世界数学在中世纪达到的最高水平,以此激发学生爱国主义自豪感.但同时强调,进入近代以来我国数学逐渐处于落后状态,«数值分析»课程中很多算法都是以近现代的外国科学家命名的事实就足以说明这一点,以此激励学生奋发学习,攀登数学高峰,努力赶超外国先进科学与技术.考虑到教育的时效性,可以将相关知识点与现实热点问题结合起来讲解,与之同时进行爱国主义教育.比如在讲解插值法时,结合2020年突发的新冠肺炎疫情,向学生介绍可以利用每天的相关数据通过插值的方法来预测疫情的发展趋势,培养学生的科学意识,做到不信谣不传谣.据此可以展开讲述抗疫故事,疫情发生以来,在党的集中统一领导下,全国一盘棋战疫情,取得重大疫情防控成果,借此讲清楚中国特色社会主义为什么 好 .在讲授插值法与函数逼近时,指出曲线曲面造型方法已成功用于3D 打印技术,支撑中国3D 打印产业确立世界领先地位.在讲解样条插值时向学生介绍其产生背景,其主要用于飞机的机翼形线设计或者船体放样,借此引申指出我国 嫦娥四号 探测器成功实施人类航天器首次着陆月球背面探测, 蛟龙号 载人潜水器已经在大海深处创造了下潜7062米的中国载人深潜纪录,毛泽东主席诗词中 可上九天揽月,可下五洋捉鳖 的壮丽梦想,在一代代中国人民的实干中都得以实现.正如习近平总书记提出,中国人民是具有伟大梦想精神的人民,只要13亿多中国人民始终发扬这种伟大梦想精神,我们就一定能够实现中华民族伟大复兴.3.2㊀融入马克思主义哲学思想习近平总书记强调,要教育大学生学会运用马克思主义立场观点方法观察世界㊁分析世界,让学生深刻感悟马克思主义真理力量,为学生成长成才打下科学思想基础.马克思主义哲学认为,事事有矛盾,时时有矛盾,要敢于承认矛盾揭露矛盾,还要善于分析矛盾㊁解决矛盾,«数值分析»课程对此就进行了很好的诠释.不同于源于 精确 的传统数学类课程,数值分析是一门产自 近似 的现代数学课程,与实际联系的更加紧密,其特点是承认各种计算误差存在,但同时又要控制误差,这与马克思主义矛盾论是不14第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀闵杰,等:«数值分析»课程思政教学改革研究与实践24大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第36卷谋而合的.通过课程教学教育学生做事要敢于承认各种矛盾㊁不回避问题,但同时我们一定要能化解矛盾㊁解决问题.再比如讲解稳定算法与不稳定算法区别时,一个算法如果输入数据有误差,而计算过程中误差不增长,则称此算法是数值稳定的,否则称此算法为不稳定的.一些算法由于开始一个微小的误差,有可能随着计算步骤的深入造成巨大的误差,类似于气象学中的 蝴蝶效应 .I n=1eʏ10x n e x d x, n=0,1,2, 的算法I n=1-n I n-1具体说明了初始误差带来的危害,因为会使得本应是正的积分值逐渐变成了负值,产生了质的变化,这与马克思主义哲学中的 量变与质变 的道理是一致的.告诫学生 勿以善小而不为,勿以恶小而为之 ,如果人生的第一粒扣子没有扣好,不注意自己的一言一行就有可能以后酿成大错,在不经意间对学生进行了思想政治教育.在«数值分析»课程教学中还可以强调一般规律和特殊现象之间的辩证关系.比如插值节点个数越多误差一般会越小,但是龙格实验却打破了这一常规性认识,有时候节点越多可能误差也会越大.再比如,牛顿-柯特斯公式中,一般会认为节点个数n的值越大精度就会越高,但是当nȡ8时积分公式系数开始出现负值,公式就变得不稳定了.这些现象就说明一般规律中也包含着特殊现象,不能迷恋于想当然的结论和一般性的规律,偶然也会有一些区别于常识和规律的特殊结论,这就要靠自己多想多试.3.3㊀融入中国传统文化教育习近平总书记强调,中国传统文化博大精深,学习和掌握其中的各种思想精华,对树立正确的世界观㊁人生观㊁价值观很有益处.在«数值分析»课程教学中可以适时融入中国传统文化,用文学的语言将数学的原理解说得有情㊁有理㊁有趣,消除了数学的枯燥乏味刻板严肃形象,充分激发学生学习兴趣.学生在不知不觉中学习了数学知识,同时也加强了中国传统文化教育.例如,北宋大文学家苏轼所写 横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中 ,描绘了庐山随着观察者角度的变化,会呈现出不同的风景.在介绍利用基函数的方法构造H e r m i t e插值时可以适时地引出这首古诗,因为在构造H e r m i t e插值函数时要 横着 写出需满足的条件,但是却要 竖着 用这些条件,利用这首古诗加深同学对基函数方法的理解.在讲解复合求积公式时,强调它改善了牛顿-柯特斯公式不稳定的缺点,更重要的是其积分误差可以随着积分区间分割次数的不断增加而实现任意小,这就像唐代大诗人李白所描绘的 孤帆远影碧空尽 ,生动体现了一个误差趋于0的动态意境,给学生描绘了一个美丽的场景.在讲授微分方程数值求解方法时,为强调数值分析方法的重要性,须指出大部分微分方程虽然其解存在但是理论上无法求出,这个解就像唐朝诗人贾岛诗词 只在此山中,云深不知处 中所描绘的 师傅 一样,能确定 师傅 肯定在山中,但不知道具体位置,它给我们想象,也让我们无奈,这样就自然地引出了要讲授的微分方程数值求解方法.还如,在课程学习过程中发现可以利用数值分析的知识解决一些以前无法解决的问题,比如ʏ10e x2d x的计算,这时可以通过唐朝诗人杜甫的古诗词 会当凌绝顶,一览众山小 来说明人只有不停的攀登,视野才能不断开阔,能力才能不断提升,以此激励学生努力奋斗.在讲利用差商表来计算差商时,指出精华部分是最上面一层差商值,因为牛顿插值公式里只用到上面这一层,但是下面其他层的差商能不能就不计算了呢?此时可以通过引入春秋时期老子的名句 九层之台,起于累土 来说明不能这么做,因为下层的差商是计算上层差商的基础.这就启示同学们不要好高骛远,不能只盯着上面,要一步一步来才能达到理想的高度.3.4㊀融入做人做事道理和人生价值追求数值分析的特点是用近似解代替真实解,但是只要算法设计科学,那么一直计算下去误差就可以任意小,也就是说近似值可以无限接近真实值.此时告诉同学们遇到这样或者那样的困难就相当于现实与梦想之间的 误差 ,只要坚持努力下去就可以无限接近梦想,从此概念出发可以将人生道理讲的娓娓道来㊁引人入胜.通过插值与拟合关系的讲解,让学生明白人生不一定处处 插值 ,因为要通过的许多节点本来就可能和理想有差距,没有必要强求全部过点,有时候采用退一步的 拟合 效果反而更好些,这就是所谓的 退一步海阔天空 吧!在讲解数值微分公式fᶄ(x0)ʈf(x0+h)-f(x0)h时,其中的h 通过直观的理解应该是越小越好,但是通过数值实验知道当h 小到一定程度时反而误差会变大,也就是说两个节点之间的距离不是越小越好,这就好像是人与人之间的相处,保持适当的距离㊁给对方相对独立的空间,可能会使得友谊更加长久,正所谓 君子之交淡如水 ,或者说 距离产生美 .在讲解避免误差危害的若干原则时,其中 避免大数吃小数 这个原则说明了一个小数尽量避免和一个大数在一起运算,否则最后的计算效果会令人不满意,小数的作用会完全没有发挥.这在实际中就告诉我们不要拿自己的短处和别人的长处比较,做人做事要学会扬长避短,这样才能在竞争中胜出,否则将会被湮没.在讲解数值积分公式的代数精度概念时,指出其背景是希望积分公式能对 尽可能多 的函数准确地成立,通过选取代数多项式作为试验函数,如果和真实积分值相等的多项式函数越多,说明此数值积分公式的精度就越高,故称为代数精度.联系当前新冠肺炎疫苗的研制,在疫苗正式投入使用前需要临床试验来保证有效性和安全性,临床试验就是希望对更多的人是有效和安全的,所以参与试验的志愿者人数非常重要,许多普通的群众踊跃报名参加试验,他们就像代数精度概念中的多项式函数一样,此时教育学生向新冠疫苗试验志愿者学习,学习他们在这个特殊时刻敢于冒险探路,甘于奉献大爱的精神.3.5㊀融入科学研究和创新创造精神«数值分析»是一门与科学进步紧密相连的课程,在教学中要积极融入科学研究和创新创造精神.如讲授牛顿插值时要指出拉格朗日不具有承袭性这个缺点,在讲H e r m i t e 插值时,要指出拉格朗日和牛顿插值对于函数近似还存在的不足:近似程度还不够,在讲分段插值时要指出前面三种插值共同的缺点:容易存在不稳定性,在讲三次样条插值时指出分段三次H e r m i t e 插值的缺点:要用到被插函数的导数值,然后再讲三次样条插值.通过这样一个循序渐进的过程来向学生阐释什么叫科学研究无止境,从而培养学生的永不满足的科学精神.提出一些至今还未解决的问题进行课程设计,比如松弛迭代法中松弛因子w 的最优选择问题,解非线性方程的牛顿法的改进等,可以激发学生的学习兴趣,培养学生的探索创新精神.在讲解三次样条插值函数时,发现已有的4n -2个条件不能满足4n 个未知参数的求解,这时提醒学生缺少条件就要创造条件,由于4n -2个条件中大多涉及到插值节点的内点,而边界点的条件很少用到,可以在两个端点处假设一些边界条件,这样问题迎刃而解,提示同学们在以后的学习工作生活中要学会创造条件㊁解决问题.正如习近平总书记强调指出,广大青年要保持初生牛犊不怕虎的劲头,不懂就学,不会就练,没有条件就努力创造条件.在讲解样条插值函数构造时,可以假设样条函数在节点处的导数值已知(其实未知),首先利用三次H e r m i t e 插值把样条插值函数的表达式写出来,但是此时含有未知的导数值,然后利用二阶导函数连续将这些值求出后代入表达式即可.这种思想就是 借鸡下蛋 ,通过形象的比喻学生更容易理解三次样条插值函数的构造过程,同时对其以后的学习㊁工作和创业又提供了一种思路.3.6㊀融入数学家励志奋斗故事«数值分析»课程中很多公式㊁定理或者算法是以数学家的名字命名的,可以适时用数学家的故事来激励人㊁感染人,起到教育人的效果.在讲授高斯积分时,可以提起同学们在少年时代听过的高斯计算1+2+ +100 故事,借此拉近了学生与伟大数学家之间的距离,然后对有 数学王子 之称的高斯进行简单介绍.高斯不仅仅是数学大师,而且是在天文学㊁物理学㊁地磁学等重要领域做出巨大贡献的科学巨人.高斯的令人崇敬,不仅仅在于他是个天才,更在于他一生的刻苦勤奋,在于他做到了很少有人能够做到的将理论㊁应用和发明完美地结合,强调这一点可以对学生进行很好的教育.在讲授欧拉公式时,可以介绍欧拉先生被誉为 无与伦比的算法学家 ㊁ 应用数学大师 等,欧拉所研究的哥尼斯堡七桥问题可以引起同学们的兴趣,但重点向同学们介绍欧拉先生的励志故事,他把自己的双目献给了数学,把自己的一生献给了数学,是有史以来最多产的伟大数学家,永远值得后人敬仰和学习.牛顿先生的名字多次出现在本课程当中,比如牛顿插值公式㊁牛顿-柯特斯公式和牛顿法求解非线性方程等,牛顿是一位天才但是更多靠的是勤奋,特别是他当年躲避疫情期间创造性的开展科研工作,很多伟大的成果就是在那个时期做出来的,这给当下疫情防控期间待在家里的同学们树立了一个很好的榜样.34第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀闵杰,等:«数值分析»课程思政教学改革研究与实践㊀㊀3.7㊀融入美学教育古今中外许多著名的数学家都认为数学不仅与美学密切相关,而且数学中充满着美的因素.数学中的美可以用 美轮美奂 来形容,一些美的数学符号㊁美的数学公式㊁美的数学理论㊁美的几何曲线曲面㊁美的证明过程以及美的分析方法等,都会给人们带来愉悦的享受.在讲授«数值分析»课程时要把相关内容中体现的数学美展示给学生,传播给学生.比如拉格朗日插值多项式函数体现了数学的三种美:简单美㊁对称美㊁唯一美.再如从分段线性插值㊁分段二次函数插值,到分段三次H e r m i t e 插值,再到三次样条插值,所构造的插值函数曲线逐渐变得更柔和㊁更光滑,体现了人们孜孜不倦追求数学美的态度,启示学生通过自己的不断努力来发现美㊁创造美.4㊀实践效果㊀经过两年的教学实践,笔者对«数值分析»课程思政教学效果进行了调查分析,参与调查的是来自于安徽建筑大学统计学㊁机械本科专业和全校理工类研究生专业的约300名学生,绝大多数学生认为在«数值分析»课程中融入课程思政元素,能够调动上课积极性㊁提高学习效率,同时有助于他们形成正确的人生观㊁价值观,起到良好的思想政治教育效果,具体分析结果见图1.图1㊀学生在课程学习中对思政教育内容体会程度调查统计图图2㊀ 对照组 和 实践组 期末考试成绩比较图对学生进行教学分组,建立 实践组 和 对照组 ,在课堂中对 实践组 进行课程思政的融入教学,对 对照组 只实施课程理论教学,通过两组在期末考试中的成绩分析,比较两组学生在不同教学模式下的教学效果,具体结果见图2.从考试成绩分布图可以看出, 实践组 学生在成绩分布上明显优于 对照组 .44大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第36卷5㊀结㊀㊀论单纯的数学教学比较枯燥,需要一定的 添加剂 才能 保鲜 ,而思想政治教育就是最好的教学添加材料,可以加深学生对数学思想与方法的理解.纯粹思想政治教育要进一步提高效果,需要一定的载体才能实现,大学数学课程教育中隐藏的思想政治教育内容更能刺激学生的兴奋点和关注点,找准学生思想的共鸣点,起到很好的思想政治教育效果.因此 课程思政 是对传统课程教学的一个有效创新,目的是挖掘非思政课程的思政元素,激发学生学习兴趣,努力实现价值塑造㊁能力培养㊁知识传授的有机结合.本文通过对«数值分析»课程中蕴含的思政教育元素进行深入挖掘,从多个角度深入分析了课程思政建设内容,并通过丰富的案例说明了如何将思想政治教育元素有效的融入课程教学中,在实践中也证明了«数值分析»课程思政教学改革确实能取得良好效果.致谢㊀非常感谢相关文献对本文的启发以及审稿专家提出的宝贵意见![参㊀考㊀文㊀献][1]㊀秦厚荣,徐海蓉.大学数学课程思政的 触点 和教学体系建设[J ].中国大学教学,2019(9):61-64.[2]㊀刘淑芹.高等数学中的课程思政案例[J ].教育教学论坛,2018(52):36-37.[3]㊀徐萍.卓越人才培养中高等数学 课程思政 的思考[J ].课程教育研究,2018(32):101.[4]㊀梅强.以点引线以线带面:高校两类全覆盖课程思政探索与实践[J ].中国大学教学,2018(9):20-22,59.[5]㊀刘鹤,石瑛,金祥雷.课程思政建设的理性内涵与实施路径[J ].中国大学教学,2019(3):59-62.[6]㊀高宁,张梦.对 课程思政 建设若干理论问题的 课程论 分析[J ].中国大学教学,2018(10):59-63.[7]㊀陈爱斌,张钊源.人工智能专业«数值分析»课程教学研究与探讨[J ].计算机教育,2019(10):71-73.[8]㊀刘三明.基于创新和应用能力的«数值分析»课程教学研究与实践[J ].大学教育,2016(2):130-131.[9]㊀龚佃选,彭亚绵,郑石秋.«数值分析»课程教学改革的实践与设想[J ].数学学习与研究,2012(19):52-54.[10]㊀闵杰,李义宝.高校«数值分析»课程组合式教学方法探索研究[J ].高教论坛,2010(6):72-74.R e s e a r c ha n dP r a c t i c e o nR e f o r mo f I d e o l o g i c a l a n dP o l i t i c a l E d u c a t i o n i nC o u r s e o fN u m e r i c a lA n a l ys i s M I NJ i e ,㊀L IL u ,㊀O UJ i a n(S c h o o l o fM a t h e m a t i c s&P h y s i c s ,A n h u i J i a n z h uU n i v e r s i t y,H e f e i 230601,C h i n a )A b s t r a c t :S t a r t i n g f r o mt h eo r i g i no f I d e o l o g i c a la n d p o l i t i c a l ,t h i s p a p e rd e e p l y d i g st h ei d e o l o g i c a la n d p o l i t i c a l e l e m e n t so ft h ec o u r s et h r o u g h m u l t i p l el e v e l sa n d a n g l e s ,p u t sf o r w a r ds e v e n a s p e c t so fI d e o l o g i c a la n d p o l i t i c a l c o n s t r u c t i o no fn u m e r i c a l a n a l y s i sc o u r s e ,a n d g i v e ss p e c i f i ct e a c h i n g c a s e so f I d e o l o gi c a la n d p o l i t i c a l c o u r s e s ,w h i c h p r o v i d e sm a t e r i a l s f o r i d e o l o g i c a l a n d p o l i t i c a l t e a c h i n g o f n u m e r i c a l a n a l ys i s c o u r s e ,a n d a l s o t r i e s t o p r o v i d e r e f e r e n c e f o r i d e o l o g i c a l a n d p o l i t i c a l t e a c h i n g o f o t h e rm a t h e m a t i c s c o u r s e s i nu n i v e r s i t i e s .K e y w o r d s :m a t h e m a t i c s c o u r s e s i nu n i v e r s i t i e s ;n u m e r i c a l a n a l y s i s ;i d e o l o g i c a l a n d p o l i t i c a l e d u c a t i o n 54第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀闵杰,等:«数值分析»课程思政教学改革研究与实践。
课程思政在数据分析课程中实践数据分析课程是当今社会高度重视的一门课程,它涉及的领域广泛,包括统计学、计算机科学等多个学科。
在课程教学中,如何结合思政教育进行实践是非常重要的。
首先,在数据分析课程中,可以注重学生的思政教育,引导学生在学习过程中掌握正确的人生观、价值观和道德观。
教师可以通过教学,引导学生了解数据分析在社会中的作用,鼓励学生在将数据分析技能付诸实践的同时,注意职业道德和责任感,发扬实事求是、严谨认真的科学精神,强化对人民利益的忠诚、对真理的追求和对各种形式的破坏行为的坚决反对。
其次,在数据分析课程中,可以利用思政教育的手段,提高学生的综合素质和团队协作能力。
教师可以针对不同的数据分析项目,组织团队进行合作,让学生在项目中扮演不同的角色,比如起草方案、收集数据、撰写报告等。
通过合作,培养学生的独立思考能力、沟通能力、协调能力和领导能力,同时也提高了学生的专业能力和创新能力。
最后,在数据分析课程中,可以运用思政教育的方法,加强学生的实践能力和实践体验。
教师可以组织学生到实际场景中进行实践探究,鼓励学生积极参与社会工作和公益活动,通过实际操作来验证和巩固理论知识,让学生深刻体会到数据分析技术在实际应用中的重要性和价值。
综上所述,课程思政在数据分析课程中的实践是非常重要的。
教师应该注重学生的思想政治教育,引导学生在学术研究中将爱国主义、集体主义、社会主义实践三种主义与数据分析的技术结合起来,注重培养学生的职业道德修养,提高学生的思维能力、创新能力和实践能力,以培养一批具有高度职业道德和专业素质的高素质人才,为建设一个美好的未来奠定坚实的基础。
数值分析课程的教学改革研究与实践
刘春凤;何亚丽
【期刊名称】《河北联合大学学报(社会科学版)》
【年(卷),期】2006(006)003
【摘要】针对<数值分析>课程提出了教学内容与数学方法改革的设想,经过教学实践取得了较好的效果.
【总页数】2页(P118-119)
【作者】刘春凤;何亚丽
【作者单位】河北理工大学,理学院,河北,唐山,063009;河北理工大学,理学院,河北,唐山,063009
【正文语种】中文
【中图分类】G423.02
【相关文献】
1.《数值分析》课程教学改革的研究与实践 [J], 张智丰
2.我校硕士研究生《数值分析》课程教学改革研究与实践 [J], 汪达成
3.以应用为目标的数值分析课程教学改革研究与实践 [J], 陈剑
4.应用写作课程项目化教学改革研究与实践——基于课程教学改革的校本调查 [J], 陶磊
5.《数值分析》课程思政教学改革研究与实践 [J], 闵杰;李璐;欧剑
因版权原因,仅展示原文概要,查看原文内容请购买。
《数值分析》课程思政教学改革研究与实践
《数值分析》课程思政教学改革是大学数字学科发展历史上的重要抓手,旨在在和谐社会
背景下加强数字学科的理论思政内涵,有效提高师生素质。
经过多年的改革和实践,《数值分析》课程思政教学在学校取得了卓越的成绩。
首先,在课程思政教学的设置上,学校根据全国的思政教学要求,积极完善课程教材,重
点传授党史、现代政治、思想道德修养和法律知识等课程,保证学生能够接受良好的政治
思想观念。
其次,在讲授内容上,注重通过灵活多样的教学手段,引导学生能够健康地发
展其科学素养,能够从数值分析课程中学习到更精深的思政理论精神。
最后,在教师本身
的素质上,学校不断提升教师的思政教学能力,通过不断地进行专业培训及职业道德讲座,以增强教师思政教学礼仪意识。
以上是学校在《数值分析》课程思政教学改革的一些政策措施,学校在此基础上,以强大
的积极性和执行力,不断加强教学管理,推进课程思政教学的平稳发展,实现准确高效的
教育效果。
未来,学校将继续坚持以学生为中心,以思政教育为目标,践行创新发展,继续深化《数值分析》课程思政教学改革。