光敏电阻传感器特性及应用实验
- 格式:docx
- 大小:759.17 KB
- 文档页数:5
光敏传感器光电特性测量实验光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类。
外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。
几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的APD雪崩式光电二极管,半导体色敏传感器、光电闸流晶体管、光导摄像管、CCD图像传感器等,为光电传感器进一步的应用开创了新的一页。
本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性。
光敏传感器的基本特性包括:伏安特性、光照特性、时间响应、频率特性等。
掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。
【实验目的】了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。
仪器简介仪器由全封闭光通路、实验电路、待测光敏传感器(光敏电阻、光敏二极管、光敏三极管、硅光电池)、实验连接线等组成。
仪器安装在360×220×80(mm)实验箱内,仪器面板如下图按面板电路图指示插好线路,安装好待测光敏传感器就能进行测试实验了。
【实验原理】1.伏安特性光敏传感器在一定的入射照度下,器件所加电压与光电流之间的关系称为光敏器件的伏安特性。
光敏电阻的光敏特性研究实验报告光敏电阻光敏特性的研究一、实验设计方案1.1、实验目的1、了解光敏电阻的基本特性,测出它的光照特性曲线。
2、学习使用电脑实测。
3、学习使用DataStudio软件。
4、学习了解设计性实验的基本方法。
1.2、实验原理光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器,(如图1);入射光强,电射光弱,电阻增大。
光敏电敏感性与人眼对可见光μm的响应很接近,只要人光,都会引起它的阻值变化。
路时,通用白炽灯泡光线或控制光源,但本实验采用激通过两偏振片控制光照强度传感器测出。
图1 光敏结构图阻减小,入阻器对光的(0.4~0.76)眼可感受的设计光控电自然光线作光做光源,并由角速度1.2.1光敏电阻的光照特光电流随照度的变化而称为光照特性。
不同类型的光照特性不同,大多数光敏特性是非线性的。
某种光敏特性如图1所示。
利用光敏电阻的光照特一些材料的光吸收系数。
图2 某光敏电阻的光照特性性改变的规律光敏电阻的电阻的光照电阻的光照性可以测出1.2.2光敏电阻特性图3为某光敏电阻的的关系,利用光敏电阻的光敏图3 某光敏电阻的的阻值与光强关系阻值与光强特性,可以分别模拟设计一个简单的光控自动报警实验与一个光控自动照明实验。
光敏电阻的电阻与光强间关系曲线的线性关系,不可以用在线性的光感测量中. 1.3.2选用仪器列表仪器名称型号主要参数用途750接口 CI7650 阻抗最大的有效输入电压范围±10 V 数据采集处理计算机和DataStudio 电压传感器光敏电阻取样电阻激光器、偏振片 CI6874 CI6503 ——电压范围:±10 VAC/DC ——1000Ω。
数据采集平台、数据处理数据采集——作取样电阻提供光源 CdS ——转动传感器、电源导线等二、实验内容及具体步骤:2.1、测绘光敏电阻的光照特性曲线。
(1)按右图连接好电路,电压传感器连接到750接口。
光敏电阻特性研究实验报告光敏电阻是一种能够根据光照强度改变电阻值的元件,它在光敏元件中具有重要的应用价值。
本实验旨在研究光敏电阻的特性,通过实验数据的采集和分析,探讨光敏电阻在不同光照条件下的电阻变化规律,为光敏电阻在实际应用中的选型和设计提供参考依据。
实验一,光照强度对光敏电阻的影响。
在实验室条件下,我们利用可调光源和万用表进行了一系列实验。
首先,我们将光敏电阻置于黑暗环境中,记录下此时的电阻值;随后,逐渐增加光源的亮度,每隔一定时间记录光敏电阻的电阻值。
实验结果表明,光照强度与光敏电阻的电阻值呈现出负相关的关系,即光照强度越大,光敏电阻的电阻值越小。
这一结果与光敏电阻的基本特性相符,也为后续实验提供了重要的数据支撑。
实验二,光敏电阻的响应速度。
为了研究光敏电阻的响应速度,我们设计了一组实验。
在实验中,我们利用光敏电阻和示波器搭建了一个简单的实验电路,通过改变光源的亮度,观察光敏电阻电阻值的变化情况。
实验结果显示,光敏电阻的响应速度较快,当光源亮度发生变化时,光敏电阻的电阻值能够迅速做出相应调整。
这一特性使得光敏电阻在光控自动调节系统中具有广泛的应用前景。
实验三,光敏电阻的温度特性。
在实验室条件下,我们对光敏电阻的温度特性进行了研究。
通过改变环境温度,记录光敏电阻的电阻值,得出了光敏电阻在不同温度下的电阻变化规律。
实验结果表明,光敏电阻的电阻值随着温度的升高而减小,这一特性需要在实际应用中进行合理的温度补偿,以确保系统的稳定性和可靠性。
结论。
通过本次实验,我们深入研究了光敏电阻的特性,并取得了一系列有意义的实验数据。
光敏电阻在光照强度、响应速度和温度特性等方面表现出了一系列重要的特点,这些特性为光敏电阻在光控自动调节系统、光电传感器等领域的应用提供了重要的理论依据。
同时,我们也发现了一些需要进一步深入研究的问题,比如光敏电阻的光谱特性、长期稳定性等方面的研究仍有待深入。
希望通过本次实验,能够为光敏电阻的应用和研究提供一定的参考价值,推动光敏电阻领域的进一步发展和应用。
一、实验原理1.1光敏传感器简介光敏传感器外形及各部分特点功能如图1.1所示:图1.1 光敏传感器构造1.2光敏传感器工作原理结合图1.1所示的光敏传感器,其电路中用到了光敏传感器电路、信号放大电路、单片机系统、状态显示系统构成。
其基本工作原理:经过信号放大电路,光敏传感器电路将感受到光程度以高低电平形式输出至单片机系统, 由状态显示系统进行显示。
光敏传感器工作框图如图1.2:图1.2 光敏传感器工作流程 二、光敏传感器硬件电路图电路中,光敏传感器电路如图2.1所示,其引脚连接图如图2.2所示:光敏传感器电路 信号放大电路单片机系统状态显示系统图2.1 光敏传感器硬件图1图2.2 光敏传感器硬件引脚图三、实验过程记录3.1 光敏传感器验证过程1、烧好ZIGBEE和智能网关程序。
2、将光敏传感器接到传感器A端口。
可以在图2.2中找到传感器A端口的位置。
3、根据实际需要及硬件连接原理,连接好外围硬件电路。
4、将仿真器USB连接入PC 机,插好电源,并打开开发实验箱上的电源开关和启动按钮,跳到网关显示界面,然后点击功能键进入。
5、结合网关以及Keil μVision4仿真软件对光敏传感器的主程序进行编译运行及仿真。
6、程序运行无误后,设置hex输出,将文件输出至“OBJ”文件夹下。
7、配置好J-Link、烧写程序,针对不同光照强度观察结果。
3.2 主要程序整个数据位其实一共是10个字节,除去2个字节的头和2个字节的校验,所以一共要采集的是数据其实有6个字节。
sensor_get_data(senser_type,&sensordata[2]) ;是采集函数,它首先保留了两个字节作头。
然后调用u8 sensor_get_data(u8 type,u8* data1)函数。
代码如下:u8 sensor_get_data(u8 type,u8* data1){u8* data = &data1[1];u8 no_sensor = 1; //有无传感器判断标志*data1 = type; //传感器类型//************ 传感器采集数据************//switch(type){case SENSOR_LIGHT5537: //判断光敏传感器GetSensorData(data); //采集数据break;default:no_sensor = 0;break;}return no_sensor;}四、实验结果把光敏传感器放置黑暗中,然后改变光照,显示屏上显示的光照强度会根据刚找强度的变化而变化,实验较为成功。
课程名称:大学物理实验(一)实验名称:光敏电阻特性研究二、实验原理1.光敏电阻:基于内光电效应的一种光传感器探头,用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)图1 光敏电阻外观图2 光敏电阻符号图3 光敏电阻光照特性2.光敏电阻的结构和基本特性:光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光(可见光)的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
在黑暗条件下,它的阻值(暗阻)可达1~10 M欧,在强光条件(100 LX流明)下,它阻值(亮阻)仅有几百至数千欧。
3.光敏电阻的原理:图4 无光照时的光敏电阻原理示意图图5 有光照时的光敏电阻原理示意图光敏电阻是一种能够感知光的电子元件,其原理在于光照射到光敏电阻表面时,会激发其中的电子发生跃迁,导致电阻值发生变化。
具体来说,光敏电阻中含有一种半导体材料的物质作为感光元件如硒化铋、硫化镉等,当光线照射到这种材料上时,会让一些电子从价带跃迁到导带,使得电子数量增加,从而导致电阻值降低。
导体材料在没有光照射时,其中的电子处于价带中,不能自由移动。
因此,当光线强度增加时,电阻值就会相应地减小;反之,当光线强度减小或消失时,电阻值则会增大。
4.光敏电阻的伏安特性:光敏电阻在光强一定的情况下(偏振片角度θ不变)时,电阻是一个定值电阻。
根据R = U/I,可得到光强不变时电阻是一条直线,它的斜率就是电阻的阻值。
图6 光敏电阻伏安特性表5.光敏电阻光照特性:光敏电阻又称光导管,在特定波长的光照射下,其阻值会迅速减小。
原因:光照后产生的载流子都参与导电,从而使光敏电阻的阻值迅速下降(百兆欧到百欧)。
6.光敏电阻其他特性参数:1)暗电流、暗电阻:在一定的电压下,没有光照时,流过的电流称为暗电流。
外加电压与暗电流之比称为暗电阻。
2)灵敏度:灵敏度是指暗电阻与受光照射时的亮电阻的相对变化值。
3)光谱响应:是指光敏电阻在不同波长的光照下的灵敏度。
一、实验目的1. 了解光敏元件的基本工作原理和特性。
2. 掌握光敏元件在不同光照条件下的电阻变化规律。
3. 学习光敏元件在电路中的应用。
二、实验原理光敏元件是一种将光信号转换为电信号的半导体器件。
它利用光电效应,使半导体材料在光照条件下电阻值发生变化。
光敏元件的电阻值与入射光的强度呈反比关系,即光照强度越强,电阻值越小;光照强度越弱,电阻值越大。
三、实验仪器与材料1. 光敏元件:光敏电阻、光敏二极管、光敏晶体管等。
2. 电源:直流电源,电压范围0-15V。
3. 电阻:固定电阻、可变电阻等。
4. 电位器:电位器,用于调节电路中的电压。
5. 电流表:用于测量电路中的电流。
6. 电压表:用于测量电路中的电压。
7. 光源:可调光源,用于模拟不同光照条件。
8. 连接线:用于连接实验电路。
四、实验步骤1. 光敏电阻特性测试(1)将光敏电阻与固定电阻、电位器、电源、电流表、电压表连接成电路。
(2)调节电位器,使电路中的电压稳定在5V。
(3)打开光源,调节光源的强度,观察电流表、电压表的读数变化,记录不同光照条件下的电阻值。
2. 光敏二极管特性测试(1)将光敏二极管与固定电阻、电位器、电源、电流表、电压表连接成电路。
(2)调节电位器,使电路中的电压稳定在5V。
(3)打开光源,调节光源的强度,观察电流表、电压表的读数变化,记录不同光照条件下的电流值。
3. 光敏晶体管特性测试(1)将光敏晶体管与固定电阻、电位器、电源、电流表、电压表连接成电路。
(2)调节电位器,使电路中的电压稳定在5V。
(3)打开光源,调节光源的强度,观察电流表、电压表的读数变化,记录不同光照条件下的电流值。
五、实验结果与分析1. 光敏电阻特性实验结果显示,光敏电阻的电阻值随着光照强度的增加而减小,随着光照强度的减小而增大。
这说明光敏电阻具有良好的光敏特性。
2. 光敏二极管特性实验结果显示,光敏二极管的电流值随着光照强度的增加而增大,随着光照强度的减小而减小。
光敏电阻实验报告光敏电阻实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的器件,广泛应用于光敏控制、光敏传感和光敏测量等领域。
本实验旨在通过对光敏电阻的实际应用与实验验证,深入了解光敏电阻的工作原理、特性和应用。
一、实验目的本实验的主要目的是通过实际操作,深入了解光敏电阻的基本特性,包括光敏电阻的光敏特性、电阻变化规律等,并通过实验结果验证光敏电阻的工作原理。
二、实验器材和原理实验所需器材包括:光敏电阻、电源、电压表、电流表、光源、万用表等。
光敏电阻是一种半导体器件,其工作原理基于光照强度对半导体电阻的影响。
当光照强度增大时,光敏电阻的电阻值减小;当光照强度减小时,光敏电阻的电阻值增大。
三、实验步骤1. 将光敏电阻与电路连接,其中光敏电阻的一端接地,另一端接电源正极。
2. 通过电流表和电压表测量光敏电阻的电流和电压值。
3. 调节光源的光照强度,观察光敏电阻的电流和电压变化。
4. 记录实验数据,并绘制光照强度与光敏电阻电阻值的关系曲线。
四、实验结果与分析根据实验数据绘制的光照强度与光敏电阻电阻值的关系曲线显示,在光照强度增大的情况下,光敏电阻的电阻值呈现逐渐减小的趋势;而在光照强度减小的情况下,光敏电阻的电阻值逐渐增大。
这验证了光敏电阻的工作原理,即光照强度对光敏电阻的电阻值有直接影响。
五、实验应用光敏电阻在实际应用中具有广泛的用途。
其中,最常见的应用是在光敏控制系统中,通过光敏电阻感知光照强度的变化,并控制其他设备的开关。
例如,室内照明系统中的光敏电阻可以根据光照强度的变化自动调节灯光的亮度,实现能源的节约和舒适的照明环境。
此外,光敏电阻还被广泛应用于光敏传感器和光敏测量领域。
例如,光敏电阻可以用于血氧饱和度检测仪器中,通过测量光敏电阻的电阻变化来判断人体的血氧饱和度。
光敏电阻也可以应用于光敏测量仪器中,用于测量光源的亮度和光照强度等参数。
六、实验总结通过本次实验,我们深入了解了光敏电阻的工作原理、特性和应用。
光敏电阻特性测量实验报告光敏电阻特性测量实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的电子元件。
它广泛应用于光电传感器、光控开关等领域。
本实验旨在通过测量光敏电阻的特性曲线,了解其在不同光照条件下的电阻变化规律。
实验装置:本实验所用的装置包括一个光敏电阻、一个可变电阻、一个电压表、一个电流表和一个光源。
光敏电阻的两个引脚分别连接在电路的两个端点,可变电阻则用于调节电路中的电流。
实验步骤:1. 将实验装置搭建好后,先调节可变电阻,使电路中的电流达到一个适当的范围。
2. 将光源照射在光敏电阻上,并记录下此时的电流和电压值。
3. 逐渐增加光源的亮度,重复步骤2,记录不同光照强度下的电流和电压值。
4. 根据实验数据,绘制光敏电阻的特性曲线。
实验结果与讨论:通过实验测量,我们得到了光敏电阻在不同光照强度下的电流和电压值。
根据这些数据,我们可以绘制出光敏电阻的特性曲线。
特性曲线的形状与光敏电阻的材料和结构有关。
一般情况下,当光照强度增加时,光敏电阻的电阻值会减小,电流值会增大。
这是因为光照能量激发了光敏电阻中的载流子,使其在材料中移动,导致电阻减小。
而当光照强度减小时,电阻值会增加,电流值会减小。
光敏电阻的特性曲线可以用来描述其在不同光照条件下的工作状态。
通过观察特性曲线,我们可以了解到光敏电阻的灵敏度和响应速度。
灵敏度指的是光敏电阻对光照强度变化的响应程度,而响应速度则表示光敏电阻从接收到光照信号到产生响应的时间。
实验中,我们还可以通过改变可变电阻的值,观察光敏电阻的特性曲线是否发生变化。
可变电阻的作用是调节电路中的电流,当电流变化时,光敏电阻的特性曲线也会发生相应的变化。
这可以帮助我们更好地理解光敏电阻的工作原理。
结论:通过本次实验,我们成功测量了光敏电阻的特性曲线,并了解了其在不同光照强度下的电阻变化规律。
光敏电阻的特性曲线可以用来描述其工作状态,帮助我们了解其灵敏度和响应速度。
此外,通过改变可变电阻的值,我们还可以观察到光敏电阻特性曲线的变化。
光敏电阻的特点及其应用光敏电阻是一种光电传感器,其特点在于能够将光线的变化转化为电阻值的变化。
本文将从感光特性、电阻变化、响应时间、灵敏度高、稳定性好、应用广泛、耐高温和价格低廉等方面,详细介绍光敏电阻的特点及其应用。
1.感光特性光敏电阻的感光原理基于半导体的光电效应。
当光子照射到光敏电阻的表面时,光子能量转化为电子能量,产生电子-空穴对。
这些电子-空穴对参与导电,导致光敏电阻的阻值发生变化。
不同光照条件下,光敏电阻的阻值也会相应变化。
2.电阻变化光敏电阻的电阻变化原理是光电效应的结果。
在无光条件下,光敏电阻的阻值较高。
当光线照射到光敏电阻上时,光子能量将半导体中的束缚电子激发成为自由电子,参与导电,导致电阻值降低。
光敏电阻的电阻变化取决于光照强度和入射光波长。
3.响应时间光敏电阻的响应时间是其重要性能之一。
响应时间指从光照变化到电阻值稳定变化的时间。
一般来说,光敏电阻的响应时间较快,能够在短时间内对光线变化作出响应。
这种快速响应特性使得光敏电阻在许多应用场景中表现出色。
4.灵敏度高光敏电阻的灵敏度指其电阻值对光照变化的敏感性。
高灵敏度的光敏电阻能够在较低的光照强度下产生明显的电阻变化,从而使得电路对光线变化反应更加灵敏。
通过优化材料和结构设计,可以进一步提高光敏电阻的灵敏度。
5.稳定性好稳定性好是光敏电阻的重要优点之一。
在长时间的使用过程中,光敏电阻的阻值不会发生显著变化。
这使得光敏电阻在各种应用场景中表现出良好的稳定性,从而使得基于光敏电阻的传感器具有较高的长期可靠性。
6.应用广泛由于光敏电阻具有感光、电阻变化、快速响应、高灵敏度以及稳定性好等特点,使得其广泛应用于各种领域。
例如,光敏电阻在照相机自动曝光控制系统、环境光检测、光学通信以及太阳能电池等领域发挥着重要作用。
此外,光敏电阻还在测量、计量、工业自动化和机器人等领域有广泛应用。
7.耐高温某些类型的光敏电阻具有较好的耐高温性能。
这些高温光敏电阻能够在较高温度环境下正常工作,对于高温环境下的光学检测和控制具有重要意义。
光敏传感器实验报告学院:专业:学号:姓名:时间:目录一、摘要 ........................................... 错误!未定义书签。
二、设计要求 (3)三、方案设计 (5)1、方案说明 (6)2、方案论证 (7)四、光敏电阻的结构和原理 (7)五、光敏传感器的工作原理 (8)六、电路的工作原理 (9)七、单元电路设计、参数计算和器件选择 (10)1、单元电路设计 (10)2、参数计算 (10)3、器件选择 (11)八.总结 (12)九.参考文献 (13)摘要光传感器是利用光敏元件将光信号转换为电信号的传感器,它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。
光传感器不只局限于对光的探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。
光照强度自动检测显示系统,该系统可以自动检测光照强度的强弱并显示让人们知道此时光照强度的强弱。
人们可以设定光照强度的范围,一旦超出此范围该系统可以发出警报通知或直接采取措施使光照强度在此范围内。
人们可以通过看此装置的显示了解现在的光照状态,做合理的光照调节。
该设计可分为三部分:即光照检测部分、信号处理部分、光强显示部分。
还可加上报警部分。
对于光照检测部分可利用光敏电阻传感器作为检测元件,它可以完成从光强到电阻值的信号转换,再把电阻值转换为电信号就可以作为系统的输入信号。
对输入信号处理后,就可以用来显示了。
对于显示部分可利用发光二极管来显示,不同的光强对应于不同的发光二极管点亮,就能简单的显示出不同的光强了。
关键词:光敏电阻;光电传感器;光照强度;发光二级管theThe light sensor is the use of photosensitive element will be optical signals are converted to electric signals of sensors, its sensitive wavelength in the visible light wavelength near, including infrared wavelength and ultraviolet wavelength. The light sensor is not limited to light detection, it also can be used as detection components other sensors, for many non-electricity testing, as long as thesenon-electricity conversion for light signal can be change.Light intensity automatic detection display system, this system can automatically detect the intensity of illumination intensity and display to let people know the strength of the light intensity at this time. People can be set illumination intensity range, once beyond this range the system can issue warning notice or directly to take measures to make the light intensity in this range. People can see through this device display learn now light condition, to do a reasonable light regulation. This design can be divided into three parts: namely light detection part, signal processing part, intensity of light display section. Still can add alarm part. For light detection part available photosensitive resistance sensor as the test components, it can complete from intensity to resistance signal conversion, again resistance are converted to electric signals can serve as the system input signal. For input signal processing, they can be used to display the. To display part available light emitting diode to display, different intensity of light corresponding to the different light emitting diode light, you can simply shows the different light intensity. Keywords: photosensitive resistance; Photoelectric sensor; Light intensity; leds二、设计要求设计一个光照强度自动检测、显示、(报警)系统,实现对外界三种不同条件下光强的分档指示和报警(弱、适宜、强)1、根据题目选定光照强度自动检测所用的光电传感器类型(1)自己设计至少三种以上不同光照条件,测定不同光照条件下光电传感器的输出;(2)传感器测量电路采用集成运算放大器构成的比较器完成,完成至少三种以上不同光照条件下显示报警系统方案的论证和设计;(3)完成自然光光照强度自动检测显示报警系统电路方框图、电路原理图的设计;(4)完成自然光光照强度自动检测显示报警系统中核心芯片的选型、系统中各个参数的计算(备注:1. 含各种元件参数的计算过程或依据2. 选定最接近计算结果的元件规格);(5)设计结束后,进行仿真调试。
光敏电阻特性及应用实验报告2016年4月18日实验三光敏二极管特性实验一.实验目的:1.熟悉光敏二极管的结构和光电转换原理。
2.掌握光敏二极管的暗电流及光电流的测试方法。
3.了解光敏二极管的特性,当光电管得工作偏压一定时,光电管输出光电流与入射光的照度(或通量)的关系。
二.实验原理:光敏二极管是一种光生伏特器件,用高阻P 型硅作为基片,然后在基片表面进行掺杂形成PN 结,N 区扩散区很浅为1um 左右,而空间电荷区(即耗尽层)较宽,所以保证了大部分光子入射到耗尽层内,光被吸收而激发电子——空穴对,电子——空穴对在外加反向偏压的作用下,空穴流向正极,形成了二极管的反向电流即光电流。
光电流通过外加负载电阻RL 后产生电压信号输出。
光敏二极管原理如图(9)所示。
在无光照的情况下,若给P—N 结一个适当的反向电压,则反向电压加强了内建电场,使P—N 结空间电荷区拉宽,势垒增大,流过P—N 结的电流(称反向饱和电流或暗电流)很小,它(反向电流)是由少数载流子的漂移运到形成的。
当光敏二极管被光照时,满足条件hv≧Eg 时,则在结区产生的光生载流子将被内场拉开,光生电子被拉向N 区,光生空穴被拉向P 区,于是在外加电场的作用下以少数载流子漂移运动为主的光电流。
显然,光电流比无光照时的反向饱和电流大得多,如果光照越强,表示在同样条件下产生的光生载流子越多,光电流就越大,反之,则光电流越小。
当二极管与负载电阻RL 串联时,则在RL 的两端便可得到随光照度变化的电压信号,从而完成了将光信号转变成电信号的转换。
光敏二极管在无光照时,在所加反向电压作用下,仍会有反向电流流过,这种电流的数值很小,称为暗电流。
暗电流值是光敏二极管传感器的重要参数之一,它影响光敏二极管的光电变换质量和工作稳定性,因此希望它数值越小越好。
在无辐射作用的情况下,PN 结硅光敏二极管的正、反向特性与普通PN 结二极管基本一样,均为图(10)所示的伏安特性曲线,当有光照时,PN 结硅光敏二极管的反向输出特性曲线如图(11)所示。
光敏电阻传感器特性及应用实验1.了解光敏电阻的光电特性2.了解光敏电阻暗电流、光电流的测量方法3.掌握光敏电阻的伏安特性、负载特性的测量方法1.分析光敏电阻传感器测量电路的原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测亮度变化时输出信号的变化情况;4.记录实验波形数据并进行分析。
1.开放式传感器电路实验主板;2.光敏电阻亮度测量模块;3.导线若干。
光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
实际上光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。
图1-1 光敏电阻的电极实验原理及内容:光敏电阻的主要参数及测试方法:1、暗电阻:光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。
在测量光敏电阻的暗电流时,应先将光敏电阻置于黑暗环境中30分钟以上,否则电压表的读数会较长时间后才能稳定。
将光敏电阻完全置入黑暗环境中(用遮光罩为光敏电阻遮光,且不通电),使用万用表电阻档测量光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R暗。
由于光敏电阻的个体差异,某些暗电阻可能大于200兆欧,属于正常现象。
利用图1-2,可以测量光敏电阻的暗电流,图中取E=12V,RL=10M,由电压表读数除以RL,即可得出光敏电阻的暗电流I暗。
2、亮电阻:光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。
亮电阻的测试:在一定的光照条件下(移除遮光罩)由Counter输出PWM波驱动LED光源,使用万用表电阻档测量光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R亮。
利用图1-3,取E=12V,RL=2k。
实验一 光敏电阻特性实验一.实验目的:1.认识学习光敏电阻,掌握光敏电阻的基本工作原理。
2.掌握使用本仪器测定光敏电阻的各种特性.3.达到会用光敏电阻器件进行光电检测方面应用课题的设计。
二.实验原理:利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示,光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在日常生活中随处可见,当内光电效应发生时,光敏电阻电导率的改变量为:p n p e n e σμμ∆=∆⋅⋅+∆⋅⋅图(1)在上式中,e 为电荷电量,p ∆为空穴浓度的改变量,n ∆为电子浓度的改变量,μ表示迁移率,当两端加上电压U 后,光电流为:ph AI U dσ=⋅∆⋅ 式中A 为与电流垂直的表面,d 为电极间的间距。
在一定的光照度下,σ∆为恒定的值,因而光电流和电压成线性关系。
光敏电阻在未受到光照射时的阻值称为暗电阻,此时流过的电流称为暗电流,光敏电阻受到光照射时的阻值称为亮电阻,此时流过的电流称为亮电流,亮电流与暗电流之差称为光电流,一般暗电阻越大,亮电阻越小,光敏电阻的灵敏度越高,光敏电阻的暗电阻一般在兆欧数量级,亮电阻在几千欧以下,暗电阻与亮电阻之比一般在102~106之间。
一般光敏电阻(如硫化铅、硫化铊)的伏安特性曲线如图(2)所示,由该曲线可知,所加的电压越高,光电路越大,而且没有饱和现象,在给定的电压下,光电流的数值将隋光照增强而增大,在设计光敏电阻变换电路时,应使光敏电阻的工作电压或电流控制在额定功耗线之内。
图(2)光敏电阻伏安特性曲线光敏电阻的光电流与光照强度之间的关系,称为光敏电阻传感器的光照特性,不同类型的光敏电阻,其光照特性也不同,多数光敏电阻传感器光照特性类似于图(3)的特性曲线,光敏电阻的光照特性呈现出一定程度的非线性特性,光敏电阻的光照度—-电阻值的典型特性曲线如图(4)所示,低照度a区曲线斜率较大,中间照度区b区可近似视为直线区,也是光敏电阻的主要工作区,因而光电流随光照度增长较快,在高照度区,电阻值随照度下降慢,光电流随照度增长也变慢。
光敏电阻特性测试实验一、实验目的了解光敏电阻工作原理、光照特性及伏安特性。
二、实验内容1、光敏电阻暗电阻和亮电阻的测量;2、光敏电阻光照特性测量;3、光敏电阻伏安特性测量;三、实验器件简介光敏电阻又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;一般情况下入射光强,电阻减小,入射光弱,电阻增大。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。
通常光敏电阻都制成薄片结构,以便吸收更多的光能。
当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。
光敏电阻的主要参数有亮电阻,暗电阻,光电特性,光谱特性,频率特性,温度特性。
在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。
没有极性,属于纯电阻器件,使用时可加直流也可以加交流。
用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。
通常采用涂敷、喷涂、烧结等方法,在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。
在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的价带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。
光照愈强,阻值愈低。
入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。
四、实验原理光敏电阻是用光电导体制成的光电器件,又称光导管。
它是基于半导体光电效应工作的。
当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。
光敏电阻的暗电阻越大,亮电阻越小,则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。
一、实验目的1. 了解光敏电阻的工作原理和特性。
2. 掌握光敏电阻传感器的应用及实验方法。
3. 学会使用光敏电阻传感器进行简单的光照强度检测和信号处理。
4. 培养动手能力和创新思维。
二、实验原理光敏电阻是一种电阻值随光照强度变化的半导体元件。
当光照强度发生变化时,光敏电阻的电阻值也会随之改变。
这种特性使得光敏电阻在光照强度检测、光控电路等领域有着广泛的应用。
光敏电阻的工作原理基于内光电效应。
当光照射到光敏电阻表面时,光子与半导体中的电子发生碰撞,使电子获得能量并跃迁到导带,形成自由电子。
自由电子在外加电场的作用下作漂移运动,从而产生电流。
光照强度越大,产生的自由电子越多,电流也越大,光敏电阻的电阻值就越小。
三、实验仪器与设备1. 光敏电阻传感器2. 光源3. 电阻箱4. 电压表5. 电流表6. 稳压电源7. 滑动变阻器8. 线路连接线9. 电路实验板四、实验步骤1. 搭建实验电路根据实验要求,搭建如图1所示的实验电路。
电路包括光敏电阻、电阻箱、电压表、电流表、稳压电源和滑动变阻器。
图1 实验电路图2. 调整电路参数将光敏电阻与电阻箱串联,调节电阻箱的阻值,使电路达到预定的电压值。
调整滑动变阻器的阻值,使电流表和电压表的读数满足实验要求。
3. 光照强度检测将光源照射到光敏电阻上,观察电压表和电流表的读数变化。
记录不同光照强度下的电压和电流值。
4. 数据分析根据实验数据,绘制光照强度与电阻值、电流值、电压值之间的关系曲线。
5. 实验结果分析通过实验数据分析,得出以下结论:(1)光敏电阻的电阻值随光照强度增大而减小。
(2)光敏电阻的灵敏度与材料、结构等因素有关。
(3)光敏电阻在光照强度检测、光控电路等领域具有广泛的应用。
五、实验结果与分析1. 光照强度与电阻值的关系通过实验数据绘制光照强度与电阻值之间的关系曲线,如图2所示。
图2 光照强度与电阻值关系曲线由图2可以看出,光敏电阻的电阻值随光照强度增大而减小,呈线性关系。
光敏电阻传感器特性及应用实验
1.了解光敏电阻的光电特性
2.了解光敏电阻暗电流、光电流的测量方法
3.掌握光敏电阻的伏安特性、负载特性的测量方法
1.分析光敏电阻传感器测量电路的原理;
2.连接传感器物理信号到电信号的转换电路;
3.软件观测亮度变化时输出信号的变化情况;
4.记录实验波形数据并进行分析。
1.开放式传感器电路实验主板;
2.光敏电阻亮度测量模块;
3.导线若干。
光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
实际上光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。
图5-1 光敏电阻的电极
实验原理及内容:
光敏电阻的主要参数及测试方法:
1、暗电阻:光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。
在测量光敏电阻的暗电流时,应先将光敏电阻置于黑暗环境中30分钟以上,否则电压表的读数会较长时间后才能稳定。
将光敏电阻完全置入黑暗环境中(用遮光罩为光敏电阻遮光,且不通电),使用万用表电阻档测量光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R暗。
由于光敏电阻的个体差异,某些暗电阻可能大于200兆欧,属于正常现象。
利用图5-2,可以测量光敏电阻的暗电流,图中取E=12V,RL=10M,由电压表读数除以RL,即可得出光敏电阻的暗电流I暗。
2、亮电阻:光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。
亮电阻的测试:在一定的光照条件下(移除遮光罩)由Counter输出PWM波驱动LED光源,使用万用表电阻档测量光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R亮。
利用图5-3,取E=12V,RL=2k。
读取电流表读数,即可得出在该光照条件下的亮电流I亮。
3、光电流:亮电流与暗电流之差称为光电流。
亮电阻与暗电阻之差等于光电阻,R光=R暗-R亮,光电阻值越大,光敏电阻的灵敏度越高。
亮电流与暗电流之差等于光电流,I光=I亮-I暗,光电流越大,光敏电阻的灵敏度越高
图5-2 光敏电阻暗电流测试电路图5-3 光敏电阻亮电流测试电路实验原理图:
实验(连线)原理图如图5-4所示,主要分为:偏置电源区域、传感器区域、负载电阻区域和LED光源区域四个部分。
利用该图,可以完成光敏电阻基本参数和基本特性测量的实验连线。
图5-4 实验原理图
实验连线图:
光源与传感器安装注意事项:
光敏电阻实验连线主要分两个部分。
即:光源连线和实验电路连线。
光源由PWM波方式控制灯的亮度,连线如图5-5所示。
光敏电阻的基本参数测量与特性测量,请参光敏电阻基本参数与基本特性页面的实验连线原理图进行连线。
步骤一连接设备
1.启动实验用的计算机,打开NI LabVIEW 2019软件;
2.将实验板插在NI ELVIS III的槽中,连接NI ELVIS III电源和与计算机通信的USB线;
3.打开NI ELVIS III开关,设备左边的电源灯亮。
4.参照图5-5实验连线图,正确连接实验线路。
4.打开编程开关APPLICATION BOARD POWER,板子右上方电源绿色灯亮。
步骤二实验连线
图5-5 实验连线图
1、如图5-5所示连接,“A+”“A-”连接完电流表后,“A-”还要连接GND。
电路连接好以后,10MΩ电阻开关打通,测量不同光照下的光敏电阻的特性;
2、设置光敏电阻和光源设置的物理通道(分别默认为A_AIO0和A_PWM0),点击程序中的【测量/暂停】按钮,按钮变为黄色,实验程序开始运行。
4、使用万用表电流表测量功能时,请选择【电流测量】选框。
5、若需测量直流电流时,则点击万用表测量区域的电流测量选项,并设置合适的测量量程,此时万用表其他测量功能被禁用。
注意测量时接线。
6、若需测量直流电压时,则点击万用表测量区域的电压测量选项,并设置合适的测量量程,此时万用表其他测量功能被禁用。
注意测量时接线。
7、若需调节LED光源的亮度,可调整光源设置的光照频率和PWM占空比控件。
调节百分比范围为1%-99%。
9、依据不同的实验,测得所需电压、电流值后,将这些值依次填入【X/Y曲线设置】区域的数据行,点击【生成X/Y关系曲线】按钮,绘制对应光敏电阻所属特性的X/Y关系曲线。
可点击保存数据将曲线保存下来。
10、在完成上述实验内容后,将实验得到的数据填入实验报告,结束实验、关闭设备电源并拆除实验连线。
注意事项:
1.发光二极管注意极性
2.在测量光照特性的时候注意接通负载10MΩ电阻
3.照度计与光源要对准,让照度计和光敏电阻互不遮挡,且处在同一温度场中。
4. 在使用万用表不同功能时请注意接线是否正确,以免出现意外。
1.按要求完整填写测试表格及测试数据;
2.分析并总结实验结果;
3.写出本次实验心得体会。
1.能否利用已有实验资源实现光敏电阻的光谱特性测量?
2.能否在现有基础上、通过改进实验程序的方法实现光敏电阻响应时间的测量?
附:实验程序界面。