浙江省舟山市2021届新高考第三次大联考数学试卷含解析
- 格式:doc
- 大小:2.33 MB
- 文档页数:23
浙江省舟山市2021届新高考数学教学质量调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,有下述三个结论:①函数()f x 的一个周期为2π; ②函数()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增;③函数()f x 的值域为. 其中所有正确结论的编号是( ) A .①② B .②C .②③D .③【答案】C 【解析】 【分析】①用周期函数的定义验证.②当3,42x ππ⎡⎤∈⎢⎥⎣⎦时,1717,231224x πππ⎡⎤+∈⎢⎥⎣⎦,1()212π⎛⎫=+ ⎪⎝⎭f x x ,再利用单调性判断.③根据平移变换,函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭的值域等价于函数11()4sin 4cos 22g x x x =+的值域,而()()g x g x π+=,当[0,]x π∈时,1()23π⎛⎫=+ ⎪⎝⎭g x x 再求值域. 【详解】 因为1717114sin 4cos 4cos 4sin ()2212212212212f x x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+++=+++≠ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故①错误; 当3,42x ππ⎡⎤∈⎢⎥⎣⎦时,1717,231224x πππ⎡⎤+∈⎢⎥⎣⎦,所以111()4sin 4cos 2323212f x x x x πππ⎛⎫⎛⎫⎛⎫=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,111,212324πππ⎡⎤+∈⎢⎥⎣⎦x 所以()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增,故②正确;函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭的值域等价于函数11()4sin 4cos 22g x x x =+的值域,易知()()g x g x π+=,故当[0,]x π∈时,1()42sin [4,42]23g x x π⎛⎫=+∈ ⎪⎝⎭,故③正确.故选:C. 【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题. 2.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( ) A . B .C .D .【答案】A 【解析】 【分析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值. 【详解】 抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A .【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.3.函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭(0>ω),当[]0,x π∈时,()f x 的值域为3⎡⎤⎢⎥⎣⎦,则ω的范围为( )A .53,62⎡⎤⎢⎥⎣⎦B .55,63⎡⎤⎢⎥⎣⎦C .14,23⎡⎤⎢⎥⎣⎦D .50,3⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】首先由[]0,x π∈,可得3x πω-的范围,结合函数()f x 的值域和正弦函数的图像,可求的关于实数ω的不等式,解不等式即可求得范围. 【详解】因为[]0,x π∈,所以,333x πππωωπ⎡⎤-∈--⎢⎥⎣⎦,若值域为3,1⎡⎤-⎢⎥⎣⎦, 所以只需4233πππωπ≤-≤,∴5563ω≤≤. 故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.4.已知方程1x x y y +=-表示的曲线为()y f x =的图象,对于函数()y f x =有如下结论:①()f x 在()+-∞∞,上单调递减;②函数()()F x f x x =+至少存在一个零点;③()y f x =的最大值为1;④若函数()g x 和()f x 图象关于原点对称,则()y g x =由方程1y y x x +=所确定;则正确命题序号为( ) A .①③ B .②③ C .①④ D .②④【答案】C 【解析】 【分析】分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性. 【详解】(1)当00x y ≥≥,时,221x y +=-,此时不存在图象;(2)当00,x y ≥<时,221-y x =,此时为实轴为y 轴的双曲线一部分;(3)当00,x y <≥时,221x y -=,此时为实轴为x 轴的双曲线一部分;(4)当00,x y <<时,221x y +=,此时为圆心在原点,半径为1的圆的一部分; 画出()y f x =的图象,由图象可得:对于①,()f x 在()+-∞∞,上单调递减,所以①正确;对于②,函数()y f x =与y x =-的图象没有交点,即()()F x f x x =+没有零点,所以②错误; 对于③,由函数图象的对称性可知③错误;对于④,函数()g x 和()f x 图象关于原点对称,则1x x y y +=-中用x -代替x ,用y -代替y ,可得1y y x x +=,所以④正确.故选:C 【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.5.已知函数()()3cos 0f x x x ωωω+>,对任意的1x ,2x ,当()()1212f x f x =-时,12min 2x x π-=,则下列判断正确的是( )A .16f π⎛⎫=⎪⎝⎭ B .函数()f x 在,62ππ⎛⎫⎪⎝⎭上递增 C .函数()f x 的一条对称轴是76x π= D .函数()f x 的一个对称中心是,03π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期T ,从而得到ω,即可求出解析式,然后利用函数的性质即可判断. 【详解】Q ()3cos 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,又sin 13x πω⎛⎫-≤+≤ ⎪⎝⎭Q ,即3x πω⎛⎫-≤+≤ ⎪⎝⎭,∴有且仅有12-=-满足条件;又12min2x x π-=,则22T T ππ=⇒=, 22T πω∴==,∴函数()23f x x π⎛⎫=+ ⎪⎝⎭,对于A ,2363f ππ⎛⎫== ⎪⎝⎭,故A 错误;对于B ,由()222232k x k k Z πππππ-+≤+≤+∈,解得()51212k x k k Z ππππ-+≤≤+∈,故B 错误;对于C ,当76x π=时,7726333f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故C 错误;对于D ,由20333f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:D 【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.6.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=u u u r u u u r,则()2AE AC +u u u r u u u r 的最小值为( ) A .232B .12C .252D .13【答案】C 【解析】 【分析】分别以直线AB 为x 轴,直线AD 为y 轴建立平面直角坐标系,设(,)E x y ,根据2AE AC ⋅=u u u r u u u r,可求1x y +=,而222()(2)(2)AE AC x y u u u r u u u r+=+++,化简求解.【详解】解:建立以A 为原点,以直线AB 为x 轴,直线AD 为y 轴的平面直角坐标系.设(,)E x y ,(0,2)x ∈,(0,2)y ∈,则(,)AE x y =u u u r ,(2,2)AC =u u u r ,由2AE AC ⋅=u u u r u u u r,即222x y +=,得1x y +=.所以222()(2)(2)AE AC x y u u u r u u u r +=+++224()8x y x y =++++22213x x =-+=21252()22x -+,所以当12x =时,2()AE AC +u u u r u u u r 的最小值为252. 故选:C. 【点睛】本题考查向量的数量积的坐标表示,属于基础题.7.若函数()2xf x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭ C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】由()2xf x e mx =-是偶函数,则只需()2xf x e mx =-在()0,x ∈+∞上有且只有两个零点即可.【详解】解:显然()2xf x e mx =-是偶函数所以只需()0,x ∈+∞时,()22xxf e x e mx mx ==--有且只有2个零点即可令20xe mx -=,则2xe m x=令()2xe g x x =,()()32x e x g x x-'= ()()()0,2,0,x g x g x '∈<递减,且()0,x g x +→→+∞ ()()()2,+,0,x g x g x '∈∞>递增,且(),x g x →+∞→+∞()()224e g x g ≥=()0,x ∈+∞时,()22x x f e x e mx mx ==--有且只有2个零点,只需24e m > 故选:B 【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.8.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .259【答案】B 【解析】 【分析】计算求半径为2R =,再计算球体积和圆锥体积,计算得到答案. 【详解】如图所示:设球半径为R ,则()223R R =-+,解得2R =. 故求体积为:3143233V R ππ==,圆锥的体积:21333V π=⨯=,故12329V V =.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力. 9.若复数()()31z i i =-+,则z =( ) A .2B .5C 10D .20【答案】B 【解析】 【分析】 化简得到()()3142z i i i =-+=+,再计算模长得到答案.【详解】()()3142z i i i =-+=+,故2025z ==故选:B . 【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.10.已知函数()f x 是定义域为R 的偶函数,且满足()(2)f x f x =-,当[0,1]x ∈时,()f x x =,则函数4()()12x F x f x x+=+-在区间[9,10]-上零点的个数为( ) A .9 B .10C .18D .20【答案】B 【解析】 【分析】由已知可得函数f (x )的周期与对称轴,函数F (x )=f (x )412x x++-在区间[9,10]-上零点的个数等价于函数f (x )与g (x )412x x+=--图象在[9,10]-上交点的个数,作出函数f (x )与g (x )的图象如图,数形结合即可得到答案. 【详解】函数F (x )=f (x )412x x ++-在区间[9,10]-上零点的个数等价于函数f (x )与g (x )412x x+=--图象在[9,10]-上交点的个数,由f (x )=f (2﹣x ),得函数f (x )图象关于x =1对称,∵f (x )为偶函数,取x =x+2,可得f (x+2)=f (﹣x )=f (x ),得函数周期为2. 又∵当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,∴当x ∈[﹣1,0]时,f (x )=﹣x , g (x )44191221242x x x x x ++=-==+---, 作出函数f (x )与g (x )的图象如图:由图可知,两函数图象共10个交点, 即函数F (x )=f (x )412x x++-在区间[9,10]-上零点的个数为10. 故选:B. 【点睛】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.11.设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于22a a b +渐近线斜率的取值范围是 ( ) A .(1,0)(0,1)-U B .(,1)(1,)-∞-+∞U C .(2,0)2)-U D .(,2)(2,)-∞+∞U【答案】A 【解析】 【分析】 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于22a a b ++,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A . 12.已知实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34x y +的最小值为( )A .2B .3C .4D .5【答案】B 【解析】 【分析】作出约束条件的可行域,在可行域内求34z x y =+的最小值即为34x y +的最小值,作34y x =-,平移直线即可求解. 【详解】作出实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩的可行域,如图(阴影部分)令34z x y =+,则344z y x =-+, 作出34y x =-,平移直线,当直线经过点()1,0A 时,截距最小, 故min 3103z =⨯+=, 即34x y +的最小值为3. 故选:B 【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
四省名校2021届高考数学第三次大联考试卷(理科)一、单选题(本大题共12小题,共60.0分)1.已知集合A={−1,0,1,2,3},B={x|x>2},则A∩B=()A. {3}B. {2,3}C. {−1,3}D. {1,2,3}2.已知复数z满足(2+i)z=5(i为虚数单位),则z=()A. −2−iB. 1−2iC. 2−iD. 1+2i3.样本4,2,1,0,−2的标准差是:()A. 1B. 2C. 4D.4.已知|a⃗|=5,|b⃗ |=5,a⃗⋅b⃗ =−3,则|a⃗+b⃗ |=()A. 23B. 35C. 2√11D. √355.若等比数列{a n}满足2a4=a6−a5,则q=()A. −1或2B. 1或−2C. 0D. −1或−26.在直角坐标平面xoy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为34,则抛物线C的方程为()A. x2=12y B. x2=y C. x2=2y D. x2=4y7.已知tanA+tanB+tanC>0,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形8.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折叠,其正视图和俯视图如图所示.此时连接顶点B、D形成三棱锥B−ACD,则其侧视图的面积为()A. 125B. 1225C. 7225D. 144259.给出四个函数,分别满足①;②;③;④,又给出四个函数的图象如下:则正确的配匹方案是( )A. ①—M ②—N③—P ④—QB. ①—N②—P③—M④—QC. ①—P②—M③—N④—QD. ①—Q②—M③—N④—P10. 函数f(x)=ln(4+3x −x 2)的单调递减区间是A.B.C.D.11. 双曲线x 24−y 23=1,则此双曲线的离心率e 为( )A. 12B. 2C. 2√2D. √7212. 设曲线y =2014x n+1(n ∈N ∗)在点(1,2014)处的切线与x 轴的交点的横坐标为x n ,令a n =log 2014x n ,则a 1+a 2+⋯+a 2013的值为( )A. 2014B. 2013C. 1D. −1二、单空题(本大题共4小题,共20.0分)13. 已知实数x ,y 满足{x ≤32x −y ≥0x +y −4≥0,则y x +xy 的范围为______.14. (x +1)(x −1)5展开式中含x 2项的系数为______.(用数字表示) 15. 在数列{a n }中,a 1=1,a n+1−a n =2,则a 20的值为______ .16. 四棱锥P −ABCD 的底面ABCD 是正方形,PA ⊥平面ABCD ,各顶点都在同一球面上,若该棱锥的体积为4,AB =2,则此球的表面积等于______. 三、解答题(本大题共7小题,共82.0分) 17. 向量a =(cos ωx ,sin ω x ),b =(cos ωx , cosω x ),其中0<ω<2.函数f(x )= a · b −,其图象的一条对称轴为x =.(1) 求函数f(x )的表达式及单调递增区间;(2) 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,S 为其面积,若f()=1,b =1,S △ABC =,求a 的值.18. 中国航母“辽宁舰”是中国第一艘航母,“辽宁”号以4台蒸汽轮机为动力,为保证航母的动力安全性,科学家对蒸汽轮机进行了170余项技术改进,增加了某项新技术,该项新技术要进入试用阶段前必须对其中的三项不同指标甲、乙、丙进行通过量化检测.假如该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为、、.指标甲、乙、丙合格分别记为4分、2分、4分;若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响. (I)求该项技术量化得分不低于8分的概率;(II)记该项新技术的三个指标中被检测合格的指标个数为随机变量X ,求X 的分布列与数学期望.19. 如图,四棱锥S −ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB =AD =1,DC =SD =2,E 为棱SB 上任一点. (Ⅰ)求证:无论E 点取在何处恒有BC ⊥DE ;(Ⅱ)设SE ⃗⃗⃗⃗⃗ =λEB ⃗⃗⃗⃗⃗ ,当平面EDC ⊥平面SBC 时,求λ的值; (Ⅲ)在(Ⅱ)的条件下求二面角A −DE −C 的大小.20. 如图所示,在平面直角坐标系xOy 中,设椭圆E :x 2a 2+y2b 2=1(a >b >0),离心率为12,过椭圆E 内一点P(1,1)的两条直线分别与椭圆交于点A 、C 和B 、D ,且满足AP ⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,其中λ为正常数.(1)当点C 恰为椭圆的右顶点时,对应的λ=57,求椭圆的方程.(2)当λ变化时,k AB 是否为定值?若是,请求出此定值;若不是,请说明理由.21. 已知函数f(x)=−2lnx +ax −a .(1)若函数f(x)在[1,+∞)上是单调递减函数,求a 的取值范围; (2)当−2<a <0时,证明:对任意x ∈(0,+∞),e x 2x−a <(1−a x)222. 在平面直角坐标系中,曲线C 1:{x =2cosαy =2sinα(α为参数)经过伸缩变换{x′=xy′=y 2得到曲线C 2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求C 2的普通方程;(Ⅱ)设曲线C 3的极坐标方程为2ρsin(π3−θ)=√3,且曲线C 3与曲线C 2相交于M ,N 两点,点P(1,0),求1|PM|+1|PN|的值.23. 已知函数f(x)=|x +1|+|2x −4|.(1)求不等式f(x)≤5的解集;(2)若函数y =f(x)图象的最低点为(m,n),正数a ,b 满足ma +nb =6,求3a +8b 的取值范围.【答案与解析】1.答案:A解析:解:∵集合A={−1,0,1,2,3},B={x|x>2},∴A∩B={3}.故选:A.利用交集定义直接求解.本题考查交集求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:C解析:本题考查复数代数形式的乘除运算,是基础题.把已知等式变形,利用复数代数形式的乘除运算化简得答案.解:由(2+i)z=5,得z=52+i =5(2−i)(2+i)(2−i)=2−i.故选:C.3.答案:D解析:试题分析:,样本4,2,1,0,−2的标准差是:=,选D。
姓名 准考证号 绝密★启用前2022届高中毕业班联考理科数学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
时量120分钟,满分150分。
2.答卷前,考生务必将自己的性名、准考证号填写在答题卡相应位置上。
3.全部答案在答题卡上完成,答在本试题卷上无效。
4.考试结束后.将本试题卷和答题卡一并交回。
第I 卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.欧拉公式x i x e ix sin cos +=(i 是虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,被誉为“数学中的天桥。
根据欧拉公式.则复数i e41π在复平面内对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合:A = {0)2)(2(|≤+-x x x },B= {16|22=+y x y },则=B A A.[-3, -3] B.[-2,2]C.[-4,4]D. 03.等差数列{n a }的公差不为0, 210282624a a a a +=+},则S 13 =A. -1B.OC.-2D.-34.如图正方体AC 1,点M 为线段BB 1的中点,现用一个过点M,C,D 的平面去截正方体,得到上下两部分,用如图的角度去观察上半部分几何体,所得的侧视图为5.已知两个随机变量y x ,之间的相关关系如下表所示:根据上述数据得到的回归方程为a x b yˆˆˆ+=,则大致可以判断 A.a ˆ>0,b ˆ<0 B.a ˆ<0,b ˆ<0 C. aˆ>0,b ˆ>0 D.a ˆ<0,b ˆ>0 6.已知椭圆12222=+b y a x (a>b>0)的左右焦点分别为F 1、F 2,A 为椭圆上一动点(异于左右顶点),若21F AF ∆的周长为6且面积的最大值为12222=-by a x ,则椭圆的标准方程为A.13422=+y xB.12322=+y xC.1222=+y x D.1422=+y x7.执行如图所示的程序框图,则输出的S 为 A. 55 B. 45 C. 66 D. 408.《中国诗词大会》(第二季)亮点颇多。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}R x x x y y A ∈+==,22,{}R y R x y x x B ∈∈=+=,,222,则A ∩B=A .]2,1[-B .]2,1(-C .]2,1(-D .]2,1[-2.若复数z 满足i i i z -+-=11,则z 的虚部为 A .212-B .212+ C .1 D .12- 3.双曲线1422=-m x y 的离心率为23,则其渐近线方程是 A .x y 45±=B .x y 54±=C .x y 25±=D .x y 552±= 4.已知直线l 是平面α和平面β的交线,异面直线b a ,分别在平面α和平面β内. 命题p :直线b a ,中至多有一条与直线l 相交;命题q :直线b a ,中至少有一条与直线l 相交;命题s :直线b a ,都不与直线l 相交.则下列命题中是真命题的为A .)(q p ⌝∨B .s p ∧⌝)(C .)(s q ⌝∧D .)()(q p ⌝∧⌝5.刘徽是魏晋期间伟大的数学家,他是中国古典数学理论的奠基者之一.他全面证明了《九章算术》中的方法和公式,指出并纠正了其中的错误,更是擅长用代数方法解决几何问题.如右图在圆的直径CD 上任取一点E ,过点E 的弦AB 和CD 垂直,则AB 的长不超过半径的概率是A .231-B .31C .41D .431-6.已知BC AC 0==⋅,点M 满足CB t CA t CM )1(-+=,若 60=∠ACM ,则t =A .21B .23 C .1 D .2 7.已知函数)0(cos sin )(≠-=a x a x x f ,满足)3()(x f x f +-=-π,则直线0=++c y ax 的倾斜角为A .6πB .3πC .32πD .65π 8.若8822107)21)(1(x a x a x a a x x ++++=-+ ,则721a a a +++ 的值是A .2-B .3-C .131-D .1259.设0<x<1,则222)(x e c x e b x e a x xx ===,,的大小关系是 A .a<b<cB .a<c<bC .c<a<bD .b<a<c10.已知区间)(b a ,是关于x 的一元二次不等式0122<+-x mx 的解集,则b a 23+的最小值是A .2223+B .625+C .625+D .3 11.数列{}n a 满足112111+-==++n n n a a a a ,,其前n 项的积为n T , 则2020T = A .1 B .6- C .2 D .312.已知函数xax x x g a x x x f ln )(ln 3)(ln )(-=-=,,若方程)()(x g x f =有2不同的实数解,则实数a 的取值范围是A .)(e ,-∞B .)10(e, C .),()0(+∞-∞e ,D .),(+∞e 二、填空題:本大题共4小题,每小题5分,共20分。
2021年四省名校高考数学第三次大联考试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1(5分)已知集合A={x∈N|x2﹣2x≤0},B={0,2,3,4},则集合A∩B=()A{0,1} B{0,2} C{2} D{1,2}2(5分)已知复数,则它的共轭复数等于()A2﹣i B2+i C﹣2+i D﹣2﹣i3(5分)设随机变量X,Y满足Y=2X+b(b为非零常数),若E(Y)=4+b,D(Y)=32,则E(X)和D(X)分别等于()A4,8 B2,8 C2,16 D2+b,164(5分)已知向量=(﹣1,2),=(3,2),则cos<,>为()A B﹣C D5(5分)已知等比数列{a n}中,a2+a4=30,a1a3=9,则公比q=()A9或﹣11 B3或﹣11 C3或D3或﹣36(5分)设O为坐标原点,直线l过定点(1,0),且与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB,则抛物线C的准线方程为()A x=﹣B x=﹣C x=﹣1D x=﹣27(5分)已知函数f(x)=sin(2x+φ)+cos(2x+φ)为奇函数,且存在x0∈(0,),使得f(x0)=2,则φ的一个可能值为()A B C D8(5分)如图是某四棱锥的三视图,则该四棱锥的高为()A1 B2 C D9(5分)某大型建筑工地因施工噪音过大,被周围居民投诉现环保局要求其整改,降低声强已知声强I(单位:W/m2)表示声音在传播途径中每平方米面积上的声能流密度,声强级L(单位:dB)与声强I的函数关系式为L=10•lg(aI)已知I=1013W/m2时,L=10dB 若整改后的施工噪音的声强为原声强的10﹣2,则整改后的施工噪音的声强级降低了()A50dB B40dB C30dB D20dB10(5分)已知()m=log 3m,()n=log n,p=cosα+,α∈[0,),则m,n,p的大小关系为()A n<p<mB n<m<pC m<n<pD m<p<n11(5分)已知双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1且斜率为﹣的直线与双曲线在第二象限的交点为A,若(+)•=0,则此双曲线的渐近线方程为()A y=±xB y=±xC y=±xD y=±x12(5分)设函数f(x)=e x﹣2x,直线y=ax+b是曲线y=f(x)的切线,则2a+b的最大值是()A e﹣1 B﹣1 C2e﹣4 D e2﹣4二、填空题:本题共4小题,毎小题5分。
2021年浙江省高考第三次模拟考试数学试卷一、单选题(本大题共10小题,共40分)1(4分)已知集合A={x||x|<2},B={x|x2﹣3x<0},则A∩B=()A(0,2)B(0,3)C(2,3)D(﹣2,3)2(4分)双曲线x2﹣=1的渐近线方程是()A y=±xB y=±xC y=±D y=±2x3(4分)若实数x,y满足约束条件,则z=|x﹣2y|的最大值是()A B C2 D4(4分)某几何体的三视图如图所示,则该几何体的体积为()A2 B4 C D125(4分)已知{a n}是等差数列,a1=11,S n为数列{a n}的前n项和,且S5=S7,则S n的最大值为()A66 B56 C46 D366(4分)在△ABC中,角A,B,C所对的边分别是a,b,c,则“”是“△ABC为等腰三角形”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7(4分)已知随机变量ξ满足P(ξ=0)=1﹣p,P(ξ=1)=p,且0<p<1,令随机变量η=|ξ﹣E(ξ)|,则()A E(η)<E(ξ)B E(η)>E(ξ)C D(η)<D(ξ)D D(η)>D(ξ)8(4分)已知函数f(x)=(a≠0)的部分图象如图所示,则()A a<0B a﹣c>0C b﹣c<0 D3a﹣2b+c<09(4分)已知椭圆,F1,F2分别是椭圆的左、右焦点,A是椭圆的下顶点,直线AF2交椭圆于另一点P,若|PF1|=|PA|,则椭圆的离心率为()A B C D10(4分)如图,三棱锥V﹣ABC的侧棱长都相等,底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,E为线段AC的中点,F为直线AB上的动点,若平面VEF与平面VBC 所成锐二面角的平面角为θ,则cosθ的最大值是()A B C D二、填空题(本大题共7小题,共36分,单空题每题4分,多空题每题6分)11(4分)新型冠状病毒疫情期间,5位党员需要被安排到3个不同的路口执勤,每个路口至少安排一人,其中党员甲和乙不能被安排到同一个路口,那么总共有种不同安排方法(用数字作答)12(4分)已知a∈R,若函数在区间x∈(1,2)上存在最小值,则a 的取值范围是13(4分)已知△ABC三边长分别为3,,,P是平面ABC内任意一点,则的最小值是14(6分)我国古代数学名著《算法统宗》中有如下描述:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍请问塔顶层有盏灯,塔底层有盏灯15(6分)已知复数z满足z(1+i)=﹣2+i(i为虚数单位),则z的虚部是,|z|=16(6分)已知多项式(x2+1)(x﹣1)5=a0+a1(x+2)+a2(x+2)2+…+a7(x+2)7=b0+b1x+b2x2+…+b7x7,则a0+a1+a2+…+a7=,b5=17(6分)已知圆O:x2+y2=4,过点作两条互相垂直的直线l1,l2,其中l1交该圆于A,B两点,l2交该圆于C,D两点,则|AB|的最小值是,|AB|+|CD|的最大值是四、解答题(本大题共5小题,共74分)18已知函数(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在上的最大值,并求此时的x值19如图,已知三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB=AC=BC=PA=2,∠PAC=120°,(Ⅰ)证明:BM⊥PC;(Ⅱ)求直线AB和平面PBC所成角的正弦值20已知数列{a n}满足:a1=1,(2n+1)2a n=(2n﹣1)2a n+1(n∈N*)正项数列{c n}满足:对每个n∈N*,c2n﹣1=a n,且c2n﹣1,c2n,c2n+1成等比数列(Ⅰ)求数列{a n},{c n}的通项公式;(Ⅱ)当n≥2时,证明:21已知点F是抛物线C:x2=4y的焦点,P是其准线l上任意一点,过点P作直线PA,PB 与抛物线C相切,A,B为切点,PA,PB与x轴分别交于Q,R两点(Ⅰ)求焦点F的坐标,并证明直线AB过点F;(Ⅱ)求四边形ABRQ面积的最小值22已知a∈R,设函数f(x)=ax2﹣(3a+4)x+6lnx+6,g(x)=3ax(Ⅰ)试讨论f(x)的单调性;(Ⅱ)设函数h(x)=f(x)+g(x),是否存在实数a,使得h(x)存在两个极值点x1,x2,且满足?若存在,求a的取值范围;若不存在,请说明理由注:ln3≈1.10参考答案与试题解析一、单选题(本大题共10小题,共40分)1(4分)已知集合A={x||x|<2},B={x|x2﹣3x<0},则A∩B=()A(0,2)B(0,3)C(2,3)D(﹣2,3)【分析】求出集合A,B,由此能求出A∩B【解答】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={x|x2﹣3x<0}={x|0<x<3},∴A∩B={x|0<x<2}故选:A【点评】本题考查交集的求法,考查交集、并集定义及运算法则等基础知识,考查运算求解能力,是基础题2(4分)双曲线x2﹣=1的渐近线方程是()A y=±xB y=±xC y=±D y=±2x【分析】由双曲线﹣=1(a,b>0),可得渐近线方程y=±x,求得双曲线的a,b,即可得到所求渐近线方程【解答】解:由双曲线﹣=1(a,b>0),可得渐近线方程y=±x,双曲线x2﹣=1的a=1,b=2,可得渐近线方程为y=±2x故选:D【点评】本题考查双曲线的渐近线方程的求法,注意运用双曲线的方程和渐近线方程的关系,考查运算能力,属于基础题3(4分)若实数x,y满足约束条件,则z=|x﹣2y|的最大值是()A B C2 D【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论【解答】解:作出实数x,y满足约束条件对应的平面区域如图:由u=x ﹣2y得y=x﹣,平移直线y=x﹣,由图象可知当直线y=x﹣经过点B(2,0)时,直线y=x﹣的截距最小,此时u最大:2,由,解得A(,),直线经过A时,u取得最小值:,所以z=|x﹣2y|的最大值:2故选:C【点评】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键4(4分)某几何体的三视图如图所示,则该几何体的体积为()A2 B4 C D12【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积【解答】解:根据几何体的三视图转换为直观图为三棱柱ABC﹣DEF切去一个三棱锥体C ﹣DEF如图所示:所以:V==4故选:B【点评】本题考查的知识要点:三视图和几何体直观图之间的转换,几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型5(4分)已知{a n}是等差数列,a1=11,S n为数列{a n}的前n项和,且S5=S7,则S n的最大值为()A66 B56 C46 D36【分析】由已知结合等差数列的和公式可求d,然后结合等差数列的性质即可求解【解答】解:因为{a n}是等差数列,a1=11,且S5=S7,∴S7﹣S5=0,所以a6+a7=0,所以2a1+11d=0即d=﹣2,因为a1=11>0,∴a6>0,a7<0,则S n的最大值为S6=6×11+15×(﹣2)=36故选:D【点评】本题主要考查了等差数列的前n项和公式及性质的应用,属于基础试题6(4分)在△ABC中,角A,B,C所对的边分别是a,b,c,则“”是“△ABC为等腰三角形”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】由,根据正弦定理可得:=,化为a=b反之不成立,即可判断出结论【解答】解:由,根据正弦定理可得:=,化为:(a﹣b)(a+b+c)=0,解得a=b∴△ABC为等腰三角形,反之不成立,可能a=c,或b=c∴“”是“△ABC为等腰三角形”的充分不必要条件故选:A【点评】本题考查了正弦定理、方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题7(4分)已知随机变量ξ满足P(ξ=0)=1﹣p,P(ξ=1)=p,且0<p<1,令随机变量η=|ξ﹣E(ξ)|,则()A E(η)<E(ξ)B E(η)>E(ξ)C D(η)<D(ξ)D D(η)>D(ξ)【分析】依题意,ξ服从两点分布,可知E(ξ),D(ξ),再求出E(η)和D(η)即可得到结论【解答】解:依题意,随机变量ξ服从两点分布,故E(ξ)=p,D(ξ)=p(1﹣p),又η=|ξ﹣E(ξ)|,所以η的取值为p,1﹣p,且P(η=p)=1﹣p,P(η=1﹣p)=p,所以E(η)=p(1﹣p)+p(1﹣p)=2p(1﹣p),D(η)=E(η2)﹣E2(η)=[p2(1﹣p)+(1﹣p)2p]﹣[2p(1﹣p)]2=p(1﹣p)[1﹣4p(1﹣p)],∴E(η)﹣E(ξ)=2p(1﹣p)﹣p=p﹣2p2=p(1﹣2p),可能为正也可能为负,即E(η)和E(ξ)大小关系不确定;∵0<p<1,∴D(η)﹣D(ξ)=p(1﹣p)[1﹣4p(1﹣p)]﹣(p﹣p2)=﹣4p2(1﹣p)2<0,∴D(η)<D(ξ)故选:C【点评】本题考查了离散型随机变量的期望与方差,考查了两点分布,考查了大小比较,主要考查分析和解决问题的能力,属于中档题8(4分)已知函数f(x)=(a≠0)的部分图象如图所示,则()A a<0B a﹣c>0C b﹣c<0 D3a﹣2b+c<0【分析】求出原函数的导函数,结合图象可得导函数根的分布,再由二次函数根的分布与系数的关系逐一分析四个选项得答案【解答】解:由f(x)=(a≠0),得f′(x)=,令﹣ax2+(2a﹣b)x+b﹣c=0,由图可知该方程一个根在(﹣1,0)之间,一个根大于1 且二次函数g(x)=﹣ax2+(2a﹣b)x+b﹣c的图象开口向下,则a>0,故A错误;g(0)=b﹣c>0,故C错误;g(1)=a﹣c>0,故B正确;g(﹣1)=﹣3a+2b﹣c<0,则3a﹣2b+c>0,故D错误故选:B【点评】本题考查函数的图象与图象变换,考查函数的单调性与导函数符号间的关系,考查二次函数根的分布与系数的关系,是中档题9(4分)已知椭圆,F1,F2分别是椭圆的左、右焦点,A是椭圆的下顶点,直线AF2交椭圆于另一点P,若|PF1|=|PA|,则椭圆的离心率为()A B C D【分析】画出图形,利用椭圆的性质,结合已知条件,通过余弦定理求解三角形求解即可【解答】解:椭圆,F1,F2分别是椭圆的左、右焦点,A是椭圆的下顶点,直线AF2交椭圆于另一点P,可得|AF1|=|AF2|=a,|PF1|+|PF2|=2a,若|PF1|=|PA|,所以|PF2|=a,|PF1|=a,cos∠APF1==,可得:a2=3c2,所以椭圆的离心率为:故选:A【点评】本题考查椭圆的简单性质的应用,三角形的解法,余弦定理的应用,是基本知识的考查10(4分)如图,三棱锥V﹣ABC的侧棱长都相等,底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,E为线段AC的中点,F为直线AB上的动点,若平面VEF与平面VBC 所成锐二面角的平面角为θ,则cosθ的最大值是()A B C D【分析】连接BE,以E为坐标原点,分别以EB,EC,EV所在直线为x,y,z轴建立空间直角坐标系求出平面VBC与平面VEF的一个法向量,由两法向量所成角的余弦值求解【解答】解:由底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,得Rt△ABC≌Rt△AVC,∴VA=VC=BA=BC设VA=VC=BA=BC=2,由E为线段AC的中点,可得VE=EB=由VE2+BE2=VB2,可得VE⊥EB以E为坐标原点,分别以EB,EC,EV所在直线为x,y,z轴建立空间直角坐标系则C(0,,0),B(,0,0),V(0,0,),设F(x,x﹣,0),,,,设平面VBC的一个法向量为,由,取x=1,得;设平面VEF的一个法向量为,由,取y1=1,得平面VEF与平面VBC所成锐二面角的平面角为θ,则cosθ==令f(x)=当x=时,f(x)min=3∴cosθ的最大值为故选:D【点评】本题考查利用空间向量法求二面角,考查空间想象能力与运算求解能力,关键是建立恰当的空间直角坐标系,是中档题二、填空题(本大题共7小题,共36分,单空题每题4分,多空题每题6分)11(4分)新型冠状病毒疫情期间,5位党员需要被安排到3个不同的路口执勤,每个路口至少安排一人,其中党员甲和乙不能被安排到同一个路口,那么总共有114 种不同安排方法(用数字作答)【分析】分3,1,1和2,2,1两类,每类中用间接法先不考虑甲乙直接用排列组合数公式求出安排方法,再减去甲乙在一个路口的分法,最后把求出的两类相加即可【解答】解:分为两类:第一类有一路口分3人时,用间接法先随意分然后减去甲乙在一起的分法应有C A﹣C C A=42种;有两路口分2人时,用间接法先随意分然后减去甲乙在一起的分法应有A﹣C C A=72种,则由加法原理共有42+72=114种故答案为:114【点评】本题考查基本原理,排列组合数公式的应用,用间接法解决该题可避免讨论,简化运算,属于中档题12(4分)已知a∈R,若函数在区间x∈(1,2)上存在最小值,则a的取值范围是【分析】当a>0时,由函数的单调性可知y=在(1,2)内的范围,结合题意得到关于a的不等式组求解;当a=0时,由函数的单调性可知不合题意;当a<0时,结合对勾函数的性质可确定最值点所满足的范围【解答】解:当a>0时,y=在(1,2)上单调递增,可得<y<,若函数在区间x∈(1,2)上存在最小值,则,即f(x)min=0,得<a<;当a=0时,f(x)=,在(1,2)上单调递增,不存在最小值,不合题意;当a<0时,=,∵x∈(1,2),∴e x∈(e,e2),又(当且仅当,即时取等号),∴若函数在区间x∈(1,2)上存在最小值,则e<<e2,解得<a<∴a的取值范围是故答案为:【点评】本题考查利用函数在区间内的最值求解参数的范围问题,关键是通过分类讨论的方式根据函数的单调性确定参数在不同范围时,函数的最值点或区间端点值的符号,由此构造不等式求解结果,属难题13(4分)已知△ABC三边长分别为3,,,P是平面ABC内任意一点,则的最小值是【分析】====当,即P是△ABC的重心时取等号然后分类求解的值,则的最小值可求【解答】解:====当,即P是△ABC的重心时取等号△ABC三边长分别为3,,,若|BC|=,则,此时原式=;若|BC|=3,则,此时原式=;若|BC|=,则,此时原式=∴的最小值是故答案为:﹣【点评】本题考查平面向量的线性运算,向量的数量积运算,考查运算求解能力,是中档题14(6分)我国古代数学名著《算法统宗》中有如下描述:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍请问塔顶层有 3 盏灯,塔底层有192 盏灯【分析】设从上向下的灯的数记为{a n},数列{a n}是以2为公比的等比数列且S7=381,结合等比数列的求和公式可求a1,进而可求【解答】解:设从上向下的灯的数记为{a n},则数列{a n}是以2为公比的等比数列且S7==381,解可得,a1=3,所以a7=3×26=192故答案为:3,192【点评】本题主要考查了等比数列的求和公式及通项公式的简单应用,属于基础试题15(6分)已知复数z满足z(1+i)=﹣2+i(i为虚数单位),则z的虚部是,|z|=【分析】利用复数的运算法则求出z,再由复数虚部,模的定义即可得出【解答】解:因为z(1+i)=﹣2+i,所以z====﹣+i,则z的虚部是,|Z|==,故答案是,【点评】本题考查了复数的运算法则、复数的虚部,模的定义,属于基础题16(6分)已知多项式(x2+1)(x﹣1)5=a0+a1(x+2)+a2(x+2)2+…+a7(x+2)7=b0+b1x+b2x2+…+b7x7,则a0+a1+a2+…+a7=﹣64 ,b5=11【分析】令x=﹣1可求第一个空,根据b5为x5的系数;求出第二个空【解答】解:∵令(x2+1)(x﹣1)5=a0+a1(x+2)+a2(x+2)2+…+a7(x+2)7;令x=﹣1可得2×(﹣2)5=a0+a1+a2+…+a7;即a0+a1+a2+…+a7=﹣64;∵(x2+1)(x﹣1)5=b0+b1x+b2x2+…+b7x7,∴b5为x5的系数;含x5的项为:x2•x3•(﹣1)2+1×x5=11x5;故b5=11;故答案为:﹣64,11【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,式子的变形是解题的关键,属于中档题17(6分)已知圆O:x2+y2=4,过点作两条互相垂直的直线l1,l2,其中l1交该圆于A,B两点,l2交该圆于C,D两点,则|AB|的最小值是 2 ,|AB|+|CD|的最大值是【分析】先由弦长最小只需圆心到直线的距离最远⇒弦长|AB|的最小值;然后对直线l1的斜率的情况进行讨论,求得|AB|+|CD|,研究其最大值即可【解答】解:若|AB|长度最小,则圆心到直线l1距离d最长,所以直线l1⊥OP,d max=,所以|AB|min=2=2①当直线l1斜率不存在时,由上可知|AB|=2,|CD|=4,此时|AB|+|CD|=6;②当直线l1斜率为0时,可得:|AB|=4,|CD|=2,此时|AB|+|CD|=6;③当直线l1斜率存在时,设直线l1方程为:y=k(x﹣),此时直线l2方程为:y=﹣(x﹣),∵圆心O到直线l1的距离d1=,∴|AB|=2=2=2=2,同理|CD|=2=2=2,令=t,则t∈(0,3),此时|AB|+|CD|=2(+)=2=2,t∈(0,3),易知当t=时,|AB|+|CD|的最大值为2故答案分别为:2;2【点评】本题主要考查圆中的弦长公式及弦长之和的最值问题,属于中档题四、解答题(本大题共5小题,共74分)18已知函数(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在上的最大值,并求此时的x值【分析】(Ⅰ)利用三角函数关系式的变换的应用和正弦型函数的性质的应用求出结果(Ⅱ)利用函数的定义域的应用求出函数的值域【解答】解:(Ⅰ),=,=,∴T=π(Ⅱ),所以所以即所以f(x)的最大值为当,即x=时,函数f(x)取得最大值【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型19如图,已知三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB=AC=BC=PA=2,∠PAC=120°,(Ⅰ)证明:BM⊥PC;(Ⅱ)求直线AB和平面PBC所成角的正弦值【分析】解法一:(1)取AC的中点E,PC的中点F,连AF,ME,BE,证明AF⊥PC,ME ⊥PC,证明BE⊥AC,BE⊥PC推出PC⊥面MBE,说明PC⊥BM(2)过E作EH⊥MB垂足为H,EH即是E到面PBC的距离,通过求解三角形求解即可解法二:(1)取AC的中点E,连ME、EB,证明BE⊥PC,推出PC⊥面MBE,即可证明PC ⊥BM(2)过P作PO⊥CA交其延长线于O,连BO可得PB2=PO2+BO2,令A到面PBC的距离为h O,通过V A﹣PBC=V P﹣ABC,求出h O,转化求解AB与面PBC所成角的正弦值解法三:(1)取AC的中点O,建立如图所示的坐标系,通过,推出BM⊥PC,(2)求出面PBC的法向量,利用空间向量的数量积求解AB与面PBC所成角的正弦值【解答】解法一:(1)取AC的中点E,PC的中点F,连AF,ME,BE∵PA=AC,∴AF⊥PC,又∵,∴M是CF的中点,∴AF∥ME,ME⊥PC,又∵AB=BC,∴BE⊥AC,又∵面PAC⊥面ABC且二平面交于AC,∴BE⊥面PAC,BE⊥PC又∵ME∩BE=E,∴PC⊥面MBE,∴PC⊥BM(2)由①知PC⊥面MBE,∴面MBE⊥面PBC且交于MB,∴过E作EH⊥MB垂足为H,EH 即是E到面PBC的距离,∵BE⊥ME,∴,又∵E是AC的中点,∴A到面PBC的距离,∴AB与面PBC所成角的正弦值为解法二:(1)取AC的中点E,连ME、EB,∵AB=BC=2,∴BE⊥AC,CE=1,又∵面PAC⊥面ABC且交于AC∴BE⊥面PAC,∴BE⊥PC,∵PA=AC=2,∠PAC=120°,又∵,∴,∠PCA=∠APC=30°,∵,∴,CM⊥ME,∴PC⊥面MBE,PC⊥BM(2)过P作PO⊥CA交其延长线于O,∵面PAC⊥面ABC且交于AC,∴PO⊥面ABC,连BO可得PB2=PO2+BO2,又∵AC=AP=2,∠PAC=120°,∴,,AO=1,又∵,∴,∴,∴,∴,令A到面PBC的距离为h O,则V A﹣PBC=V P﹣ABC∴,,∴AB与面PBC所成角的正弦值为解法三:(1)取AC的中点O,建立如图所示的坐标系,由已知可得,,∴,,∴∴BM⊥PC,(2)由(1)可知,设面PBC的法向量为,则,令y=1,则,z=3,,∴AB与面PBC所成角的正弦值为【点评】本题考查直线与平面垂直的判断定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力,是中档题20已知数列{a n}满足:a1=1,(2n+1)2a n=(2n﹣1)2a n+1(n∈N*)正项数列{c n}满足:对每个n∈N*,c2n﹣1=a n,且c2n﹣1,c2n,c2n+1成等比数列(Ⅰ)求数列{a n},{c n}的通项公式;(Ⅱ)当n≥2时,证明:【分析】(Ⅰ)先由题设条件⇒{}为常数列,进而求得a n,再由题设条件分别求出当n为奇数、偶数时的c n,即可求得a n与c n;(Ⅱ)分别利用放缩法、裂项相消法求证出与即可【解答】解:(Ⅰ)解:由已知可得:,即,∴{}为常数列,∴,又a1=1,∴又∵,∴(n为奇数);又∵c2n﹣1,c2n,c2n+1是等比数列,∴,∴c2n =(2n﹣1)•(2n+1),∴(n是偶数),综上可得,c n=(Ⅱ)证明:先证:①当n=2时,,显然成立;②当n≥3时,,∴n≥3时,,∴==再证:①n=2时,左边=,右边=,成立;②n≥3时,==﹣综上,所以【点评】本题主要考查构造法求数列通项公式及利用放缩法、裂项相消法证明不等式,难度较大21已知点F是抛物线C:x2=4y的焦点,P是其准线l上任意一点,过点P作直线PA,PB 与抛物线C相切,A,B为切点,PA,PB与x轴分别交于Q,R两点(Ⅰ)求焦点F的坐标,并证明直线AB过点F;(Ⅱ)求四边形ABRQ面积的最小值【分析】(I)解法一:F(0,1),设,求出PA的方程,PB的方程,通过P在PA,PB上,得到说明直线AB过焦点F(I)解法二:F(0,1),设AB直线方程为y=kx+m,通过得x2﹣4kx﹣4m=0,利用韦达定理,切线方程求出m,即可说明结果(II)由(I)知,代入C:x2=4y得x2﹣2x0x﹣4=0,通过韦达定理以及弦长公式,点到直线的距离求解三角形的面积,利用函数的单调性求解最小值即可【解答】解:(I)解法一:F(0,1),设,则即同理又P在PA,PB上,则,所以所以直线AB过焦点F(I)解法二:F(0,1),设AB直线方程为y=kx+m,则由得x2﹣4kx﹣4m=0,所以x1+x2=4kx1•x2=﹣4m,过A的切线方程为,过B的切线方程为,所以交点P的坐标为因为P在直线y=﹣1上,所以x1•x2=﹣4m=﹣4,所以m=1即直线过焦点F(II)由(I)知,代入C:x2=4y得x2﹣2x0x﹣4=0,则,则,P到AB的距离,所以,由(1)知,则,所以,令,则,在[2,+∞)上是增函数,则四边形ABRQ面积的最小值为3【点评】本题考查直线与抛物线的位置关系的综合应用,切线方程的求法以及函数的单调性的判断,最值的求法,考查分析问题解决问题的能力,是难题22已知a∈R,设函数f(x)=ax2﹣(3a+4)x+6lnx+6,g(x)=3ax(Ⅰ)试讨论f(x)的单调性;(Ⅱ)设函数h(x)=f(x)+g(x),是否存在实数a,使得h(x)存在两个极值点x1,x2,且满足?若存在,求a的取值范围;若不存在,请说明理由注:ln3≈1.10【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出h(x)的解析式,求出h(x)的导数,结合题意得到=a(x1+x2)﹣4+,令t=>1,则=﹣2+,问题转化为8tlnt﹣3(t2﹣1)ln3>0,构造函数,根据函数的单调性判断即可【解答】解:(Ⅰ)f(x)的定义域是(0,+∞),f′(x)=,(i)若a≤0,则ax﹣2<0,则f(x)在(0,)递增,在(,+∞),(ii)若0<a<,则f(x)在(0,)递增,在(,)递减,在(,+∞)递增,(iii)若a=,则f(x)在(0,+∞)递增,(iV)若a>,则f(x)在(0,)递增,在(,)递减,在(,+∞)递增;(Ⅱ)h(x)=f(x)+g(x)=ax2﹣4x+6lnx+6,h′(x)=2ax﹣4+=,若y=h(x)有2个极值点,则ax2﹣2x+3=0有2个解x1,x2,则x1+x2=,x1x2=,且△=4﹣12a>0,x1>0,x2>0,故0<a<,则=a(x1+x2)﹣4+,令t=>1,则x1﹣x2=(x1﹣x2)•=(x1﹣x2)(+)×=(t ﹣),∴=﹣2+,若>﹣2,则>,即8tlnt﹣3(t2﹣1)ln3>0,令m(t)=8tlnt﹣3(t2﹣1)ln3,m(3)=0,m(1)=0,m′(t)=8lnt+8﹣6tln3,m′(1)=8﹣6ln3>0,m′(3)=8﹣10ln3<0,m″(t)=,故y=m′(t)在(1,)递增,在(,+∞)递减,又m′(1)>0,m′(3)<0,则在区间(,3)内存在t0使得m′(t0)=0,函数y=m(x)在(1,t0)递增,在(t0,3)递减,由m(3)=0,m(1)=0,故t∈(1,3)时满足,=t+2+==,故a=∈(,),即实数a的范围是(,)【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,分类讨论思想,是一道综合题。
浙江省舟山市2021届新高考第三次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-;②//AE y 轴;③以BE 为直径的圆与抛物线准线相切.其中,所有正确判断的序号是( )A .①②③B .①②C .①③D .②③【答案】B【解析】【分析】由题意,可设直线DE 的方程为2x my =+,利用韦达定理判断第一个结论;将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-,进而判断第二个结论;设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M e 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线DE 的方程为2x my =+,代入抛物线C 的方程,有2480y my --=.设点B ,E 的坐标分别为()11,x y ,()22,x y ,则124y y m +=,128y y =-.所()()()21212121222244x x my my m y y m y y =++=+++=. 则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以①正确. 将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-,根据抛物线的对称性可知,A ,E 两点关于x 轴对称,所以直线//AE y 轴.所以②正确.如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M e 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线, 则12||||||222d d BF EF BE d R ++==>=.所以③不正确.故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.2.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( ) A .247- B .1731- C .247 D .1731【答案】B【解析】【分析】根据三角函数定义得到4tan 3α=,故24tan 27α=-,再利用和差公式得到答案. 【详解】∵角α的终边过点(3,4)P --,∴4tan 3α=,22tan 24tan 21tan 7ααα==--. ∴241tan 2tan 1774tan 2244311tan 2tan 1147παπαπα-++⎛⎫+===- ⎪⎝⎭-⋅+⨯. 故选:B .【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.3.若函数()()2(2 2.71828...x f x x mx e e =-+=为自然对数的底数)在区间[]1,2上不是单调函数,则实数m 的取值范围是( )A .510,23⎡⎤⎢⎥⎣⎦B .510,23⎛⎫ ⎪⎝⎭C .102,3⎡⎤⎢⎥⎣⎦D .102,3⎛⎫ ⎪⎝⎭【解析】【分析】求得()f x 的导函数()'f x ,由此构造函数()()222g x x m x m =+-+-,根据题意可知()g x 在(12),上有变号零点.由此令()0g x =,利用分离常数法结合换元法,求得m 的取值范围.【详解】()()2'22x f x e x m x m =+-+-⎡⎤⎣⎦,设()()222g x x m x m =+-+-, 要使()f x 在区间[]1,2上不是单调函数,即()g x 在(12),上有变号零点,令()0g x =, 则()2221x x m x ++=+, 令()12,3t x =+∈,则问题即1m t t =+在()2,3t ∈上有零点,由于1t t +在()2,3上递增,所以m 的取值范围是510,23⎛⎫ ⎪⎝⎭. 故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.4.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A .14 B .13 C .12 D .23【答案】B【解析】【分析】作出图形,设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,推导出11//B P C G ,由线面平行的性质定理可得出1//C G DF ,可得出点F 为11C D 的中点,同理可得出点E 为11A D 的中点,结合中位线的性质可求得11MD MB 的值.如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,Q 四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC Q 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形,11//B P C G ∴,1//B P Q 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α,此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行,所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂Q 平面11CDD C ,平面11CDD C I 平面DF α=,1//DF C G ∴,1//C F DG Q ,所以,四边形1C GDF 为平行四边形,可得1111122C E DG CD C D ===, F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =Q I ,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B.【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面α与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.5.已知ABC V 是边长为3的正三角形,若13BD BC =u u u r u u u r ,则AD BC ⋅=uuu r uu u rA .32-B .152 C .32 D .152- 【答案】A【解析】【分析】【详解】 由13BD BC =u u u r u u u r 可得13AD AB BD AB BC =+=+u u u r u u u r u u u r u u u r u u u r ,因为ABC V 是边长为3的正三角形,所以221113()33cos12033332AD BC AB BC BC AB BC BC ⋅=+⋅=⋅+=⨯︒+⨯=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,故选A . 6.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】A【解析】【分析】选取中间值0和1,利用对数函数3log y x =,0.2log y x =和指数函数2x y =的单调性即可求解. 【详解】因为对数函数3log y x =在()0,∞+上单调递增,所以33log 0.5log 10<=,因为对数函数0.2log y x =在()0,∞+上单调递减,所以0.20.20.20log 1log 0.3log 0.21=<<=,因为指数函数2xy =在R 上单调递增,所以0.30221>=,综上可知,a b c <<.故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型. 7.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( )A .12 B.CD【答案】D【解析】【分析】根据题意,求得,,A M B 的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,M 点为1AF 中点,1F 为BM 中点,故可得120F A M x x x +==,故可得A x c =; 代入椭圆方程可得22221c y a b +=,解得2b y a =±,不妨取2A b y a=, 故可得A 点的坐标为2,b c a ⎛⎫ ⎪⎝⎭, 则202b M a ⎛⎫ ⎪⎝⎭,,易知B 点坐标22,2b c a ⎛⎫-- ⎪⎝⎭, 将B 点坐标代入椭圆方程得225a c =故选:D.【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得,,A B M 点的坐标,属中档题. 8.已知实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34x y +的最小值为( )A .2B .3C .4D .5 【答案】B【解析】【分析】作出约束条件的可行域,在可行域内求34z x y =+的最小值即为34x y +的最小值,作34y x =-,平移直线即可求解.【详解】作出实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩的可行域,如图(阴影部分)令34z x y =+,则344z y x =-+, 作出34y x =-,平移直线,当直线经过点()1,0A 时,截距最小, 故min 3103z =⨯+=, 即34x y +的最小值为3.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题. 9.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈, 当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.10.设函数()f x 在定义城内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能为( )A .B .C .D .【答案】D【解析】【分析】根据()f x 的图象可得()f x 的单调性,从而得到()f x '在相应范围上的符号和极值点,据此可判断()f x '的图象.【详解】由()f x 的图象可知,()f x 在(),0-∞上为增函数,且在()0,∞+上存在正数,m n ,使得()f x 在()()0,,,m n +∞上为增函数,在(),m n 为减函数,故()f x '在()0,∞+有两个不同的零点,且在这两个零点的附近,()f x '有变化,故排除A ,B.由()f x 在(),0-∞上为增函数可得()0f x '≥在(),0-∞上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.11.已知函数()(2)3,(ln 2)()32,(ln 2)x x x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m 的取值范围是( )A .1,2e -⎛⎤-∞ ⎥⎝⎦ B .(,1]-∞ C .1,12e -⎡⎤⎢⎥⎣⎦ D .[ln 2,1]【答案】C【解析】【分析】求导分析函数在ln2x ≥时的单调性、极值,可得ln2x ≥时,()f x 满足题意,再在ln2x <时,求解()2f x e ≤+的x 的范围,综合可得结果.【详解】当ln2x ≥时,()()()'12x f x x e =---, 令()'0f x >,则ln21x <<;()'0f x <,则1x >,∴函数()f x 在()ln2,1单调递增,在()1,+∞单调递减.∴函数()f x 在1x =处取得极大值为()12f e =+,∴ln2x ≥时,()f x 的取值范围为(],2e -∞+,∴ln2m 1≤≤又当ln2x <时,令()322f x x e =-≤+,则12e x -≥,即1x ln22e -≤<, ∴1e 22m ln -≤< 综上所述,m 的取值范围为1,12e -⎡⎤⎢⎥⎣⎦. 故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.12.若平面向量,,a b c r r r ,满足||2,||4,4,||a b a b c a b ==⋅=-+=r r r r r r r ,则||c b -r r 的最大值为( )A .B .C .D .【答案】C【解析】【分析】 可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:()(2)c b c a b a b -=-++-r r r r r r r ,2222|2|(2)||4||444164452a b a b a b a b -=-=+⋅-⋅=+⨯-⨯=r r r r r r r r Q|2|a b ∴-=r r2222||()[()(2)]|()(2)|c b c b c a b a b c a b a b ∴-=-=-++-=-++-r r r r r r r r r r r r r r22|||2|2|||2|cos ,2c a b a b c a b a b c a b a b =-++-+⋅-+⋅-⋅<-++>r r r r r r r r r r r r r r r3522cos ,2c a b a b =++<-++>r r r r r55cos ,2c a b a b =+<-++>r r r r r55+…2555223+=+⨯=Q ,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.二、填空题:本题共4小题,每小题5分,共20分。