仪器分析概论
- 格式:ppt
- 大小:1.72 MB
- 文档页数:47
现代仪器分析知识点总结一、仪器分析概述1. 仪器分析的定义和作用仪器分析是指利用各种仪器设备进行化学成分、结构、性质、质量和数量等方面的分析研究,以求解决物质的组成、结构、性质和变化等问题。
仪器分析具有操作简便、分析速度快、分析结果准确等优点,可以广泛应用于工业生产、科学研究、环境监测等领域。
2. 仪器分析的发展历史仪器分析的发展可以追溯到古代的天平和显微镜等基本仪器,随着仪器技术的不断发展,如今涌现出了各种复杂的分析仪器,包括质谱仪、红外光谱仪、核磁共振仪等。
仪器分析的发展历程反映了人类对于物质分析的需求和技术水平的提高。
3. 仪器分析方法的分类根据分析过程中所涉及的原理和方法,仪器分析可以分为物理方法和化学方法两大类。
物理方法主要包括光谱分析、热分析、电化学分析等,而化学方法则包括非分散能谱、质谱分析、光谱法等。
二、基本仪器分析方法1. 光谱分析光谱分析是利用物质对电磁辐射的吸收、发射或散射进行分析的一种方法。
其中,包括原子吸收光谱法、原子发射光谱法、荧光光谱法、紫外-可见吸收光谱法等。
2. 热分析热分析是利用物质在不同温度下的变化规律进行分析的方法。
常见的热分析方法有热重分析、差热分析、热膨胀分析等。
3. 电化学分析电化学分析是利用电化学方法进行分析的一种分析方法。
常见的电化学分析方法包括电位滴定法、极谱法、电导率法等。
4. 质谱分析质谱分析是利用物质的质谱特征进行分析的一种方法。
它主要包括质谱仪分析、飞行时间质谱等。
5. 核磁共振分析核磁共振分析是利用核磁共振现象进行分析的一种方法。
通常用于确定有机分子结构及氢、氮、氧、氟、磷、硫等元素的位置。
三、常见的分析仪器1. 红外光谱仪红外光谱仪是一种常用的分子结构分析仪器,主要用于有机分子、聚合物、无机物、生物分子等的结构分析。
2. 质谱仪质谱仪是一种非常重要的分析仪器,主要用于快速、准确地判断化合物的结构、精确地测定分子的质量、元素组成和同位素丰度。
第一章绪论1.仪器分析是以物质的物理组成或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与被分析物质组成的内在关系和规律,进而对其进行定性、定量、进行形态和机构分析的一类测定方法,由于这类方法的测定常用到各种比较贵重、精密的分析仪器,故称为仪器分析。
与化学分析相比,仪器分析具有取样量少、测定是、速度快、灵敏、准确和自动化程度高的显著特点,常用来测定相对含量低于1%的微量、痕量组分,是分析化学的主要发展方向。
2.仪器分析的特点:速度快、灵敏度高、重现性好、样品用量少、选择性高局限性:仪器装置复杂、相对误差较大3.精密度:是指在相同条件下对同一样品进行多次测评,各平行测定结果之间的符合程度。
4、灵敏度:仪器或方法的灵敏度是指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的该变量,它受校正曲线的斜率和仪器设备本身精密度的限制。
5.准确度:是多次测定的平均值与真实值相符合的程度,用误差或相对误差来描述,其值越小准确度越高。
6.空白信号:当试样中没有待测组分时,仪器产生的信号。
它是由试样的溶剂、基体材质及共存组分引起的干扰信号,具有恒定性,可以通过空白实验扣除。
7.本底信号:通常将没有试样时,仪器所产生的信号主要是由随机噪声产生的信号。
它是由仪器本身产生的,具有随机性,难以消除,但可以通过增加平行测定次数等方法减小;、8.仪器分析法与化学分析法有何异同:相同点:①都属于分析化学②任务相同:定性和定量分析不同点:①与化学分析相比,仪器分析具有取样量少、测定快速、灵敏、准确和自动化程度高等特点②分析对象不同:化学分析是常量分析,而仪器分析是用来测定相对含量低于1%的微量、衡量组分,是分析化学的主要发展方向9.仪器分析主要有哪些分类:①光分析法:分为非光谱分析法和光谱法两类。
非光谱法:是不涉及物质内部能级跃迁的,通过测量光与物质相互作用时其散射、折射、衍射、干涉和偏振等性质的变化,从而建立起分析方法的一类光学分析法。
仪器分析法概论一、近代仪器分析的发展过程50年代仪器化;60年代电子化;70年代计算机化;80年代智能化;90年代信息化;21世纪是仿生化和进一步智能化。
二、化学分析法与仪器分析法的关系重量分析法化学分析法酸碱滴定法滴定分析法沉淀滴定法配位滴定法氧化还原滴定法天平的出现化学分析法的优点:准确、仪器简单、快速、适用于常量化学。
比色计、分光光度计出现光谱分析法-根据物质发射的电磁辐射或物质与辐射的相互作用建仪器分析法立起来的一类仪器分析方法。
(精密仪器)色谱分析法-是一种物理或物理化学分离分析方法。
仪器分析法的优点:灵敏、快速、准确、适用于微量和痕量分析。
第十一章光谱分析法概论1.定义:光学分析法是根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法。
2.光学分析法包含的三个主要过程:(1)由仪器设置的能源提供能量照射至被测物质。
(2)能量与被测物质之间相互发生作用。
(3)产生可被检测的讯号。
第一节 电磁辐射及其与物质的相互作用 (一)电磁辐射和电磁波谱1.光的波粒二象性:光是一种电磁辐射(电磁波),是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流,它具有波粒二象性。
(1)光的波动性:光的波动性用波长λ(nm )、波数σ(cm -1)和频率υ(Hz )表述。
在真空中,波长、波数和频率的关系为: ,C υλ= (11-1) 光速=光的频率×波长(11-2) 波数=1/波长(2)光的微粒性:用以解释光与物质相互作用产生的光电效应、光的吸收和发射等现象。
光的微粒性用每个光子具有的能量E 作为表征,光子的能量是与频率成正比,与波长成反比。
它与频率、波长和波数的关系为:从γ射线一直到无线电波都是电磁辐射,光是电磁辐射的一种形式,每个波段之间,由于波长或频率不同,光子具有的能量也不相同。
电磁辐射按照波长顺序的排列称为电磁波谱,电磁波谱的波长或能量是没有边际的,表11-1所示的电磁波谱只是排列出了已被人们认识了的几个主要波段。
仪器分析课件第1章:仪器分析概述1.1 仪器分析的定义1.1.1 仪器分析的概念1.1.2 仪器分析的历史发展1.2 仪器分析的基本原理1.2.1 仪器分析的基本概念1.2.2 仪器分析的分类和特点1.2.3 仪器分析的基本原理1.3 仪器分析的应用领域1.3.1 生物医药领域中的仪器分析1.3.2 环境监测中的仪器分析1.3.3 食品安全领域中的仪器分析1.3.4 能源领域中的仪器分析1.3.5 其他领域中的仪器分析第2章:常见仪器分析方法2.1 光谱分析法2.1.1 紫外可见光谱分析法2.1.2 红外光谱分析法2.1.3 质谱分析法2.1.4 核磁共振光谱分析法2.2 色谱分析法2.2.1 气相色谱分析法2.2.2 液相色谱分析法2.2.3 离子色谱分析法2.2.4 薄层色谱分析法2.3 电化学分析法2.3.1 电解法分析法2.3.2 电位法分析法2.3.3 极谱分析法2.3.4 电化学分析中的仪器设备2.4 质谱分析法2.4.1 质谱基本原理2.4.2 质谱原理及应用第3章:仪器分析的操作流程3.1 样品准备3.1.1 样品采集3.1.2 样品制备及处理3.2 仪器操作3.2.1 仪器的打开与关闭3.2.2 仪器的参数选择和调整 3.2.3 仪器的操作注意事项3.3 数据处理与分析3.3.1 数据采集与记录3.3.2 数据处理软件的使用 3.3.3 数据分析与解释第4章:仪器分析的常见问题与解决方法4.1 仪器故障与维护4.1.1 仪器常见故障原因4.1.2 仪器故障的排除方法4.1.3 仪器维护的注意事项4.2 数据异常及其处理4.2.1 数据异常的原因分析4.2.2 数据异常的处理方法4.3 实验误差及其控制4.3.1 实验误差的分类4.3.2 实验误差的产生原因4.3.3 实验误差的控制方法第5章:仪器分析的发展趋势5.1 仪器分析技术的创新5.1.1 新兴仪器分析技术的引入5.1.2 前沿仪器分析技术的研究进展5.2 仪器分析技术的应用推广5.2.1 实验室仪器的普及与应用5.2.2 仪器检测技术的应用领域扩展5.3 仪器分析技术的发展趋势5.3.1 仪器分析技术的自动化与智能化5.3.2 仪器分析技术在快速检测中的应用结语通过本课件的学习,你将了解到仪器分析的基本概念和原理,熟悉常见的仪器分析方法和操作流程,掌握解决仪器故障和数据异常的方法,了解仪器分析的发展趋势。
常用仪器分析方法概论仪器分析方法是一种利用仪器设备进行定性和定量分析的方法。
它在科学研究、工程应用、环境监测和质量控制等领域有广泛的应用。
本文将对常用的仪器分析方法进行概论,包括光谱仪器、色谱仪器、质谱仪器、电化学仪器和热分析仪器等。
光谱仪器主要用于物质的光谱分析,包括紫外可见光谱仪、红外光谱仪和核磁共振仪等。
紫外可见光谱仪主要用于有机化合物的分析,通过测量溶液的吸收光谱来确定化合物的结构和浓度。
红外光谱仪通过测量物质在红外光束作用下吸收和散射的光谱来确定物质的组成和结构。
核磁共振仪则通过测量样品中核自旋的磁共振来确定样品的结构和化学环境。
色谱仪器主要用于分离和检测化合物混合物中的成分。
常见的色谱仪包括气相色谱仪和液相色谱仪。
气相色谱仪利用气体作为载气来带动样品分离,通过分离柱将样品中的各种成分分离出来,并通过传感器对其进行检测。
液相色谱仪则利用液相作为载液将样品分离,并通过检测器检测其成分。
质谱仪器主要用于分析化合物的质量和分子结构。
质谱仪通过将样品的分子转化为电离态,并通过电磁场的加速和偏转来分析质量和结构。
常见的质谱仪包括质谱仪和电喷雾质谱仪。
质谱仪利用磁场和电磁波来分析样品的质谱图,并通过质谱图来确定样品的分子结构和质量。
电喷雾质谱仪则适用于大分子和生物分子的分析,通过电喷雾技术将样品转化为气态离子,并通过质谱仪来分析其质谱图。
电化学仪器主要用于测量和分析电化学反应和电解质溶液中的化学物质。
常见的电化学仪器包括电位计、离子电导仪和电解池等。
电位计主要用于测量电解池中的电势,通过测量电势来确定样品的浓度和电势差。
离子电导仪则用于测量电解质溶液中的离子浓度和电导性。
电解池通过电解反应来分析和检测样品中的成分,可以用于分析有机化合物、金属离子和无机离子等。
热分析仪器主要用于测量和分析样品在不同温度下的物理和化学性质。
常见的热分析仪器包括差示扫描量热仪、热重分析仪和热导率仪等。
差示扫描量热仪通过测量样品在不同温度下的热流量来确定样品的热性质和热反应。