数列求和方法归纳
- 格式:doc
- 大小:350.50 KB
- 文档页数:8
数列求和的根本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法〔合并法求和〕 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个根本方法。
数列是高中代数的重要容,又是学习高等数学的根底. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的根本方法和技巧. 一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 〔利用常用公式〕=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n 〔利用常用公式〕 ∴1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②〔设制错位〕 ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 〔错位相减〕再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 函数〔1〕证明:;〔2〕求的值.解:〔1〕先利用指数的相关性质对函数化简,后证明左边=右边 〔2〕利用第〔1〕小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 〔分组〕 当a =1时,2)13(n n n S n -+==2)13(nn + 〔分组求和〕当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n 〔分组求和〕 =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 〔7〕)11(1))((1CAn B An B C C An B An a n +-+-=++=〔8〕n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111〔裂项〕则 11321211+++⋅⋅⋅++++=n n S n 〔裂项求和〕=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n 〔裂项〕∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n 〔裂项求和〕=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法〔合并法求和〕针对一些特殊的数列,将*些项合并在一起就具有*种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假设103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的构造及特征进展分析,找出数列的通项及其特征,然后再利用数列的通项提醒的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项及特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n 〔找通项及特征〕=])4)(3(1)4)(2(1[8+++++⋅n n n n 〔设制分组〕=)4131(8)4121(4+-+++-+⋅n n n n 〔裂项〕∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n 〔分组、裂项求和〕 =418)4131(4⋅++⋅ =313 提高练习:1.数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c n nn ,求证:数列{}n c 是等差数列; 2.设二次方程n a *2-n a +1*+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122*N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。
数列求和的九种方法数列求和是数学中的一项基本技巧,在解题过程中经常会遇到。
为了求和一个数列,我们需要确定数列的通项公式,即根据数列中的规律找到一个表示该数列的函数。
在数列求和的过程中,有许多不同的方法可以使用。
下面将介绍九种常见的数列求和方法:逐项相加法、换元法、望眼法、边缘和法、归纳法、递推法、辅助行法、减法求和法和计算机辅助法。
1.逐项相加法逐项相加法是最基本的数列求和方法,即将数列中的每一项相加得到总和。
这种方法适用于数列的项数较少且没有明显的规律的情况。
2.换元法换元法是将数列中的每一项用一个新的变量表示,从而简化数列求和。
通过代入和逆代(将通项公式反解为原始项)两种方法,将数列求和转化为变量求和,从而计算出数列的总和。
3.望眼法望眼法是通过观察数列中的规律,寻找数列中的重复子列来简化求和。
通过找到重复子列后可以将数列分解为几个相同的子列求和,从而简化计算。
4.边缘和法边缘和法是将数列中的每一项的和用前面项的和表示,从而将数列求和转化为前缀和的计算。
该方法适用于数列中的每一项与前面的项之间有明显的关系的情况。
5.归纳法归纳法是通过数学归纳法的思想,利用数列的递推关系来计算数列的总和。
通过假设前n-1项的和为Sn-1,并推导得到前n项的和Sn的表达式,从而计算数列的总和。
6.递推法递推法是通过数列的递推关系来计算数列的总和。
通过将数列中的每一项与前面的项之间的关系列出,从而将数列的求和转化为递推关系的计算。
7.辅助行法辅助行法是将数列构造成一个表格的形式,通过辅助行的计算来求解数列的总和。
通过辅助行的计算,可以将原本复杂的数列求和转化为简单的表格求和。
8.减法求和法减法求和法是通过将数列求和转化为数列的差的求和来计算数列的总和。
通过将数列中相邻项之间的差进行求和,从而求解数列的总和。
9.计算机辅助法计算机辅助法是利用计算机的计算能力来求解复杂的数列求和问题。
通过编写计算机程序来实现数列求和,从而计算出数列的总和。
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。
本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。
通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。
一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。
求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。
二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。
求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。
三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。
求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。
四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。
求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。
五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。
求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。
六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。
求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。
七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。
这七种基本的数列求和方法能够解决大部分数列求和问题。
数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
数列求和各种方法总结归纳数列求和是数学中常见的问题之一,涉及到很多的方法和技巧。
下面我将对几种常见的数列求和方法进行总结归纳。
一、等差数列求和等差数列是指数列中相邻两项的差都相等的数列。
我们可以通过以下几种方法来求等差数列的和:1. 公式法:对于等差数列求和的最常用的方法是通过公式来求和。
等差数列的和可以表示为:S = (a1 + an) * n / 2,其中a1为首项,an为末项,n为项数。
2.差分法:我们可以通过差分法来求等差数列的和。
即将数列中相邻两项的差列示出来,并求和,这样就变成了一个等差数列求和的问题。
例如对于数列1,3,5,7,9,差分后得到的数列是2,2,2,2,再求和得到83.数学归纳法:我们可以通过数学归纳法来求等差数列的和。
首先假设等差数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。
例如对于数列1,3,5,7,9,我们可以假设Sn=1+3+5+7+9,然后通过归纳可以得到Sn+1=1+3+5+7+9+11=Sn+a(n+1),其中a(n+1)为数列的第n+1项,最终求得Sn=n^2二、等比数列求和等比数列是指数列中相邻两项的比相等的数列。
我们可以通过以下几种方法来求等比数列的和:1.公式法:对于等比数列求和的最常用的方法是通过公式来求和。
等比数列的和可以表示为:S=a*(1-r^n)/(1-r),其中a为首项,r为公比,n为项数。
需要注意的是,当r小于1时,求和公式仍然成立。
当r等于1时,等比数列的和为a*n。
2.求导法:我们可以通过对等比数列求导来求和。
对等比数列进行求导得到的结果是一个等差数列,然后再对等差数列进行求和就可以求得等比数列的和。
3.数学归纳法:和等差数列一样,我们也可以通过数学归纳法来求等比数列的和。
首先假设等比数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。
三、递推数列求和递推数列是指数列中每一项都是由前面一项或几项推出来的。
数列求和方法总结数列求和是数学中一个非常常见且重要的问题,它出现在各个领域的数学问题中,并且在高中数学及以上的学习中经常遇到。
在解决数列求和问题时,我们可以通过多种方法,其中包括代入法、消元法、几何法、差分法、数学归纳法等等。
下面我将对这些方法进行详细的总结与说明。
1. 代入法:代入法是一种常见的求和方法。
我们可以通过代入来求和项的个数和具体数值。
首先,我们需要确定数列的通项公式,然后将要求和的项数具体代入到通项公式中,求出每一项的数值,最后再将这些数值相加即可得到所求的数列的和。
例如,要求等差数列1、3、5、7、9的前n项和,我们可以先找到通项公式为an=2n-1,然后代入每一项的数值,得到1、3、5、7、9,最后相加得到的和为(1+9)*5/2=25。
2. 消元法:消元法是一种常用的数学方法,在求和问题中也有广泛应用。
通过对求和式进行变形,我们可以通过消除多项式的常数项、控制变量项或者引入新的变量来简化求和的步骤,从而得到更简单的表达式。
例如,要求等差数列1、2、3、4、5的前n项和,我们可以通过对求和式进行变形,得到Sn=(n+1)*n/2。
3. 几何法:几何法是一种求解数列求和的常见方法,它通常适用于等比数列求和问题。
当数列的各项之间的比值存在规律时,我们可以通过将数列的各项代入到几何模型中来计算求和的方法。
例如,要求等比数列1、2、4、8、16的前n项和,我们可以将这些数列代入等比数列的几何模型中,即1、2、2^2、2^3、2^4,可见,这是一个以2为公比的等比数列。
根据等比数列的求和公式Sn=a1*(r^n-1)/(r-1),代入数值可得到所求的和。
4. 差分法:差分法是一种通过对数列进行差分来求和的方法。
它通常适用于数列之间的差为常数或规律的数列,通过对数列进行差分可以简化求和的过程。
例如,要求等差数列1、3、5、7、9的前n项和,我们可以通过差分法来解决,即将数列进行差分得到2、2、2、2,可以发现这是一个公差为2的等差数列。
数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
2、倒序相加法。
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
3、分组求和法。
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
4、错位相减法。
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
5、裂项相消法。
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
6、乘公比错项相减(等差×等比)。
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
7、公式法。
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
8、迭加法。
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
数列求和方法归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII数列求和一、直接求和法(或公式法)掌握一些常见的数列的前n 项和:123+++……+n=(1)2n n +,1+3+5+……+(2n-1)=2n 2222123+++……+n =(1)(21)6n n n ++,3333123+++……+n =2(1)2n n +⎡⎤⎢⎥⎣⎦等. 例1 求2222222212345699100-+-+-+--+.解:原式22222222(21)(43)(65)(10099)3711199=-+-+-++-=++++.由等差数列求和公式,得原式50(3199)50502⨯+==.变式练习:已知3log 1log 23-=x ,求............32+++++n x x x x 的前n 项和. 解:1-n21二、倒序相加法此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.例2 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++. 两式相加,得 2111105S S =+++=∴=,.三、裂项相消法常见的拆项公式有:1()n n k =+111()k n n k -+ =1k,1(21)(21)n n =-+111()22121n n --+,等.例3 已知222112(1)(21)6n n n n +++=++,求 22222222235721()11212312n n n*+++++∈++++++N 的和. 解:22221216112(1)(1)(21)6n n n a n n n n n n ++===++++++,11161223(1)111116122311611ln .1n S n n n n n n ⎡⎤∴=+++⎢⎥⨯⨯+⎣⎦⎡⎤⎛⎫⎛⎫=-+-++-⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦⎛⎫=- ⎪+⎝⎭=+小结:如果数列{}n a 的通项公式很容易表示成另一个数列{}n b 的相邻两项的差,即1n n n a b b +=-,则有11n n S b b +=-.这种方法就称为裂项相消求和法.变式练习:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S.解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n四、错位相减法源于等比数列前n 项和公式的推导,对于形如{}n n a b 的数列,其中{}n a 为等差数列,{}n b 为等比数列,均可用此法.例4 求2335(21)n x x x n x ++++-的和.)1(2)1(=+a n n 解:当1x ≠时,21122(1)(21)1(1)1n n n x x x n x S x x x-+--=+----; 当1x =时,2n S n =. 小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}n b 的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和.变式练习:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。
解:(1)若a=0, 则S n =0 (2)若a=1,则S n =1+2+3+…+n=(1)2n n + (3)若a ≠0且a ≠1则S n =a+2a 2+3a 3+4a 4+…+ na n , ∴aS n = a 2+2 a 3+3 a 4+…+na n+1∴(1-a) S n =a+ a 2+ a 3+…+a n - na n+1=∴S n = 当a=0时,此式也成立。
∴S n =五、分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例5 求数列11111246248162n n ++,,,,,的前n 项和n S .23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭. 变式练习:求数列11111,2,3,4,392781的前n 项和解:211223nn n ++-⋅ 数列求和基础训练1.等比数列{}n a 的前n项和S n=2n-1,则2232221na a a a ++++ =413n -2.设1357(1)(21)n n S n =-+-+-+--,则n S= (1)n n -⋅.111++---n n na a aa )1(1)1(121≠----++a anaa a a n n )1(1)1(121≠----++a ana a a a n n3.1111447(32)(31)n n +++=⨯⨯-⨯+31n n +. 4.1111...243546(1)(3)n n ++++•••++= 1111122323n n ⎛⎫+-- ⎪++⎝⎭5. 数列2211,(12),(122),,(1222),n -+++++++的通项公式n a =12-n ,前n 项和n S =221--+n n6 . ;,212,,25,23,2132 n n -的前n 项和为 2332n n n S +=-数列求和提高训练1.数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有:a m +n =a m +a n +mn ,则=++++20083211111a a a a ( A ) A .20094016B .20092008C .10042007D .20082007解:∵a m +n =a m +a n +mn ,∴a n +1=a n +a 1+n =a n +1+n ,∴利用叠加法得到:2)1(+=n n a n ,∴)111(2)1(21+-=+=n n n n a n , ∴)200911(2)20091200813121211(211112008321-=-++-+-=++++ a a a a 20094016=.2.数列{a n }、{b n }都是公差为1的等差数列,若其首项满足a 1+b 1=5,a 1>b 1,且a 1,b 1∈N *,则数列{n b a }前10项的和等于 ( B )A .100B .85C .70D .55解:∵a n =a 1+n -1,b n =b 1+n -1 ∴n b a =a 1+b n -1=a 1+(b 1+n ―1)―1=a 1+b 1+n -2=5+n -2=n +3 则数列{n b a }也是等差数列,并且前10项和等于:85102134=⨯+ 答案:B.3.设m =1×2+2×3+3×4+…+(n -1)·n ,则m 等于 ( A )A.3)1(2-n nB.21n (n +4)C.21n (n +5)D.21n (n +7)3.解:因为 a n = n 2 - n .,则依据分组集合即得. 答案;A.4.若S n =1-2+3-4+…+(-1)n -1·n ,则S 17+S 33+S50等于 ( A ) A.1 B.-1 C.0 D.2解:对前n 项和要分奇偶分别解决,即: S n =⎪⎪⎩⎪⎪⎨⎧-+)(2)(21为偶为奇n n n n答案:A5.设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则{c n }的前10项和为 ( A ) A.978 B.557 C.467 D.979 解 由题意可得a 1=1,设公比为q ,公差为d ,则⎩⎨⎧=+=+2212d q d q∴q 2-2q =0,∵q ≠0,∴q =2,∴a n =2n -1,b n =(n -1)(-1)=1-n,∴c n =2n -1+1-n,∴S n =978. 答案:A6. 若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10= ( A )A .15 B.12 C .-12D.-15解析 A 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.7.一个有2001项且各项非零的等差数列,其奇数项的和与偶数项的和之比为 解: 设此数列{a n },其中间项为a 1001,则S 奇=a 1+a 3+a 5+…+a 2001=1001·a 1001,S 偶=a 2+a 4+a 6+…+a 2000=1000a 1001. 答案: 100010018.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=.6326)12()1(23n n n n n n +-=-•-答案:61;21;31-9.已知等差数列{a n }的首项a 1=1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{b n }的第二、三、四项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对任意自然数n 均有1332211+=++++n nn a b c b c b c b c 成立. 求c 1+c 2+c 3+…+c 2014的值.解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,可得b n =3n -1(2)当n =1时,c 1=3; 当n ≥2时,由n n nna abc -=+1,得c n =2·3n -1, 故⎩⎨⎧≥⋅==-).2(32),1(31n n c n n 故c 1+c 2+c 3+…+c 2014=3+2×3+2×32+…+2×32002=32015.10.设数列{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列 ⎭⎬⎫⎩⎨⎧n S n 的前n 项和,求T n .解析 设等差数列{a n }的首项为a 1,公差为d ,则S n =na 1+12n (n -1)d .∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1.∴S n n =a 1+12(n -1)d =-2+12(n -1). ∴S n +1n +1-S n n =12, ∴数列⎭⎬⎫⎩⎨⎧n S n 是首项为-2,公差为12的等差数列. ∴T n =14n 2-94n .11.已知数列{a n }的首项a 1=23,a n +1=2a na n +1(1)证明:数列⎭⎬⎫⎩⎨⎧-11n a 是等比数列;(2)求数列⎭⎬⎫⎩⎨⎧n a n 的前n 项和S n .解析 (1)∵a n +1=2a n a n +1,∴1a n +1=a n +12a n =12+12a n ,∴1a n +1-1=⎪⎪⎭⎫ ⎝⎛-1121na,又a 1=23, ∴1a 1-1=12≠0,∴1a n -1≠0,∴1a n +1-11a n -1=12,∴数列⎭⎬⎫⎩⎨⎧-11n a 是以12为首项,12为公比的等比数 (2)由(1)知1a n -1=12·nn ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=21211即1a n =12n +1∴n a n=n 2n +n .设T n =12+222+323+…+n 2n .......①则12T n =122+223+…+n -12n +n 2n +1 ....... ② , ①-②得12T n =12+122+123+…+12n -n2n +1 =21121121-⎪⎭⎫ ⎝⎛-n -n 2n +1=1-12n -n 2n +1,∴T n =2-12n -1-n 2n =2-2+n 2n .又∵1+2+3+…+n =n (n +1)2, ∴ 数列⎭⎬⎫⎩⎨⎧nan 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .。