七年级数学科期中检测题上期
- 格式:doc
- 大小:128.50 KB
- 文档页数:7
成都市实验外国语学校2024-2025学年度上期期中考试七年级数学试题(共1张4页,考试时间:120分钟,满分150分)A 卷(满分100分)一、选择题(本大题共8个小题,每小题4分,共32分). 1.2024的相反数是( ▲ ) A .2024B .2024C .12024D .120242.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10C 记作10C ,则8C 表示气温为( ▲ ) A .零上8C B .零下8C C .零上2C D .零下2C 3.今年的十一假期,全社会区域人员流动量约20.03亿人次,将20.03亿用科学记数法表示为( ▲ ) A .82.00310B .102.00310C .92.00310D .820.03104.下列几何体中,从上面看是三角形的是( ▲ )A .B .C .D .5.下列结论正确的是( ▲ )A .单项式24xy 的系数是14,次数是4B .多项式2223x xy 是二次三项式C .单项式m 的次数是1,没有系数D .单项式2xy z 的系数是1,次数是46.某企业今年1月份产值为a 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( ▲ )A .(10%)(15%)a a 万元B .(190%)(185%)a 万元C .(110%)(115%)a 万元D .(110%15%)a 万元7.下列结论不正确的是( ▲ ) A .若0x ,0y ,则0x y B .若0x ,0y ,且||||x y ,则0x y C .若0x ,0y ,则0x yD .若0x ,0y ,且||||x y ,则0x y8.已知2432M x x ,2636N x x ,则M 与N 的大小关系是( ▲ )A .MN B .M N C .M N D .以上都有可能二、填空题(本大题共5个小题,每小题4分,共20分). 9.比较大小:8 ▲ 9,7||8▲ 5()6(填“”、“”或“” ).10.数轴上表示2的点与表示5的点之间的距离为 ▲ .11.单项式55m x y与62112n x y 是同类项,则2m n ▲ .12.图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为5,则x y ▲ . 13.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,则2||4321a b m cdm ▲ .三、解答题(本大题共6个小题,共48分) 14.计算(本小题满分12分,每题3分).(1)2317((2)62)+-++-; (2)24157754-(-1)(-2)(3)33115()(15)15424; (4)432141(5)(2)|31|211.15.化简(本小题满分12分,每题3分).(1)523m n m n ; (2)4224534331x x y x y x ;(3)2222(3)3(4)a ab b a ab ; (4)222122[43(3)2]x x x x x .16.(6分)若用点A 、B 、C 分别表示有理数a 、b 、c ,如图: (1)判断下列各式的符号:a b ▲ 0;c b ▲ 0;c a ▲ 0; (2)化简||||||a b c b c a .17.(8分)先化简,再求值:已知2|2|(1)0a b ,求222252[2(2)]ab a b ab a b 的值.18.(10分)对于a 、b ,定义了一种新运算“◎”为:a ◎,2,2a ba bb a b a b 如:5◎53342,1◎13312.(1)计算:①2◎(1) ▲ ;②(4)◎(3) ▲ . (2)若A =22625x ax y ,B =22551bx x y ,当A <B 时,A ◎B 的值与字母x 的取值无关,求a ,b 的值.(3)在(2)的条件下,求2222111()(2)(3)(24)12232425b a ba ba ba 的值.B 卷(满分50分)一、填空题(本大题共5个小题,每小题4分,共20分). 19.2024202312()(-2)= ▲ . 20.已知a 满足2330a a ,则2262018a a ▲ . 21.已知||3m ,||5n ,且m n ,则2m n 的值为 ▲ . 22.已知整数a ,b ,c ,d 满足25abcd,且a b c d ,那么||||a c b d ▲ .23.北师大版七年级上册数学课本第95页有这样一个问题:对于3927,可以用10个手指直观地展示出来:如图,将两手平伸,手心向上,从左边开始数至第3个手指,将它弯起,此时它的左边有2个手指,右边有7个手指,“27”正是“39”的结果.类似地,199,2918,,9981也可以用手指直观地展示出来.小明用本章学过的知识解释其中的道理:从左手开始数n 下(n 为1到9的整数),数到第n 根手指向下弯,则该手指左边有(1)n 根手指,右边有(10)n 根手指;(1)n 作为十位数,(10)n 作为个位数,则这个两位数是:910(1)(10)n n n .小明继续研究发现,对于3824,将两手平伸,手心向上,从左边开始数至第3个手指并弯下,再连续弯下3个手指,它的左边有2根手指伸直,它的右边有4根手指伸直,“24”正是“38”的结果.类似地,188,2816,,8864也可以用手指直观地展示出来,请用本章学过的知识帮助小明解释其中的道理(n 为1到8的整数)8n = ▲ .二、解答题(本大题共3个小题,共30分).24.(8分)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:)km第1批 第2批 第3批 第4批 第5批 5km2km4km 3km6km(1)接送完第5批客人后,距离公司多少千米?(2)若该出租车每千米耗油0.3升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费8元,超过3km 的部分按每千米加1.6元收费,在这过程中该驾驶员共收到车费多少元?25.(10分)如图,正方形ABCD 的边长为8,划分成88个小正方形格.将边长为(n n 为整数,且27)n 的黑灰两色正方形纸片按图中的方式黑灰相间地摆放,第一张n n 的纸片正好盖住正方形ABCD 左上角的n n 个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(1)(1)n n 的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD 的右下角为止. 请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n 的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:(2)设正方形ABCD 被纸片盖住的面积(重合部分只计一次)为1S ,未被盖住的面积为2S .①当2n 时,求12:S S 的值;②用含n 的代数式表示2S (用含n 的代数式表示,不用化简).26.(12分)在数轴上,点O 为原点,点M 表示的数为m ,点N 表示的数为n ,且m 、n 满足2(18)|10|0m n . (1)求线段MN 的长;(2)P ,Q 两点分别从M ,N 沿数轴的向负方向运动,在到达点O 前,P ,Q 两点的运动速度分别为2个单位长度/秒和1个单位长度/秒.当点P 经过点O 后,它的速度变为原速度的一半;点Q 经过点O 后,它的速度变为原速度的2倍.数轴上点A 表示的数为4,设运动时间为t 秒. ①当P,Q 在数轴的正半轴上运动时,用含t 的代数式表示点P ,Q 对应的数; ②当OP QA 时,求t 的值.七年级数学试题答案一、选择题.二、填空题.9. > 、 < ;10. 7 ;11. 2 ;12. 4 ;13.11或5. 三、解答题 14.计算.(1)-10; (2)-1; (3)15; (4)0. 15.化简.(1)4m -n ; (2)425x ; (3)2262a ab b ; (4)2222x x . 16.(1)判断下列各式的符号:a b < 0;c b < 0;c a > 0;(2)2b 17.2, 1.a b原式=22136ab a b =50.18.(1)计算:①2◎(1)12;②(4)◎(3)12.(2) 5a ,b125.(3)61 一、填空题. 19.12.20. 2024 .21. 1或-11 .22. 2 . 23. 10(1)(102),(1n 5)810(1)(210),(6n 8)的整数的整数n n nn n二、解答题(本大题共3个小题,共30分). 24.(1)6千米 ;(2)6升;(3)49.6元 25.(1)(2)①当2n 时,12:S S =1121; ②2S =21772n n 或2S =64-n 2-(2n -1)(8-n )或2S =(9-n )(8-n )从不同角度理解,所表示2S 的式子不一样,但最后化简结果是2S =21772n n .需阅卷老师甄别.26.(1)8;(2)点P 对应的数是 18-2t ,点Q 对应的数是 10-t ; (3)4秒、11秒、15秒。
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
2023-2024学年人教新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一个数的相反数为6,则这个数为( )A.B.±6C.6D.﹣62.下列各组中的两个项不属于同类项的是( )A.3x2y和﹣2x2y B.﹣xy和2yxC.﹣1和1D.a2b和ab23.在下列有理数中:9,﹣3,0,,3.14,﹣(+5.3),﹣(﹣6)中,正数的个数为( )A.3个B.4个C.5个D.6个4.若5个有理数的积是负数,则5个因数中正因数的个数可能是( )A.1个B.3个C.1或3或5个D.以上答案都不对5.太阳的半径大约是696 000千米,用科学记数法可表示为( )A.696×103千米B.6.96×105千米C.6.96×106千米D.0.696×106千米6.如图,将7张相同的长方形纸片不重叠的放在长方形ABCD内,已知小长方形纸片的长为a,宽为b,且a>b,若未被覆盖的两个长方形周长相等,则( )A.B.a=3b C.D.a=4b7.在同一数轴上表示数﹣0.5,0.2,﹣2,+2,其中表示0.2的点的左边的点有( )A.1个B.2个C.3个D.4个8.若数轴上A,B两点之间的距离为8个单位长度,点A表示的有理数是﹣10,并且A,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A.﹣6B.﹣9C.﹣6或﹣14D.﹣1或﹣99.单项式﹣a2b3的系数和次数分别是( )A.2、3B.﹣1、3C.﹣1、5D.0、510.在矩形ABCD内,将一张边长为a和两张边长为b(a>b)的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为l,若要知道l的值,只要测量图中哪条线段的长( )A.AB B.AD C.a D.b二.填空题(共8小题,满分24分,每小题3分)11.如果关于x的多项式ax2+x+b与多项式(2﹣3a)x2+2x﹣3的和是一个单项式,那么a+b 的值是 .12.某商店三月份的销售额为a万元,三月份比二月份减少10%,二月份比一月份增加10%,则一月份的销售额为 万元.13.若单项式3x m+5y2与x3y n是同类项,则m+n= ,合并同类项后得到 .14.数学考试成绩以90分为标准,老师将5位同学的成绩简单记作:+15,﹣4,+11,﹣7,0,则这五名同学的平均成绩为 .15.已知|a+3|+|b+2|=0,则= .16.当|x|=2,|y|=4,且xy<0,则x+y= .17.﹣22的读法是 .18.a与3b互为倒数,x与y互为相反数,那么2000ab﹣2001(x+y)= .三.解答题(共9小题,满分66分)19.(1)计算:12﹣(﹣8)+(﹣6)﹣15;(2)计算:4+(﹣2)3×5﹣(﹣28)÷4+(﹣6)2;(3)化简:3x2+x﹣5﹣x﹣2x2+4;(4)化简:(2x2+1)﹣2(5﹣x2).20.把下列各数填在相应的大括号里:+2,﹣|﹣2|,﹣3,0,﹣3,﹣1.414,17,,(﹣1)2正整数:{}整数:{}负分数:{}正有理数:{}.21.根据题意列出式子计算.(1)一个加数是1.8,和是5.9,求另一个加数;(2)求5的绝对值与﹣6的相反数的差.22.点A,B在数轴上的位置如图①所示,表示的数分别为a,b.(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是 ;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是 .(2)将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.①求点P表示的数;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,那么m n.(填“>,<或=”)(3)点C在数轴上的位置如图②所示,表示的数为c.若a+b=4,请用刻度尺或圆规在图②中画出点D,使点D表示的数为(4﹣c).(保留画图痕迹,写出必要的文字说明)23.已知a=﹣1,求(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣6)的值.24.有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )25.先简化,再求值:(2a 2﹣5a )﹣2(a 2+3a ﹣5),其中a =﹣.26.出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,+11,﹣15,﹣3.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?27.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n 的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵6的相反数为﹣6,∴这个数为﹣6.故选:D.2.解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、字母相同且相同字母的指数也相同,故C正确;D、相同字母的指数不同,故D错误;故选:D.3.解:﹣(+5.3)=﹣5.3,﹣(﹣6)=6.∴大于0的数有9,﹣(﹣6),3.14,共3个.故选:A.4.解:∵5个有理数的积是负数,则5个因数中负因数的个数为1个,3个或5个,∴正因数的个数为4个或2个.故选:D.5.解:696000=6.96×105;故选:B.6.解:依题意,小长方形纸片的长为a,宽为b,如图所示,长方形AEFJ的周长为:2(JH+HF+EF)=2(3b+HF+4b)=14b+2HF,长方形HGCJ的周长为:2(GF+HF+HI)=2(a+HF+a)=4a+2HF,∵长方形AEFJ的周长与长方形HGCJ的周长相等,∴4a+2HF=14b+2HF,∴4a=14b,∴,故选:C.7.解:根据数轴上,左边的数小于右边的数的原则可知:﹣2<﹣0.5<0.2<2,所以,表示0.2的点的左边的点有﹣2,﹣0.5共2个.故选:B.8.解:当点B在点A的左侧时,点B表示的有理数是﹣10﹣8=﹣18,∴折线与数轴的交点表示的有理数是=﹣14;当点B在点A的右侧时,点B表示的有理数是﹣10+8=﹣2,∴折线与数轴的交点表示的有理数是=﹣6.故选:C.9.解:单项式﹣a2b3的系数和次数分别是:﹣1,5.故选:C.10.解:图1中阴影部分的周长=2AD+2AB﹣4b,图2中阴影部分的周长=2AD﹣2b+4AB﹣2b,l=2AD﹣4b+4AB﹣(2AD+2AB﹣4b)=2AD﹣4b+4AB﹣2AD﹣2AB+4b=2AB.故若要知道l的值,只要测量图中线段AB的长.故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:根据题意得:ax2+x+b+(2﹣3a)x2+2x﹣3=(a+2﹣3a)x2+3x+(b﹣3)=(2﹣2a)x2+3x+(b﹣3),∵和为单项式,∴2﹣2a=0,解得:a=1,b﹣3=0,解得:b=3,∴a+b=1+3=4.故答案为:4.12.解:设一月份的销售额为x,由题意可得,x(1+10%)(1﹣10%)=a解得,x=故答案为.13.解:由同类项的定义可知,m+5=3,n=2,解得:m=﹣2,∴m+n=﹣2+2=0,根据m=﹣2,n=2,得出单项式:3x3y2与x3y2,合并同类项得:3x3y2+x3y2=4x3y2,故答案为:0,4x3y2.14.解:90+×(15﹣4+11﹣7+0),=90+×15,=90+3,=93(分).故答案为:93分.15.解:∵|a+3|+|b+2|=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,∴===.故答案为:.16.解:∵|x|=2,|y|=4,∴x=±2,y=±4,又∵xy<0,∴当x=2,y=﹣4时,x+y=﹣2;当x=﹣2,y=4时,x+y=2.∴x+y=±2.故答案为:±2.17.解:﹣22读作2的2次方的相反数.故答案为:2的2次方的相反数.18.解:由题意得:a•3b=1,即ab=1,x+y=0,则原式=2000﹣0=2000,故答案为:2000三.解答题(共9小题,满分66分)19.解:(1)原式=12+8﹣6﹣15=﹣1;(2)原式=4+(﹣8)×5﹣(﹣7)+36=4﹣40+7+36=7;(3)原式=(3x2﹣2x2)+(x﹣x)+(4﹣5)=x2﹣1;(4)原式=2x2+1﹣10+2x2=4x2﹣9.20.解:正整数:{+2,17,(﹣1)2};整数:{+2,﹣|﹣2|,﹣3,0,(﹣1)2};负分数:{﹣3,﹣1.414};正有理数:{+2,17,,(﹣1)2};故答案为:+2,17,(﹣1)2;+2,﹣|﹣2|,﹣3,0,(﹣1)2;﹣3,﹣1.414;+2,17,,(﹣1)2.21.解:(1)5.9﹣1.8=4.1,∴另一个加数为4.1;(2)|5|﹣[﹣(﹣6)]=5﹣6=﹣1.22.解:(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是a+1;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是b﹣2.故答案为:a+1,b﹣2;(2)①将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.∴点P表示的数为:a+3b﹣3a+2﹣b+a﹣2=b+a;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,∴a=(a+b)﹣m,b=n+(a+b),∴m=(b﹣a),n=(b﹣a),∴m=n.故答案为:=.(3)如图,点D即为所求.方法:①作出AB的中点E;②在EB上取一点D,使得ED=EC,点D即为所求.23.解:原式=4a2﹣2a﹣6﹣4a2+4a+12=2a+6,当a=﹣1时,原式=﹣2+6=4.24.解:第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,∵(6a+6b+4c)﹣(4a+4b+8c)=2a+2b﹣4c,又a+b>2c,得到2a+2b>4c,故第(3)比(1)长;∵(6a+6b+4c)﹣(4a+4b+4c)=2a+2b>0,故第(3)比(2)长,又(4a+4b+8c)﹣(4a+4b+4c)=4c>0,故第(3)种方法绳子最长,第(2)种方法绳子最短.25.解:原式=2a2﹣5a﹣2a2﹣6a+10=﹣11a+10,当a=﹣时,原式=3+10=13.26.解:(1)∵约定向东为正,向西为负,当天的行驶记录为+17,﹣9,+7,+11,﹣15,﹣3,∴出租司机最后到达的地方为(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)=8>0,∴在出发点的东边,距离8km;(2)∵第1次送旅客位置出发点的距离为|+17|=17,第2次送旅客位置出发点的距离为|+17+(﹣9)|=8,第3次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)|=15,第4次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)|=26,第5次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)|=11,第6次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)|=8,∴出租司机最远处离出发点最远的距离为26;(3)∴出租司机实际行驶的路程为:|+17|+|﹣9|+|+7|+|+11|+|﹣15|+|﹣3|=62,∴这天共耗油量为:62×0.08=4.96(升)27.解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱),10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5,这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的,盈利466元.。
人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。
2024年第一学期七年级数学期中考试试题卷一、选择题(3×10=30分)1.的相反数是( )A .2024B .C .D .2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作元,那么元表示( )A .支出60元B .收入60元C .支出1060元D .收入1060元3.在,,0,,,中,有理数有( )A .2个B .3个C .4个D .5个4.2024年9月25日8时44分,中国人民解放军火箭军向太平洋相关公海海域,成功发射1发携载训练模拟弹头的洲际弹道导弹,准确落入预定海域,从发射点和导弹落点粗略估算,这次导弹飞行射程大概有12000公里,数据12000用科学记数法表示为( )A .B .C .D .5.精确到百分位是( )A .B .C .D .6.单项式的系数和次数分别是( )A .,4B .,7C .5,7D .5,47.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3a−b 2B .3(a−b)C .(3a−b)2D .3a−b8.已知一个代数式加上x 2−y 2等于x 2+y 2,则这个代数式为()A.−3y 2B.3y 2C.2x 2+y 2D.2y 29.小王利用计算机设计了一个计算程序,输入和输出的数据如下表那么,当输入数据是8时,输出的数据是( )A .B .C .D .输入12345输出2024-2024-1202412024-1000-1060+π6 3.14-23-32-22750.1210⨯51.210⨯41.210⨯31210⨯0.06540.070.060.0650.1345x y -5-5-861865867869⋅⋅⋅⋅⋅⋅⋅⋅⋅1225310417526⋅⋅⋅10.在矩形内,将一张边长为和两张边长为的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为,若要知道的值,只要测量图中哪条线段的长 A .B .C .D .二、填空题(3×6=18分)11.比较大小:1101 |−1100|12.小华同学写作业时不慎将墨水滴在数轴上,根据图中的数值判断,被墨迹盖住的两部分的整数有 个.13.一个数在数轴上表示的点离原点的距离是5,这个数是.14.比-2大的负整数是 ;比-3.45小的最大负整数是 。
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
七年级上册数学期中考试试题2022年一、单选题1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021-的相反数是()A.2021-B.2021C.12021D.12021-2.下列运算正确的是()A.4m-m=3B.2a2-3a2=-a2C.a2b-ab2=0D.x-(y-x)=-y3.下列各数中最大的是()A.3-B.2-C.0D.14.12-的倒数是()A.﹣2B.12C.12-D.12±5.与a﹣b﹣c 的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)6.将这个数285000000用科学记数法表示为()A.628510⨯B.728.510⨯C.82.8510⨯D.90.28510⨯7.一个多项式与5a 2+2a﹣1的和是6a 2﹣5a+3,则这个多项式是()A.a 2﹣7a+4B.a 2﹣3a+2C.a 2﹣7a+2D.a 2﹣3a+48.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.00369.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为()A.12B.24C.27D.3010.已知a 、b 是不为0的有理数,且a a =-,b b =,a b >,那么用数轴上的点来表示a 、b ,正确的是()A.B.C.D.二、填空题11.如果把“增加16%”记作“16%”,那么“______”表示“减少8%”.12.已知飞机的飞行高度为10000m ,上升5000m -后,飞机的飞行高度是____m .13.多项式232xy x y -+的次数是_____.14.如果223m n xy -与35m x y -是同类项,则n m 的值为______.15.若代数式5x-5与2x-9的值互为相反数,则x=________.16.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的是_____(写序号)17.当2x =时,代数式31ax bx -+的值等于-17,那么当1x =-时,代数式33125bx ax -+-的值____.18.若单项式﹣23ax y与﹣2513b x y +是同类项,则a+b=___.三、解答题19.计算:()2411236⎡⎤--⨯--⎣⎦20.计算:22711150(6)(7)9126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =.22.已知多项式22622452x mxy y xy x --+-+化简后的结果中不含xy 项.(1)求m 的值;(2)求代数式32322125m m m m m m ---+--++的值.23.若a、b 互为相反数,c、d 互为倒数,m 的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求a bm cd m+++的值.24.某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库)+23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?25.已知多项式2244A x xy y =-+,225Bx xy y =--.(1)求23A B -;(2)若0A B C ++=,求多项式C .26.某人去水果批发市场采购猕猴桃,他看中了A、B 两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克)0~500500以上~15001500以上~25002500以上价格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发600千克猕猴桃,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克猕猴桃(1500<x<2000),请你分别用含x 的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.27.小明妈妈在某玩具厂工作,厂里规定每个工人生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈十天内的生产情况记录表(超过记为正、不足记为负):天数12214增、减产值+6﹣7﹣4+5﹣1(1)与原计划相比,小明妈妈十天生产玩具总计超过或不足多少个?(2)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,求小明妈妈这十天的工资总额是多少元?参考答案1.B【解析】【分析】根据相反数的定义求解即可.【详解】解:根据相反数的定义:−2021的相反数是2021,【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.B 【解析】【分析】根据整式加减法的运算法则“如果遇到括号.按去括号法则先去括号:括号前是“+”号,把括号和它前面的“+”号去掉.括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉.括号里各项都改变符号.合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”进行逐项判断即可.【详解】解:A.43m m -=,故A 选项错误;B.22223a a a -=-,故B 选项正确;C.不是同类项,无法进行减法运算,故C 选项错误;D.()2x y x x y --=+,故D 选项错误;故答案为:B.【点睛】本题考查整式加减运算.合并同类项关键把握字母相同,并且各字母的指数也分别对应相同.需要注意,所有的常数项也都是同类项.去括号时,括号前是负号,去括号后括号里各项都变号.3.D 【解析】把选项中的4个数按从小到大排列,即可得出最大的数.【详解】由于-3<-2<0<1,则最大的数是1故选:D.【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:12的倒数是:-2.故选:A.【点睛】本题主要考查了倒数,正确掌握相关定义是解题关键.5.A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号6.C 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此分析即可.【详解】解:8285000000 2.8510=⨯故选:C 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.7.A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.D【解析】【分析】把万分位后的数字6进行四舍五入即可.【详解】解:精确到万分位,0.003560.0036故选:D【点睛】此题考查了近似数和有效数字,解题关键在于掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.C【解析】【分析】根据新定义的公式代入计算即可.【详解】∵()*23m n m n =+⨯-,∴()6*3-=()623(3)27+⨯--=,故选C.【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.10.C 【解析】【分析】根据绝对值的含义和数轴的性质判断即可.【详解】解:由a a =-,b b =,a b>可得:0a ≤,0b ≥,a 到原点的距离大于b 到原点的距离,观察各选项,可得C 选项符合题意,故选C 【点睛】本题考查了绝对值的意义和数轴的性质,解题的关键是熟练掌握绝对值和数轴的基础性质.11.﹣8%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】如果把“增加16%”记作“16%”,那么“﹣8%”表示“减少8%”.故答案为:﹣8%.12.5000【解析】【分析】根据题意列式10000+(-5000)计算即可.【详解】根据题意,得飞机的飞行高度是10000+(-5000)=5000(m),故答案为:5000.【点睛】本题考查了有理数的加法,熟练掌握有理数加法的运算法则是解题的关键.13.4##四【解析】【分析】根据多项式次数的定义求解即可,多项式的次数是指多项式中次数最高的项的次数.【详解】解:多项式232xy x y -+含有两个单项式2xy -,32x y ,它们的次数分别为34,所以,多项式232xy x y -+的次数为4故答案为4此题考查了多项式次数的定义,掌握多项式次数的定义是解题的关键.14.8【解析】【分析】根据同类项的定义,列式计算即可.【详解】∵223m n x y -与35m x y -是同类项,∴2m-2=m,n=3,∴n m =32=8,故答案为:8.【点睛】本题考查了同类项即含有的字母相同且相同字母的指数也相同,熟练掌握定义并灵活计算是解题的关键.15.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】解:由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.故答案为:2【点睛】本题考查了相反数的性质以及一元一次方程的解法.16.②③④.【解析】【分析】由数轴分别得出a、b、c三个数的范围,再根据有理数的运算法则对四个结论一一判断即可.【详解】由数轴可得:﹣3<a<﹣2,0<b<1,﹣1<c<0,①数轴上右边的点表示的数总比左边的点表示的数大,所以a<c<b,此结论正确;②由数轴图不难得出2<﹣a<3,所以﹣a>b,此结论错误;③异号两数相加,取绝对值大的加数的符号,很明显,|a|>|b|,所以a+b<0,此结论错误;④正数减去负数所得差必为正数,所以c﹣a>0,此结论错误.故答案为②③④.【点睛】本题主要考查数轴、有理数的加减运算法则.17.22【解析】【分析】先对已知条件进行代入变形,可得代数式4a-b的值,再把所求代数式化成已知的形式,然后利用整体代入法求解即可.解:当x=2时,代数式3182117ax bx a b +=+=---,∴8218a b -=-,∴()2418a b -=-,∴49a b -=-,当1x =-时,代入33125bx ax -+-,原式3125b a =--,()345a b =---,()395=-⨯--,275=-,22=,∴代数式33125bx ax -+-的值等于22,故答案为:22.【点睛】题目主要考查利用“整体代入法”求解代数式的值,从题设中获取条件,对代数式化简代入求值是解题关键.18.0【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得a,b 的值,继而可求得a+b.解:∵单项式﹣23a x y 与﹣2513b x y +是同类项,∴a=2,b+5=3,解得a=2,b=﹣2,∴a+b=2﹣2=0.故答案为:0.【点睛】本题考查了同类项即所含字母相同,并且相同字母的指数也相同,准确理解定义满足的条件是解题的关键.19.16【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】解:原式()11711291716666=--⨯-=-+⨯=-+=.【点睛】此题要注意正确掌握运算顺序以及符号的处理.20.1【解析】【分析】先算乘方,再算利用乘法分配律将小括号展开,再计算加减法,最后算除法.【详解】解:()()22711150679126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦71115036499126⎡⎤⎛⎫=--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦711150363636499126⎡⎤⎛⎫=-⨯-⨯+⨯÷ ⎪⎢⎥⎝⎭⎣⎦[]502833649=-+-÷4949=÷1=【点睛】本题主要考查了有理数的乘方、乘除以及加减,熟练掌握有理数的乘方、乘除以及加减法则是解答此题的关键.21.229a ab -;27【解析】【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)2m =;(2)14-.【解析】【分析】(1)先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值;(2)由(1)得m=2,先化简合并同类项,然后代入m 的值计算即可.【详解】解:(1)22622452x mxy y xy x --+-+,()22=6+42252x m xy y x ---+由题意中不含xy 项,可得4-2m=0,∴m=2;(2)32322125m m m m m m ---+--++=3226m m --+.23.(1)a+b=0,cd=1,m=±2;(2)3或-1【解析】【分析】(1)根据相反数的性质,倒数的性质,绝对值的性质计算即可;(2)根据(1)中的计算结果整体代入计算即可.【详解】解:(1)因为a、b 互为相反数,c、d 互为倒数,m 的绝对值为2;所以a+b=0,cd=1,2m =±.故答案为:0,1,2±.(2)当m=2时,原式02132=++=;当2m =-时,原式02112=-++=--.所以原式的值为3或1-.【点睛】本题考查相反数的性质,倒数的性质和绝对值的性质,熟练掌握以上知识点是解题关键,同时注意分类讨论思想的应用.24.(1)减少了;(2)5天前仓库里存有货品529吨;(3)这5天一共要付548元装卸费.【解析】【分析】(1)求出这5天的进出货的总和,根据总和的结果,判断货品的增多或减少.(2)根据现在的货品的吨数,逆推出5天前的货品的吨数.(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)23﹣30﹣16+35﹣33=﹣21吨,答:仓库的货品减少了,故答案为:减少了;(2)508﹣(﹣21)=529吨,答:5天前仓库里存有货品529吨;(3)4×(|+23|+|﹣30|+|﹣16|+|+35|+|﹣33|)=4×137=548元,答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用,掌握有理数的加法法则,正数和负数的意义是解题的关键.25.(1)225517xxy y -+;(2)22545x xy y -++【解析】【分析】(1)用多项式替换,适当添加括号,去括号后,合并同类项即可;(2)先计算A+B,根据已知C=-(A+B)即可得到结果.【详解】(1)∵2244A x xy y =-+,225B x xy y =--,∴23A B -=222(44)x xy y -+-223(5)xxy y --=22882x xy y -+-223315x xy y ++=225517x xy y -+;(2)∵2244A x xy y =-+,225B x xy y =--,∴A+B=22(4)4xxy y -++22(5)x xy y --=2244x xy y -++225x xy y --=22554x xy y --,∵0A B C ++=,∴C=-(A+B)=-(22554xxy y --)=22545x xy y -++.【点睛】本题考查了整式的加减中的化简,去括号,合并同类项,熟练掌握去括号,添括号的法则,灵活进行合并同类项是解题的关键.26.(1)A家:3312元,B家:3360元;(2)A家:275x;B家:912002x+;(3)选择B家更优惠,理由见解析【解析】【分析】(1)根据题意和表格可以得到他批发600千克猕猴桃时,在A、B两家批发各需要花费多少钱,从而本题得以解决;(2)根据题意和表格可以得到他批发x千克猕猴桃时(1500<x<2000),在A、B两家批发分别需要花费多少钱,从而本题得以解决;(3)将x=1800分别代入(2)求得的两个式子,计算出结果,然后进行比较,即可解答本题.【详解】解:(1)由题意可得,当批发600千克猕猴桃时,在A家批发需要:6×600×92%=3312(元),当批发600千克猕猴桃时,在B家批发需要:6×500×95%+6×(600-500)×85%=2850+510=3360(元);(2)由题意可得,当他批发x千克猕猴桃(1500<x<2000),他在A家批发需要:6×x×90%=275x(元),当他批发x千克猕猴桃(1500<x<2000),他在B家批发需要:6×500×95%+6×(1500-500)×85%+6×(x-1500)×75%=2850+5100+4.5x-6750=912002x+(元);(3)现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.理由:当他要批发1800千克猕猴桃时,他在A家批发需要:5.4×1800=9720(元),当他要批发1800千克猕猴桃时,他在B家批发需要:4.5×1800+1200=9300(元),∵9720>9300,∴现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.【点睛】本题考查列代数式和代数式求值,解题的关键是明确题意,列出相应的代数式,求相应的代数式的值.27.(1)司机最后在原地的东边,离原地3千米(2)925元【解析】【分析】(1)根据有理数的加法运算法则和乘法运算法则列式计算即可;(2)用小明妈妈十天生产玩具的总数乘5即可.【详解】解:(1)(+6)×1+(﹣7)×2+(﹣4)×2+(+5)×1+(﹣1)×4=﹣15(个),故与原计划相比,小明妈妈十天生产玩具总计不足15个;(2)5×(20×10﹣15)=925(元).故小明妈妈这一周的工资总额是925元.21。
七年级数学(华东版) 第1页(共6页)
2010—2011学年度第一学期
海口市七年级数学科期中检测题
(华东师大版)
时间:100分钟 满分:100分 得分:
一、选择题(每小题2分,共24分)
在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.
1.5的相反数是
A .5
B .-5
C .5
1 D .5
1
2.下面四个数中,比-2小的数是
A .1
B .0
C .-1
D .-3 3. 数据2500000用科学记数法表示为 A. 25×105
B. 2.5×105
C. 2.5×106
D. 2.5×107
4.数轴上的点A 到原点的距离是4,则点A 表示的数为
A. 4
B. -4
C. 4或-4
D. 2或-2 5.从海拔22m 到-10m ,下降了
A. 32m
B. -32m
C. 12m
D. -12m 6.大于 -1.8且小于3的整数有
A .2个
B .3个
C .4个
D .5个 7.下列算式中,结果与34
相等的是
A .3+3+3+3
B .3×3×3×3
C .4×4×4
D .3×4 8. 把5-(+2)+(-3)-(-7)写成省略加号和的形式为
A .5-2-3-7 B. 5-2+3+7 C. 5+2-3+7 D. 5-2-3+7
七年级数学(华东版) 第2页(共6页)
9.若有理数a 、b 满足ab >0,且a +b <0,则下列说法正确的是 A. a 、b 可能一正一负
B. a 、b 都是负数
C. a 、b 中可能有一个为0
D. a 、b 都是正数
10. 一种商品每件成本p 元,按成本增加25%定出价格,则该商品每件售价
A .(0.25+p )元
B .0.25p 元
C .0.75p 元
D .1.25p 元 11.当x =-1时,代数式x 2-x +k 的值为0,则k 的值是
A .-2
B .-1
C .0
D .2
12. 如图1,边长为(a +3)的正方形纸片剪出一个边长为a 的正方形之后,剩余部分又剪拼
成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是 A .2a +3 B .2a +6 C .a +3
D .a +6
二、填空题(每小题3分,共18分)
13. 若+10%表示“增加10%”,则“减少8%”可以记作 . 14.|4
5
|= .
15.( )×(-0.2)=1.
16.用计算器计算:(5.1-13)2
+8.6÷(-7.3)≈ (结果保留3个有效数字). 17.有理数a 在数轴上的位置如图2所示,用“<”将a ,-a ,1•三个数连接起来________.
18.图3中的圆点是有规律地从里到外逐层排列的.则第n 层有 个圆点(用含
n 的代数式表示).
…
…
…图3
图2
图1
3
a +3
七年级数学(华东版) 第3页(共6页)
三、解答题(共58分) 19.(8分)
(1)如图4,两个圈分别表示负数集和整数集. 请你把下列各数填入表示它所在的数
集的圈里:
-20% , -2010 , 0 ,18.3 , -1 ,4
9-
, 13 ,-0.52 , -29 .
(2)图4中,这两个圈的重叠部分表示什么数的集合?
(3)在(1)的数据中,最大的数是 ,最小的数是 .
20.直接写出结果(每小题2分,共12分)
(1)-7-3= (2)5.8-(-3.6)= (3)=-3221
(4)5
1÷(-5)= (5)(-0.8)×(-0.5)= (6)(-1)2011 -(-1)2010=
负数集
整数集
… … 图4 …
七年级数学(华东版) 第4页(共6页)
21.计算(每小题4分,共16分) (1))37(6)3
8(9-
+-+-;
(2) (6
14
33
1
+
-
)×(-36);
(3)5
2)4
5()5(4
57-
-
⨯-+⨯-; (4)])
2(1[)2
1(4
3)3(3
2-+--
⨯÷
- .
22.(6分)
(1)用代数式表示:“a 、b 两数的平方和减去它们乘积的2倍”; (2)当21-=a ,b =3时,求(1)中代数式的值.
23.(8分)某食品厂从生产的袋装食品中抽出样品20袋,以每袋标准质量450克为标准,检测每袋的质量是否符合该标准,超过或不足的克数分别用正、负数来表示,记录如下:
回答下列问题:
(1)这20袋样品中,符合每袋标准质量450克的有袋;
(2)这批样品的总质量是多少克?平均质量比标准质量多还是少?多或少几克?
(要求写出算式).
七年级数学(华东版)第5页(共6页)
24.(8分)为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过10吨,则每吨水收费2元;若每户每月用水超过10吨,则超过部分按每吨2.5元收费. 9月份李老师家里用水a吨(a>10吨).
(1)请用代数式表示李老师9月份应交的水费;
(2)当a=16时,求李老师9月份应交水费多少元?
七年级数学(华东版)第6页(共6页)
七年级数学(华东版) 第7页(共6页)
负数集
整数集
… …
…
-20%,
4
9-,
13,
0, -2010, -0.52,
-29, -1, 2010—2011学年度第一学期
海口市七年级数学科期中检测题参考答案
一、B D C C A C B D B D A A 二、13.-8% 14.
4
5 15.-5 16.61.2 17. a <1<-a 18.4n
三、19. (1)如图 (2)负整数 (3)18.3,-2010
20.(1)-10 (2)9.4 (3)6
1- (4)25
1- (5)0.4 (6)-2
21.(1)-2 (2)9 (3)10
29-
(4)1
22.(1)a 2+b 2-2ab ;(2)4
49.
23.(1)6
(2)450×20+[(-6)×1+(-3)×4+(-1)×5+0×6+2×3+5×1]=8988(克).
[(-6)×1+(-3)×4+(-1)×5+0×6+2×3+5×1]÷20=-0.6(克). 答:这批样品的总质量是8988克,平均质量比标准质量少0.6克.
24.(1)(2.5a -5)元;(2)35元.。