山东省2016-2017学年七年级下册期末数学试卷
- 格式:doc
- 大小:578.00 KB
- 文档页数:22
2016-2017学年度北师大版七年级下册数学期末试卷及答案2016-2017学年度七年级下册数学期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cm;D.1cm,3cm,5cm;2.下面是一位同学做的四道题:①a+a=a;②(xy)=xy;③x•x=x;④(﹣a)÷a=﹣a.其中做对的一道题是()A①.3.下列乘法中,能运用完全平方公式进行运算的是()A.(x+a)(x-a)B.(b+m)(m-b)。
C.(-x-b)(x-b)。
D.(a+b)(-a-b)4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△XXX的是()A.∠A=∠CB.AD=CBCC.BE=DFD.AD∥BC5.如图,一只蚂蚁以均匀的速度沿台阶A1A2A3A4A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.tOB.tOC.tOD.t6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.计算(2)3=_______88.如图有4个冬季运动会的会标,其中不是轴对称图形的有2个9.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为16.10.已知:a b22,a b=11,则2a2b6311.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=90°.12.如图所示,∠XXX∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是1,2,3,4.13.XXX是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是∠2和∠3.14.如果 $a+b+2c+2ac-2bc=0$,求 $xxxxxxxa+b$ 的值。
青岛版七年级下册数学期末试卷一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)已知是方程x+ay=3的一个解,那么a的值为( )A.1B.﹣1C.2D.﹣23.(3分)2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径约0.00000006米﹣0.00000012米,将0.00000012用科学记数法表示为a×10n 的形式,则n为( )A.﹣8B.﹣7C.7D.84.(3分)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是( )A.27°40′B.62°20′C.57°40′D.58°205.(3分)已知a=(﹣3)0,b=,c=(﹣2)﹣2,那么a,b,c的大小关系为( )A.a>b>c B.c>b>a C.b>a>c D.c>a>b6.(3分)(﹣5a2+4b2)( )=25a4﹣16b4,括号内应填( )A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2 7.(3分)下列计算中正确的是( )A.2a6÷a3=2a3B.(2ab2)2=2a2b4C.2a2+3a2=5a4D.(a2)3=a58.(3分)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长x尺,绳长y尺,则可以列方程组( )A.B.C.D.9.(3分)如图,△ABC中,D,E分别是BC,AD的中点,若△ABC的面积是10,则△ABE的面积是( )A.B.3C.D.510.(3分)已知a=2b﹣5,则代数式a2﹣4ab+4b2﹣5的值是( )A.20B.0C.﹣10D.﹣3011.(3分)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值为( )A.120°B.108°C.90°D.72°12.(3分)如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为( )A.(2018,1)B.(4034π+1,1)C.(2017,1)D.(4034π,1)二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果13.(3分)已知方程3x+2y=6,用关于y的代数式表示x,则x= .14.(3分)在平面直角坐标系中,已知点A(2,﹣1),过点A作AB∥x轴,且AB=3,则点B的坐标是 .15.(3分)已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则p+q= .16.(3分)已知点A(0,0),B(4,2),C(2,5),则△ABC的面积是.17.(3分)一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为 .三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.(5分)解方程组:.19.(12分)计算:(1)(﹣x)5•x÷(﹣x2);(2)(﹣2x)3(x2﹣12x+1);(3)﹣x(2x+1)﹣(2x+3)(1﹣x).20.(12分)分解因式:(1)(m+n)2﹣6(m+n)+9;(2)x3﹣x;(3)(a﹣b)(5a+2b)﹣(a+6b)(a﹣b).21.(8分)如图,在△ABC中,D是BC边上的一点,∠B=45°,∠BAD=30°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC和∠EDF的度数;(2)若∠E:∠C=3:2,问:DE∥AC吗,请说明理由.22.(6分)如图所示,小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8dm,r=1.6dm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的知识帮助小刚计算吗?请写出求解过程(结果保留π).23.(8分)已知:a﹣b=6,a2+b2=20,求下列代数式的值:(1)ab;(2)﹣a3b﹣2a2b2﹣ab3.24.(8分)阅读例题的解答过程,并解答(1)(2)两个问题.例:计算(a﹣2b+3)(a+2b﹣3)=[a﹣(2b﹣3)][a+(2b﹣3)]①=a2﹣(2b﹣3)2②=a2﹣4b2+12b﹣9③(1)例题求解过程中,利用了整体思想,其中①→②的变形依据是,②→③的变形依据是.(填整式乘法公式的名称)(2)用此方法计算:(a+2x﹣y﹣b)(a﹣2x+y﹣b).25.(10分)某中学七年级数学课外兴趣小组在探究:“n边形(n>3)共有多少条对角线”这一问题时,设计了如下表格,请在表格中的横线上填上相应的结果:应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】根据点的横纵坐标的符号可得所在象限.【解答】解:∵﹣3<0,1>0,∴点P(﹣3,1)所在的象限是第二象限,故选:B.2.【分析】把x=2,y=﹣1代入方程x+ay=3得出方程2﹣a=3,再求出方程的解即可.【解答】解:∵x=2,y=﹣1是方程x+ay=3的一个解,∴2﹣a=3,解得:a=﹣1,故选:B.3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7,∴n=﹣7.故选:B.4.【分析】根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°﹣∠EAC,即可求出∠2的度数.【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:C.5.【分析】根据负整数幂的意义以及零指数幂的意义即可求出答案.【解答】解:a=1,b=3,c=,∴c<a<b,故选:C.6.【分析】根据平方差公式的逆用找出这两个数写出即可.【解答】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.7.【分析】直接利用整式的除法运算法则以及积的乘方运算法则、合并同类项法则、幂的乘方运算法则分别计算得出答案.【解答】解:A.2a6÷a3=2a3,故此选项符合题意;B.(2ab2)2=4a2b4,故此选项不合题意;C.2a2+3a2=5a2,故此选项不合题意;D.(a2)3=a6,故此选项不合题意;故选:A.8.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解答】解:设木条长x尺,绳子长y尺,那么可列方程组为.故选:D.9.【分析】设△ABE的面积为x.利用三角形中线的性质推出△ABC的面积为4x,由此构建方程,可得结论.【解答】解:设△ABE的面积为x.∵E是AD的中点,∴AE=DE,∴S△ABE=S△BDE=x,∵D是BC的中点,∴BD=CD,∴S△ABD=S△ADC=2x,∴S△ABC=4x=10,∴x=,故选:C.10.【分析】首先根据a=2b﹣5,可得:a﹣2b=﹣5;然后把代数式a2﹣4ab+4b2﹣5化成(a﹣2b)2﹣5,求出算式的值即可.【解答】解:∵a=2b﹣5,∴a﹣2b=﹣5,∴a2﹣4ab+4b2﹣5=(a﹣2b)2﹣5=(﹣5)2﹣5=25﹣5=20.故选:A.11.【分析】过点B作直线BF∥l1,利用平行线的性质推导出∠1+∠3=180°,∠2+∠3=108°,两个式子相减即可.【解答】解:过点B作直线BF∥l1,∵l1∥l2,∴BF∥l2,∴∠2=∠4,∠1+∠3=180°①,∵正五边形的内角度数为:=108°,∴∠3+∠4=∠ABC=108°,∴∠2+∠3=108°②,①﹣②得∠1﹣∠2=180°﹣108°=72°.故选:D.12.【分析】由已知可得开始时该圆的圆心坐标为(1,1),在圆向右滚动时纵坐标不变,当该圆向x轴正方向滚动2017圈后,横坐标增加2017×2π,从而得到该圆向x轴正方向滚动2017圈后的圆心坐标.【解答】解:∵半径为1的圆,与两坐标轴相切,∴开始时该圆的圆心坐标为(1,1),∵圆的周长为2π,该圆向x轴正方向滚动2017圈,∴圆心的横坐标为1+2π×2017,纵坐标为1,即该圆的圆心坐标为(4034π+1,1).故选:B.二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果13.【分析】将y看作已知数,求出x即可.【解答】解:3x+2y=6,解得:x=.故答案为:.14.【分析】在平面直角坐标系中与x轴平行,则它上面的点纵坐标相同,可求B点纵坐标;与x轴平行,相当于点A左右平移,可求B点横坐标.【解答】解:∵AB∥x轴,∴点B纵坐标与点A纵坐标相同,为﹣1,又∵AB=3,可能右移,横坐标为2+3=5;可能左移横坐标为2﹣3=﹣1,∴B点坐标为(5,﹣1)或(﹣1,﹣1),故答案为:(5,﹣1)或(﹣1,﹣1).15.【分析】直接利用多项式乘多项式运算法则得出p,q的值,进而得出答案.【解答】解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故答案为:7.16.【分析】利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.【解答】解:如图,S△ABC=4×5﹣×2×4﹣×2×3﹣×2×5=8,故答案为:8.17.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,即所行走的路程.【解答】解:该机器人所经过的路径是一个正多边形,360°÷45°=8,则所走的路程是:4×8=32(m).故答案为:32m.三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘除单项式法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘多项式法则计算即可得到结果;(3)原式利用单项式乘多项式法则,以及多项式乘多项式法则计算即可得到结果.【解答】解:(1)原式=﹣x5•x÷(﹣x2)=﹣x6÷(﹣x2)=x4;(2)原式=﹣8x3(x2﹣12x+1)=﹣8x5+96x4﹣8x3;(3)原式=(﹣2x2﹣x)﹣(2x﹣2x2+3﹣3x)=﹣2x2+x﹣2x+2x2﹣3+3x=2x﹣3.20.【分析】(1)把(m+n)看成一个整体,运用完全平方公式;(2)先提取公因式x,再用平方差公式;(3)先提取公因式,再写成幂的形式.【解答】解:(1)原式=[(m+n)﹣3]2=(m+n﹣3)2;(2)原式=x(x2﹣1)=x(x+1)(x﹣1);(3)原式=(a﹣b)(5a+2b﹣a﹣6b)=(a﹣b)(4a﹣4b)=4(a﹣b)2.21.【分析】(1)根据折叠求出∠BAD=∠DAF,根据三角形外角性质求出∠AFC的度数,由三角形内角和定理求出∠ADB,求出∠ADE,根据三角形外角性质求出∠ADF,即可求∠EDF的度数;(2)由题意可得∠C=∠EDF=30°,即可证DE∥AC.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=45°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=105°;∵∠B=45°,∠BAD=30°,∴∠ADB=180°﹣45°﹣30°=105°,∠ADC=45°+30°=75°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=105°,∴∠EDF=∠ADE﹣∠ADC=105°﹣75°=30°.(2)DE∥AC理由如下:∵△ABD沿AD折叠得到△AED,∴∠B=∠E=45°∵∠E:∠C=3:2∴∠C=30°∴∠C=∠EDF=30°∴DE∥AC22.【分析】根据剩余部分的面积=圆形板材的面积﹣四个小圆的面积,即可求解【解答】解:根据题意有:剩余部分的面积=圆形板材的面积﹣四个小圆的面积.剩余部分的面积=πR2﹣4πr2=π(R2﹣4r2)=π(R+2r)(R﹣2r),将R=6.8dm,r=1.6dm代入上式得:剩余部分的面积=π(R+2r)(R﹣2r)=π(6.8+3.2)(6.8﹣3.2)=36π(dm2).答:剩余部分的面积为:36πdm223.【分析】(1)把a﹣b=6两边平方,展开,即可求出ab的值;(2)先分解因式,再整体代入求出即可.【解答】解:(1)∵a﹣b=6,a2+b2=20,∴(a﹣b)2=36,∴a2﹣2ab+b2=36,∴﹣2ab=36﹣20=16,∴ab=﹣8;(2)∵a2+b2=20,ab=﹣8,∴﹣a3b﹣2a2b2﹣ab3=﹣ab(a2+2ab+b2)=﹣(﹣8)×(20﹣16)=32.24.【分析】(1)利用平方差公式,以及完全平方公式判断即可;(2)原式结合后,利用平方差公式,以及完全平方公式化简即可.【解答】解:(1)例题求解过程中,利用了整体思想,其中①→②的变形依据是平方差公式,②→③的变形依据是完全平方公式;(2)原式=(a﹣b)2﹣(2x﹣y)2=a2﹣2ab+b2﹣4x2+4xy﹣y2.故答案为:(1)平方差公式,完全平方公式.25.【分析】①由表格探求的n边形对角线的总条数:得出最终结果;②根据从n边形的一个顶点出发可引(n﹣3)条对角线,这些对角线分多边形所得的三角形个数为(n﹣2).【解答】解:①把n=12代入得,=54.∴十二边形有54条对角线.②不能.由题意得,n﹣3+n﹣2=2016,解得n=.∵多边形的边数必须是正整数,∴过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和不可能为2016.。
2016-2017学年七年级下数学期末检测题总分:120分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、选择题(共10小题;共30分)1. 如图,,若,则的度数是 ( )A. B. C. D.2. 在下列图形中,与是同位角的有A. ①,②B. ①,③C. ②,③D. ②,④3. 如图,有一块含有角的直角三角板的两个顶点放在直尺的对边上,如果,那么的度数为A. B. C. D.4. 下列不等式中,是一元一次不等式的为A. B.C. D.5. 在数轴上标注了四段范围,如图,则表示的点落在 ( )A. 段①B. 段②C. 段③D. 段④6. 若点在第二象限,且点到轴、轴的距离分别为,,则点的坐标是 ( )A. B. C. D.7. 在国外留学的叔叔送给聪聪一个新奇的玩具——智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为 .如果流氓兔位于原点处,第一次向正南跳(记轴正半轴方向为正北,个单位为),那么跳完第次后,流氓兔所在位置的坐标为A. B. C. D.8. 若单项式与是同类项,则,的值分别为 ( )A. ,B. ,C. ,D. ,9. 不等式的解集为 ( )A. B. C. D.10. 下列调查中,适宜采用抽样调查方式的是 ( )A. 调查某市中学生每天体育锻炼的时间B. 调查某班学生对“五个重庆”的知晓率C. 调查一架“歼20”隐形战机各零部件的质量D. 调查广州亚运会米决赛参赛运动员兴奋剂的使用情况二、填空题(共6小题;共24分)11. 如图,请填写一个你认为恰当的条件,使.12. 的相反数是,绝对值是 .13. 如图所示的东莞地图,若在图中建立平面直角坐标系,使“虎门”的坐标是“东城”的坐标为.第13题第16题14. 若关于,的二元一次方程组的解满足,则的取值范围为.15. 若方程组的解满足,则的取值范围是.16. 某学校计划开设A、B、C、D 四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门.为了了解学生的选修意向,现随机抽取部分学生进行调查,并将调查结果绘制成如图所示的条形统计图.已知该校学生的人数人,由此估计选修 A 课程的学生有人.三、解答题(共9小题;共66分)17.计算:(1);(218. 解不等式19. 如图,已知,,,经过平移得到的,中任意一点平移后的对应点为.(1)请在图中作出;(2)写出点、、的坐标.-20. 解方程组21. 如图所示,,,求证:.22. 求不等式组的解集,并把它们的解集在数轴上表示出来.23. 如图,,两点为海岸线上的两个观测点.现在,两点同时观测到大海中航行的船只,并得知位于点的东南方向,位于点的西南方向,请问船只的位置可以确定吗?若可以,请在图中画出船只的位置.24. 为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:所抽取学生的比赛成绩情况统计表根据图表的信息,回答下列问题:(1)本次抽查的学生共有名;(2)表中和所表示的数分别为:,,并在图中补全条形统计图;(3)若该校共有名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?25. 某商场有,两种商品,每件的进价分别为元,元.商场销售件商品和件商品,可获得利润元;销售件商品和件商品,可获得利润元.(1)求,两种商品的销售单价;(2)如果该商场计划最多投入元用于购进,两种商品共件,那么购进种商品的件数应满足怎样的条件?(3)现该商场对,两种商品进行优惠促销,优惠措施如下表所示:如果一次性付款元同时购买,两种商品,求商场获得的最小利润和最大利润.答案第一部分1. A 【解析】,,,.2. B3. C4. A5. C【解析】.6. C 【解析】点在第二象限,它的横坐标为负,纵坐标为正.点到轴、轴的距离分别为,,它的横坐标的绝对值是,纵坐标的绝对值是,点的坐标是.7. C 【解析】用“”表示正南方向,用“”表示正北方向.根据题意,得流氓兔最后所在位置的坐标为.8. A 【解析】有题意可知:解得9. C 【解析】去括号得移项、合并同类项得10. A【解析】被调查对象多,且分布较广,适宜采用抽样调查.第二部分11. 或或等(答案不唯一); 13. 14.【解析】提示:解方程组①②得,,,.可得:,解得:,故答案为:.【解析】提示: .16.【解析】选修A课程的学生人数为(人).第三部分17. (1)(2).18. 去分母,得移项得合并同类项得系数化成得则解集在数轴上表示出来为19. (1)(2),,.20. ①,得②,得④③,得把代入①,得所以是原方程组的解.21. 连接 .,.,..22. 解不等式得解不等式得.解集在数轴上表示为:23. 如图,船只的位置可以确定.因为对于固定的,两点,船只既在射线上,又在射线上,两条射线的交点就是船只的位置.24. (1)【解析】抽查的总人数是:.(2);.补全统计图如右图所示:【解析】,.(3)(名)答:此次汉字听写比赛成绩达到B级及B级以上的学生约有名.25. (1)设,两种商品的销售单价分别为每件元,元.根据题意,得解这个方程组,得答:,两种商品的销售单价分别为每件元,元.(2)设要购进件种商品.根据题意,得解这个不等式,得答:购进种商品的件数至少为件.(3)设购买种商品件,购买种商品件.当打折前一次性购物总金额不超过时,购物总金额为(元).则, .因为,均是正整数,所以时,或时,.当,时,利润为(元);当,时,利润为(元).当打折前一次性购物总金额超过时,购物总金额为(元).则, .因为,均是正整数,所以时,或时,.当,时,利润为(元);当,时,利润为(元).综上所述,商家可获得的最小利润是元,最大利润是元.。
2016-2017学年山东省泰安市岱岳区七年级(下)期中数学试卷一、选择题1.方程mx﹣2y=5是二元一次方程时,常数m的取值为()A.m≠0 B.m≠1 C.m≠﹣1 D.m≠22.掷一枚骰子,朝上的一面出现奇数的概率是()A.B.C.D.3.用代入法解方程组,能使代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x﹣54.用加减法解方程时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果①②③④其中变形正确的是()A.①②B.③④C.①③D.②④5.如图,能判断AB∥CD的条件是()A.∠1=∠2 B.∠1+∠2=180°C.∠3=∠4 D.∠3+∠4=90°6.下列命题是真命题的有几个?()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个 B.2个 C.3个 D.4个7.两平行直线被第三条直线所截,一组同位角的角平分线()A.互相重合B.互相平行C.互相垂直D.相交但不垂直8.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150° D.180°第1页(共18页)第2页(共18页)10.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°11.如图,直线a ∥b ,三角板的直角顶点在直线a 上,已知∠1=25°,则∠2的度数是( )A .25°B .55°C .65°D .155°12.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( ) A . B . C . D .13.下面四条直线,其中直线上每个点的坐标都是二元一次方程x ﹣2y=2的解是( )A .B .C .D .14.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是多少度?请你帮小明求出( )A .120°B .130°C .140°D .150°15.新学期开始,七年级2班34名同学参加劳动,分别搬运课本与作业本,其中搬运课本的人数是搬运作业本人数的2倍多1人,求搬运课本与作业本的人数各是多少?设搬运课本人数为x 人,搬运作业本人数为y 人,下面所列的方程组正确的是( )A .B .C .D .16.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线17.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=218.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是()A.B.﹣ C.D.﹣19.已知,则2a+2b等于()A.6 B.C.4 D.220.A和B两城市相距420千米,一辆小汽车和一辆客车同时从A、B两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.二、填空题21.已知方程组的解是,则一次函数y=ax+b与y=kx的交点P的坐标是.22.如图,∠1+∠2+∠3+∠4+∠5+∠6=度.23.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=°.24.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.三、解答题25.如图,∠ACE=∠FEC,∠EFB=∠A,试说明FB∥AE.26.(1)用代入消元法解方程组第3页(共18页)(2)用加减消元法解方程组.27.如图,CF是∠ACB的平分线,CG是∠ACB外角的平分线,FG∥BC交CG于点G,已知∠A=45°,∠B=55°,求∠FGC和∠FCG的度数.28.(列方程组解应用题)新新儿童服装店对“天使”牌服装进行调价,其中A型每件的价格上调了10%,B型每件的价格下调了5%,已知调价前买这两种服装各一件共花费70元,调价后买3件A型服装和2件B型服装共花费175元,问这两种服装在调价前每件各多少元?29.我校学生会组织学生到距学校6千米的敬老院打扫卫生,如图所示,11、12分别表示步行和骑车同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,求在距学校多远处骑车的同学追上步行的同学,此时步行的同学走了多少分钟?第4页(共18页)第5页(共18页)2016-2017学年山东省泰安市岱岳区七年级(下)期中数学试卷参考答案与试题解析一、选择题1.方程mx﹣2y=5是二元一次方程时,常数m的取值为()A.m≠0 B.m≠1 C.m≠﹣1 D.m≠2【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数这个方面考虑.【解答】解:mx﹣2y=5,根据二元一次方程的定义,得,m≠0,故选A.2.掷一枚骰子,朝上的一面出现奇数的概率是()A.B.C.D.【考点】X4:概率公式.【分析】任意掷一枚均匀的骰子总共有6种情况,其中奇数有3种情况,利用概率公式进行计算即可.【解答】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,奇数为1,3,5,则向上一面的数字是奇数的概率为=.故选C.3.用代入法解方程组,能使代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x﹣5【考点】98:解二元一次方程组.【分析】观察方程组发现第二个方程y系数为﹣1,故变形第二个方程表示出y较为容易.【解答】解:用代入法解方程组,能使代入后化简比较容易的变形是由②得y=2x﹣5,故选D4.用加减法解方程时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果第6页(共18页)①②③④其中变形正确的是()A.①②B.③④C.①③D.②④【考点】98:解二元一次方程组.【分析】根据加减法的要求将方程组变形,即可作出判断.【解答】解:用加减法解方程时,要使两个方程中同一未知数的系数相等或相反,正确的结果为③;④,故选B5.如图,能判断AB∥CD的条件是()A.∠1=∠2 B.∠1+∠2=180°C.∠3=∠4 D.∠3+∠4=90°【考点】J9:平行线的判定.【分析】如图,利用平角定义得到∠1+∠5=180°,则当∠1+∠2=180°时,∠2=∠5,然后根据平行线的判定可判断AB∥CD.【解答】解:如图,因为∠1+∠5=180°,所以当∠1+∠2=180°时,∠2=∠5,所以AB∥CD.故选B.6.下列命题是真命题的有几个?()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】根据题目中的说法可以判断各个命题是否为真命题,从而可以解答本题.【解答】解:对顶角相等,故①是真命题,第7页(共18页)相等的角不一定是对顶角,如两直线平行,同位角相等,而这两个同位角不是对顶角,故②是假命题,因为对顶角相等,所以两个角不相等,则这两个角一定不是对顶角,故③是真命题,若两个角不是对顶角,则这两个角可能相等,如两直线平行,同位角相等,则这两个同位角不是对顶角,故④是真命题,故选C.7.两平行直线被第三条直线所截,一组同位角的角平分线()A.互相重合B.互相平行C.互相垂直D.相交但不垂直【考点】JA:平行线的性质;IJ:角平分线的定义;J9:平行线的判定.【分析】依照题意,画出图形,根据平行线的性质可得∠ABC=∠ADE,利用角平分线的定义可得出∠ABM=∠ADN,由此即可证出BM∥DN.【解答】解:依照题意,画出图形,如图所示.∵BC∥DE,∴∠ABC=∠ADE.∵BM平分∠ABC,DN平分∠ADE,∴∠ABM=∠ADN,∴BM∥DN.故选B.8.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大【考点】X2:可能性的大小;X1:随机事件.【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵抛掷一枚硬币,硬币落地时正面朝上是随机事件,∴选项A不符合题意;∵把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,∴选项B不符合题意;∵任意打开七年级下册数学教科书,正好是97页是随机事件,∴选项C符合题意;第8页(共18页)∵一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大,∴选项D不符合题意.故选:C.9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150° D.180°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补由AB∥CD得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=120°,∴∠ACD=180°﹣120°=60°,∵AC∥DF,∴∠ACD=∠CDF,∴∠CDF=60°.故选A.10.如图,直线a、b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°【考点】JA:平行线的性质.【分析】通过角的计算可求出∠1的度数,再根据平行线的性质即可得出∠4=∠1,此题得解.【解答】解:∵∠1=∠2,∠1+∠2+∠3=180°,∴∠1==70°.∵a∥b,∴∠4=∠1=70°.故选C.11.如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则第9页(共18页)∠2的度数是()A.25°B.55°C.65°D.155°【考点】JA:平行线的性质.【分析】先根据平角等于180°求出∠3,再利用两直线平行,同位角相等解答.【解答】解:∵∠1=25°,∴∠3=180°﹣90°﹣25°=65°,∵a∥b,∴∠2=∠3=65°.故选C.12.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:因为一共有6个球,红球有2个,所以从布袋里任意摸出1个球,摸到红球的概率为:=.故选D.13.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A. B. C.D.【考点】FE:一次函数与二元一次方程(组).【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵x﹣2y=2,第10页(共18页)∴y=x﹣1,∴当x=0,y=﹣1,当y=0,x=2,∴一次函数y=x﹣1,与y轴交于点(0,﹣1),与x轴交于点(2,0),即可得出C符合要求,故选:C.14.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?请你帮小明求出()A.120°B.130°C.140° D.150°【考点】JA:平行线的性质.【分析】作BD∥AE,如图,利用平行线的传递性得到BD∥CF,再根据平行线的性质由BD∥AE得到∠ABD=∠A=120°,则∠DBC=30°,然后利用BD ∥CF求出∠C.【解答】解:作BD∥AE,如图,∵AE∥CF,∴BD∥CF,∵BD∥AE,∴∠ABD=∠A=120°,∴∠DBC=150°﹣120°=30°,∵BD∥CF,∴∠C+∠DBC=180°,∴∠C=180°﹣30°=150°.故选D.15.新学期开始,七年级2班34名同学参加劳动,分别搬运课本与作业本,其中搬运课本的人数是搬运作业本人数的2倍多1人,求搬运课本与作业本的人数各是多少?设搬运课本人数为x人,搬运作业本人数为y人,下面所列的方程组正确的是()A.B.C.D.第11页(共18页)【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选B.16.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线【考点】O1:命题与定理.【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【解答】解:“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.17.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】O3:反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.18.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是()A.B.﹣ C.D.﹣【考点】97:二元一次方程组的解;92:二元一次方程的解.【分析】将a看做已知数,求出方程组的解得到x与y,代入方程中计算即可求出a的值.【解答】解:依题意知,,由①+②得x=6a,把x=6a代入①得y=﹣3a,把代入2x﹣3y+12=0得2×6a﹣3(﹣3a)+12=0,解得:a=﹣.故选B.第12页(共18页)19.已知,则2a+2b等于()A.6 B.C.4 D.2【考点】98:解二元一次方程组.【分析】方程组两方程相加,求出2a+2b的值即可.【解答】解:,①+②得:4a+4b=12,则2a+2b=6,故选A20.A和B两城市相距420千米,一辆小汽车和一辆客车同时从A、B两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选D.二、填空题21.已知方程组的解是,则一次函数y=ax+b与y=kx的交点P的坐标是(1,3).【考点】FE:一次函数与二元一次方程(组).【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.【解答】解:∵方程组的解是,∴一次函数y=ax+b与y=kx的交点P的坐标是(1,3).22.如图,∠1+∠2+∠3+∠4+∠5+∠6=360度.第13页(共18页)【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】根据三角形中内角和为180°,有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),三式相加,再利用三角形中内角和为180°即可求得.【解答】解:如图,根据三角形中内角和为180°,有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),∴∠HGT+∠GHT+∠GTH=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),∵∠HGT+∠GHT+∠GTH=180°,∴180°=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),∴∠1+∠2+∠3+∠4+∠5+∠6=360°,故答案为:360.23.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=57.5°.【考点】JA:平行线的性质.【分析】先利用平行线的性质得∠AEF=115°,然后根据折叠的性质可计算出∠AED′=∠AEF=57.5°.【解答】解:∵AD∥BC,∴∠EFB+∠AEF=180°,∴∠AEF=180°﹣65°=115°,∵长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,∴∠AED′=∠FED′=∠AEF=57.5°.故答案为57.5.24.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为600个.第14页(共18页)【考点】X8:利用频率估计概率.【分析】因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.【解答】解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600(个).故答案为:600个.三、解答题25.如图,∠ACE=∠FEC,∠EFB=∠A,试说明FB∥AE.【考点】J9:平行线的判定.【分析】首先根据内错角相等得到EF∥AD,进而得到∠EFB=∠DBF,进而利用同位角相等,证明出两直线平行.【解答】解:∵∠ACE=∠D,∴EF∥AD.∴∠EFB=∠DBF,∵∠EFB=∠A ∴∠DBF=∠A,∴AE∥BF.26.(1)用代入消元法解方程组(2)用加减消元法解方程组.【考点】98:解二元一次方程组.【分析】(1)用代入消元法,求出方程组的解是多少即可.(2)用加减消元法,求出方程组的解是多少即可.【解答】解:(1)由②,可得:y=2x﹣1③③代入①,可得:3x+2(2x﹣1)=19,解得x=3,∴y=2×3﹣1=5,∴原方程组的解是.(2)①+②,可得:3x=6,解得x=2,第15页(共18页)∴y=2﹣1=1,∴原方程组的解是.27.如图,CF是∠ACB的平分线,CG是∠ACB外角的平分线,FG∥BC交CG于点G,已知∠A=45°,∠B=55°,求∠FGC和∠FCG的度数.【考点】JA:平行线的性质.【分析】首先利用三角形的外角等于不相邻的两个内角的和求得∠ACE的度数,然后根据角的平分线的定义求得∠GCE的度数,再利用平行线的性质求得∠FGC;利用角的平分线的定义可以得到∠FCG=∠ACF+∠ACG=(∠ACB+∠ACE),从而求得∠FCG.【解答】解:∵∠ACE=∠A+∠B=45°+55°=100°,又∵CG是∠ACE的平分线,∴∠GCE=∠ACG=∠ACE=50°,∵FG∥BC,∴∠FGC=∠GCE=50°.∵CF平分∠ACB,∴∠ACF=∠ACB,又∵∠ACG=∠ACE,∴∠FCG=∠ACF+∠ACG=∠ACB+∠ACE=×180°=90°.28.(列方程组解应用题)新新儿童服装店对“天使”牌服装进行调价,其中A型每件的价格上调了10%,B型每件的价格下调了5%,已知调价前买这两种服装各一件共花费70元,调价后买3件A型服装和2件B型服装共花费175元,问这两种服装在调价前每件各多少元?【考点】9A:二元一次方程组的应用.【分析】设调价前A型服装每件x元,B型服装每件y元,根据“调价前买这两种服装各一件共花费70元,调价后买3件A型服装和2件B型服装共花费175元”结合调价规则,即可得出关于x、y的二元一次方程,解之即可得出结论.【解答】解:设调价前A型服装每件x元,B型服装每件y元,根据题意得:,解得:.答:调价前A型服装每件30元,B型服装每件40元.第16页(共18页)29.我校学生会组织学生到距学校6千米的敬老院打扫卫生,如图所示,11、12分别表示步行和骑车同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,求在距学校多远处骑车的同学追上步行的同学,此时步行的同学走了多少分钟?【考点】FH:一次函数的应用.【分析】根据图象上特殊点的坐标及利用速度=路程÷时间的数量关系求出步行和骑车同学的速度,再根据追击时间=路程差÷速度差求出追击时间,再根据路程=速度×时间就可以求出结论.【解答】解:6÷60=0.1(千米/分钟),6÷(54﹣30)=0.25(千米/分钟),0.1×30÷(0.25﹣0.1)=3÷0.15=20(分钟),0.25×20=5(千米).故在距学校5千米远处骑车的同学追上步行的同学,此时步行的同学走了20分钟.第17页(共18页)2017年6月4日第18页(共18页)。
山东省2016-2017学年七年级下学期期末考试数学试卷一.选择题(共13小题)1.(2014•江阴市模拟)下列运算正确的是( )A .(x 3)4=x 7,B .(-x )2•x 3=x 5,C .(-x )4÷x=-x 3,D .x+x 2=x 32.(2014•博野县一模)如图,把一块直角三角板的直角顶点放在直尺的一边 上,如果∠1=32°,那么∠2的度数是( )3.(2014春•黄梅县校级月考)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A .第一次向左拐40°,第二次向右拐40°B .第一次向右拐140°,第二次向左拐40°C .第一次向右拐140°,第二次向右拐40°D .第一次向左拐140°,第二次向左拐40°4.(2014•常州)甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A . 4个B . 3个C . 2个D . 1个5.(2014•重庆)地铁1号线是重庆轨道交通线网东西方向的主干线,也是贯穿中区和沙坪坝区的重要交通通道,它的开通极大地方便了市民的出行,现某同学要从沙坪坝南开中学到两路口,他先匀速步行至沙坪坝地铁站,等了一会,然后搭乘一号线地铁直达两路口(忽A .32°, B .68°, C .58°, D .60°略途中停靠站的时间).在此过程中,他离南开中学的距离y与时间x的函数关系的大致图象是()A., B., C., D.6.(2014•宁德)下列事件是必然事件的是()A.任取两个正整数,其和大于1B.抛掷1枚硬币,落地时正面朝上C.在足球比赛中,弱队战胜强队D.小明在本次数学考试中得150分7.(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时8.(2014•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D. EF∥BC 9.(2014•台湾)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D. 155°10.(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D. 70°11.(2014•防城港)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cmC.4cm<AB<8cm D.4cm<AB<10cm12.(2014•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D. 60°二.选择题(共9小题)13.(2014•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.14.(2014•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为.15.(2014•葫芦岛)若m+n=2,mn=1,则m2+n2=.16.(2014•黔西南州)如图,已知a∥b,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为.17.(2014•长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=.18.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.19.(2014•徐州)如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=°.三.选择题(共7小题)20.(2014•盐城)先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.21.(2015春•滑县期中)下面的图象反映的是小明从家跑步去图书馆,在那里锻炼了一阵后又走到文具店去买本,然后散步回家.图中x表示时间,y表示小明离家的距离.(1)图书馆离小明家有多远?小明从家到图书馆用了多少时间?(2)图书馆离文具店有多远?(3)小明在文具店停留了多少时间?(4)小明从文具店回到家的平均速度是多少?22.(2015春•泰安校级期中)在5个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8红2白球,3号袋中有5红5白球,4号袋中有1红9白球,5号袋中有10个白球,从各个袋子中摸到白球的可能性一样吗?请将袋子的序号按摸到白球的可能性从小到大的顺序排列.23.(2015春•邗江区期中)如图,在(1)AB∥CD;(2)AD∥BC;(3)∠A=∠C 中,请你选取其中的两个作为条件,另一个作为结论,你能说明它的正确性吗?我选取的条件是,结论是.我的理由是:24.(2015•平谷区一模)如图,AB=AD,AC=AE,∠CAD=∠EAB.求证:BC=DE.25.(2013•朝阳)某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一颗树A;②沿河岸直走20步有一树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.26.(2015春•滕州市校级期中)已知如图,在△ABC中,AB=AC,O是△ABC 内一点,且OB=OC,求证:AO⊥BC.27.(2014•路南区三模)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B 落在点B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)求证:点E在线段AC的垂直平分线上;(3)若AB=8,AD=3,求图中阴影部分的周长.七年级下册期末复习参考答案一.选择题1.B.2.C.3.A.4.B.5.C.6.A.7.C.8.C.9.C.10.D.11.B.12.B.二.选择题13..14.1.15.216.55°.17.6.18.15.19.15.三.选择题20.解:(a+2b)2+(b+a)(b﹣a)=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=﹣1,b=2时,原式=4×(﹣1)×2+5×22=12.21.解:(1)由纵坐标看出,图书馆离小明家2千米;由横坐标看出,小明从家到图书馆用了10分钟;(2)由纵坐标看出,图书馆离小明家2千米,文具店离小明家1千米,2﹣1=1(千米),图书馆离文具店1千米;(3)由横坐标看出,小明到图书馆的时间是60,离开图书馆时间是70,70﹣60=10,小明在文具店停留了10分钟;(4)由纵坐标看出,文具店离小明家1千米,由横坐标看出,小明从图书馆回家用了90﹣70=20分钟=小时,小明从文具店回到家的平均速度是1÷=3(km/h).22.解:1号袋子摸到红球的可能性=1;2号个袋子摸到红球的可能性==;3号个袋子摸到红球的可能性==;4号个袋子摸到红球的可能性=,5号个袋子摸到红球的可能性=0.故排序为:5号,4号,3号,2号,1号.23.解:我选择选择(1)、(2),结论是(3).我的理由是:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠A=∠C(平行四边形的对角相等).故答案是:(1)、(2),(3).24.证明:∵∠CAD=∠EAB,∴∠CAD+∠BAD=∠EAB+∠BAD,即∠CAB=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴BC=DE.25.证明:如图,由做法知:在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.26.证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS)∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.27.(1)证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,∴△AED≌△CEB′(AAS);(2)∵△AED≌△CEB′,∴EA=EC,∴点E在线段AC的垂直平分线上.(3)阴影部分的周长为AD+DE+EA+EB′+B′C+EC=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3=22.。
山东省日照市岚山区2017-2018学年下学期期末考试七年级数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在下面的表格中)1.(3分)在﹣1,π,,﹣,,0.1010010001…中,无理数的个数是()A.1个B.2个C.3个D.4个【专题】常规题型.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.3.(3分)下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量【专题】常规题型;数据的收集与整理.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查日照电视台节目《社会零距离》的收视率适合抽样调查;B、调查日照市民对京剧的喜爱程度适合抽样调查;C、调查全国七年级学生的身高适合抽样调查;D、调查我国首艘宇宙飞船“天舟一号”的零部件质量适合全面调查;故选:D.4.(3分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC-∠B=60°-30°=30°.故选:A.【点评】本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键5.(3分)下列命题是真命题的是()A.无限小数都是无理数B.若a>b,则c﹣a>c﹣bC.立方根等于本身的数是0和1D.平面内如果两条直线都和第三条直线垂直,那么这两条直线互相平行【专题】几何图形.【分析】根据无理数的定义、平行线的判定、不等式的性质和立方根矩形判断即可.【解答】解:A、无限循环小数不是无理数,是假命题;B、若a>b,则c-a<c-b,是假命题;C、立方根等于本身的数是0和±1,是假命题;D、平面内如果两条直线都和第三条直线垂直,那么这两条直线互相平行,是真命题;故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解无理数的定义、平行线的判定、不等式的性质和立方根等知识,难度不大.6.(3分)已知点P(0,a)在y轴的负半轴上,则点Q(﹣a2﹣1,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴负半轴上点的纵坐标是负数求出a的取值范围,再求出点Q的横坐标与纵坐标的正负情况,然后求解即可.【解答】解:∵点P(0,a)在y轴的负半轴上,∴a<0,∴-a2-1<0,-a+1>0,∴点Q在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【专题】探究型.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】∴将x=5代入2x-y=12,得y=-2,将x=5,y=-2代入2x+y得,2x+y=2×5+(-2)=8,∴●=8,★=-2,故选:D.【点评】本题考查二元一次方程组的解,解题的关键是明确题意,求出所求数的值.8.(3分)不等式组的解集在数轴上表示为()A.B.C.D.分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选:A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知“小于向左,大于向右”是解答此题的关键.9.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.1365石B.388石C.169石D.134石【分析】由条件“数得254粒内夹谷28粒”即可估计这批米内夹谷约多少.【解答】解:故选:C.【点评】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.10.(3分)若不等式组的解集是x>2,则a的取值范围是()A.a<2B.a≤2C.a≥2D.无法确定【专题】一元一次不等式(组)及应用.【分析】解不等式2x-1>3得:x>2,结合x>a,不等式组的解集为:x>2,即可得到关于a 取值范围.【解答】解:解不等式2x-1>3得:x>2,∵x>a,又∵不等式组的解集为x>2,∴a≤2,即a的取值范围是:a≤2,故选:B.【点评】本题考查解一元一次不等式组,正确掌握解一元一次不等式组的方法是解题的关键.11.(3分)单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的()A.40%B.70%C.76%D.96%【分析】首先求得植树7棵以上的人数,然后利用百分比的意义求解.【解答】解:植树7棵以上的人数是50-2-10=38(人),故选:C.【点评】本题考查读频数分布直方图的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否≥19”为一次程序如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥B.≤x<4C.<x≤4D.x≤4【专题】一元一次不等式(组)及应用.【分析】由输入的数运行了三次才停止,即可得出关于x的一元一次不等式组,解之即可得出x 的取值范围.【解答】【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.二、填空题本题共5小题,每小题4分,共20分.请把答案直接填在题中横线上)13.(4分)的相反数是.【分析】根据负数的绝对值等于它的相反数解答.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.(4分)在平面直角坐标中,将线段AB平移至线段CD的位置,使点A与C重合,若点A(﹣1,2),点B(﹣3,﹣2),点C(2,1),则点D的坐标是.【分析】先根据A(-1,2)与点C(2,1)是对应点,得到平移的方向与距离,再根据点B(-3,-2)得出对应点D的坐标.【解答】解:由题得,A(-1,2)与点C(2,1)是对应点,∴平移的情况是:向右平移3个单位,向下平移1个单位,∵点B(-3,-2)的对应点D的横坐标为-3+3=0,纵坐标为-2-1=-3,即D的坐标为(0,-3).故答案为:(0,-3)【点评】本题主要考查了平移变换,解决问题的关键是找准对应点,确定平移方向与距离.平移的规律为:横坐标,右移加,左移减;纵坐标,上移加,下移减.15.(4分)若a2=4,b2=9,且ab<0,则a+b的值为.【专题】计算题.【分析】根据有理数的乘方的定义分别求出a、b,根据有理数的乘法法则全等a、b的值,根据有理数的加法法则计算即可.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,b=-3或a=-2,b=3,则a+b=±1,故答案为:±1.【点评】本题考查的是有理数的乘方、有理数的乘法,掌握有理数的乘方的概念、有理数的乘法法则是解题的关键.16.(4分)如图,有一条直的等宽纸带按图折叠时,则图中∠a=.【专题】线段、角、相交线与平行线.【分析】折叠前,纸条上边为直线,即平角,由折叠的性质可知:2α+30°=180°,解方程即可.【解答】解:观察纸条上的边,由平角定义,折叠的性质,得2α+30°=180°,解得α=75°.故答案为:75°.【点评】本题考查了折叠的性质以及平行线的性质.关键是根据平角的定义,列方程求解.17.(4分)在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是场.【专题】一元一次不等式(组)及应用.【分析】设该校足球队获胜x场,则平了(9-1-x)场,根据总积分=3×获胜场数+1×平局场数结合总积分不少于21分,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论.【解答】解:设该校足球队获胜x场,则平了(9-1-x)场,根据题意得:3x+(9-1-x)≥21,∵x为整数,∴x的最小值为7.故答案为:7.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三、解答题(应写出推理过程或演算步骤,共64分)18.(10分)(1)计算:|﹣|﹣+|﹣2|(2)解不等式组:【专题】计算题;一元一次不等式(组)及应用.【分析】(1)原式利用绝对值的代数意义计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解:(1)原式=﹣2+2﹣=0;(2),由①得:x≤1,由②得:x<4,则不等式组的解集为x≤1.【点评】此题考查了解一元一次不等式组,以及实数的性质,熟练掌握运算法则是解本题的关键.19.(9分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′;B′;C′;(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为;(3)求△ABC的面积.【分析】(1)根据平面直角坐标系的特点直接写出坐标;(2)首先根据A与A′的坐标观察变化规律,P的坐标变换与A点的变换一样,写出点P′的坐标;(3)先求出△ABC所在的矩形的面积,然后减去△ABC四周的三角形的面积即可.解:(1)如图所示:A′(﹣3,1),B′(﹣2,﹣2)、C′(﹣1,﹣1);(2)A(1,3)变换到点A′的坐标是(﹣3,1),横坐标减4,纵坐标减2,∴点P的对应点P′的坐标是(a﹣4,b﹣2);(3)△ABC的面积为:3×2﹣×2×2﹣×3×1﹣×1×1=2.故答案为:(﹣3,1),(﹣2,﹣2)、(﹣1,﹣1);(a﹣4,b﹣2).【点评】此题主要考查了平移变换作图,三角形的面积,网格图形中经常利用三角形所在的矩形的面积减去四周三角形的面积的方法求解20.(10分)如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵,∴∠CDA=90°,∠DAB=90°().∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴(),∴DF∥AE().【分析】先根据垂直的定义,得到∠1+∠3=90°,∠2+∠4=90°,再根据等角的余角相等,得出∠3=∠4,最后根据内错角相等,两直线平行进行判定即可.【解答】证明:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°,(垂直定义)∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4,(等角的余角相等)∴DF∥AE.(内错角相等,两直线平行)故答案为:CD⊥DA,DA⊥AB,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.【点评】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行.21.(11分)某运动品牌对第一季度甲、乙两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示,已知一月份乙款运动鞋的销售量是甲款的,第一季度这两款运动鞋的销售单价保持不变(销售额=销售单价×销售量)(1)求一月份乙款运动鞋的销售量.(2)求两款运动鞋的销售单价(单位:元)(3)请补全两个统计图.(4)结合第一季度的销售情况,请你对这两款运动鞋的进货,销售等方面提出一条建议.【分析】(1)根据有理数乘法的意义列出算式可求一月份乙款运动鞋的销售量.(2)设甲款运动鞋的销量单价为x元,乙款运动鞋的销量单价为y元,根据图形中给出的数据,列出方程组,再进行计算即可;(3)先求出三月份的总销售额,再补全两个统计图即可;(4)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.解:(1)50×=30(双).答:一月份乙款运动鞋的销售量是30双.(2)设甲款运动鞋的销量单价为x元,乙款运动鞋的销量单价为y元,根据题意得:,解得:.故甲款运动鞋的销量单价为300元,乙款运动鞋的销量单价为200元.(3)三月份的总销售额是:300×70+200×25=26000(元),26000元=2.6万元,如图所示:(4)建议多进甲款运动鞋,加强乙款运动鞋的销售.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(12分)某工厂为了扩大生产,决定购买6台机器用于生产零件两种机器可供选择.已知甲、乙两种机器的购买单价及日产零件个数如表.甲型机器乙型机器购买单价(万元)75日产零件(个)10660(1)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(2)在(1)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金,应该选择哪种方案?【专题】一元一次不等式(组)及应用.【分析】(1)设购买甲种机器x台,则乙种机器(6-x)台,根据表格内容,列出关于x的一元一次不等式,解之即可,(2)根据费用=单价×数量,总日产量=单个机器日产量×数量,结合(1)的结果,列式计算,并选出符合要求的方案即可.【解答】解:(1)设购买甲种机器x台,则乙种机器(6-x)台,根据题意得:7x+5(6-x)≤34,解得:x≤2,∵x是整数,x≥0,∴x=0或1或2,∴有三种购买方案,①购买甲种机器0台,乙种机器6台,②购买甲种机器1台,乙种机器5台,③购买甲种机器2台,乙种机器4台,(2)①费用6×5=30万元,日产量为:60×6=360个,②费用7+5×5=32万元,日产量为:106+60×5=406个,③费用7×2+5×4=34万元,日产量为:106×2+60×4=452个,综上所述,应选择购买甲种机器1台,乙种机器5台,答:为了节约资金,应选择购买甲种机器1台,乙种机器5台.【点评】本题考查一元一次不等式的应用,解题的关键:(1)正确找出不等关系,列出一元一次不等式,(2)正确计算出各种方案中的费用和日产量.23.(12分)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.【专题】分类讨论.【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案(1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CPA=α﹣β;如图所示,当P在DB延长线上时,∠CPA=β﹣α.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
2023-2024学年山东省济南市历下区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)9的算术平方根是()A.3B.﹣3C.±3D.2.(4分)中国汉字文化源远流长,篆书是汉字古代书体之一,下列篆体字“大”“美”“泉”“城”中,不是轴对称图形的是()A.B.C.D.3.(4分)估计的值是在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.(4分)如图,把两根木条AB和AC的一端A用螺栓固定在一起,木条AC自由转动至AC′位置.在转动过程中,下面的量是常量的为()A.∠BAC的度数B.BC的长度C.△ABC的面积D.AC的长度5.(4分)关于整式的运算,下列正确的是()A.(a+b)2=a2+b2B.a6÷a2=a3C.a4•a3=a12D.(a3)3=a96.(4分)“七年级下册数学课本共170页,某同学随手翻开,恰好翻到第63页”,这个事件是()A.必然事件B.不可能事件C.随机事件D.以上都不正确7.(4分)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N作直线MN交AB于点D,连接CD.若AB=8,AC=4,则△ACD的周长为()A.11B.12C.13D.148.(4分)如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长,那么判定△ABC≌△ADC的理由是()A.SAS B.SSS C.ASA D.AAS9.(4分)勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端,下面四幅图中不能证明勾股定理的是()A.B.C.D.10.(4分)如图,在△ABC,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C,正确的是()A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分.)11.(4分)动车上二等座车厢每排都有A,B,C,D,F五个座位,其中A和F是靠窗的座位.若购票时系统随机为每位乘客分配座位,则座位是靠窗的概率为.12.(4分)如图,在△ABC中,CD是边AB上的中线,AE⊥BC,若BC=4,S△ACD=3,则AE=.13.(4分)若一个数的两个平方根分别是a+3和2a﹣15,则这个数为.14.(4分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,BC 恰好平分∠ABF,AE=2BF.若CE=2,则AB=.15.(4分)如图,三角形纸片ABC中,∠BAC=90°,AB=3,AC=5,沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则DE=.三、解答题(本大题共10个小题,共90分.请写出文字说明或演算步骤.)16.(7分)计算:(1);(2).17.(7分)如图,∠A=∠B,AE=BE,点D在AC边上,∠CED=∠AEB,AE交BD于点F.试说明:∠EDB=∠C.18.(7分)先化简,再求值:[(2x+y)(2x﹣y)﹣y(6x﹣y)]÷2x,其中,y=1.19.(8分)如图,在正方形网格上,△ABC各顶点均为格点,且每个小正方形的边长为1.(1)作出△ABC关于直线l对称的图形△A1B1C1;(2)在边AC上找一点D,连接BD,使BD平分△ABC的面积,请作出线段BD(不写作法);(3)在直线l上找一点P,使得AP+CP的值最小(保留作图痕迹),这一最小值为.20.(8分)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(点A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5km,CH=1.2km,HB=0.9km.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)已知新的取水点H与原取水点A相距0.5千米,则新路CH比路CA少多少千米?21.(9分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,过点A作AE⊥BD交延长线于点E.若∠BAC=2∠DAE,求∠DAE的度数.22.(10分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图1是由边长为cm 的正方形薄板分为7块制作成的“七巧板”,分别是五块等腰直角三角形、一块正方形和一块平行四边形,图2是一个用该“七巧板”拼成的“台灯”形状装饰图,放入长方形ABCD 中,装饰图中三角形的顶点F 在边AB 上,三角形的边MN 和PQ 分别在边AD 、BC 上,使得AB =BC .(1)通过观察图形得到AB =;(2)一只蚂蚁在长方形ABCD 内爬行,已知它停在长方形内任意一点的可能性相同,那么它停在“台灯”上与空白区域的可能性相同吗?请通过计算说明.23.(10分)数学兴趣小组利用所学数学知识来解决实际问题,实践报告如下:活动课题风筝离地面垂直高度探究问题背景风筝由中国古代劳动人民发明于东周春秋时期,距今已2000多年,相传墨翟以木头制成木鸟,研制三年而成,是人类最早的风筝起源.兴趣小组在放风筝时想测量风筝离地面的垂直高度.测量数据抽象模型小组成员测量了相关数据,并画出了如图所示的示意图,测得水平距离BC 的长为15米,根据手中剩余线的长度计算出风筝线AB 的长为17米,牵线放风筝的手到地面的距离为1.5米.问题产生经过讨论,兴趣小组得出以下问题:(1)运用所学勾股定理相关知识,根据测量所得数据,计算出风筝离地面的垂直高度.(2)如果想要风筝沿DA 方向再上升12米,且BC 长度不变,则他应该再放出多少米线?问题解决……该报告还没有完成,请你帮助兴趣小组解决以上问题.24.(12分)甲骑电动车,乙骑自行车从公园门口出发沿同一路线匀速游玩,甲、乙两人距出发点的路程S(km)与乙行驶的时间x(h)的关系如图①所示,其中l1表示甲运动的图象,甲、乙两人之间的路程差y(km)与乙行驶的时间x(h)的关系如图②所示,请你解决以下问题:(1)图②中的自变量是,因变量是;(2)甲的速度是km/h,乙的速度是km/h;(3)结合题意和图①,可知图②中:a=,b=;(4)求乙出发多长时间后,甲、乙两人的路程差为7.5km?25.(12分)在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化时,始终存在一对全等三角形.通过查询资料,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:(1)观察猜想:如图1,在△ABC中,分别以AB,AC为边向外作等腰直角△ABD和等腰直角△ACE,∠BAD=∠CAE=90°,连接BE,CD,则BE与CD的数量关系为,位置关系为;(2)类比探究:如图2,在△ABC中,分别以AB,AC为边作等腰直角△ABD和等腰直角△ACE.∠BAD=∠CAE=90°,点D,E,C在同一直线上,AM为△ACE中CE边上的高,猜想DC,BC,AM 之间的数量关系并说明理由;(3)解决问题:运用(1)(2)中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点D,C的距离,已经测得∠ACB=45°,∠DAB=90°,AB=AD,米,BC=40米,CD的长为米.2023-2024学年山东省济南市历下区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据算术平方根的定义求解即可.【解答】解:9的算术平方根是3,故选:A.【点评】本题考查算术平方根的求解,熟练掌握算术平方根的定义是解题的关键.2.【分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【解答】解:篆书中大,美,泉是轴对称图形,城不是轴对称图形,故选:D.【点评】本题考查轴对称图形的识别,熟练掌握其定义是解题的关键.3.【分析】求出的范围是<<,求出后即可得出答案.【解答】解:∵<<,∴2<<3,∴在2到3之间,故选:B.【点评】本题考查了估算无理数的大小,关键是得出<<,题目比较典型,难度不大.4.【分析】根据常量和变量的定义进行判断.【解答】解:木条AC绕点A自由转动至AC′过程中,AC的长度始终不变,故AC的长度是常量;而∠BAC的度数、BC的长度、△ABC的面积一直在变化,均是变量.故选:D.【点评】本题考查常量和变量,理解题意,确定变与不变是求解本题的关键.5.【分析】根据整式相关运算法则逐项判断即可.【解答】解:(a+b)2=a2+2ab+b2,故选项A错误,不符合题意;a6÷a2=a4,故选项B错误,不符合题意;a4•a3=a7,故选项C错误,不符合题意;(a3)3=a9,故选项D正确,符合题意;故选:D.【点评】本题考查整式的混合运算,解题的关键是掌握整式相关的运算法则.6.【分析】根据事件发生的可能性大小判断即可.【解答】解:七年级下册数学课本共170页,某同学随手翻开,恰好翻到第63页”,这个事件是随机事件.故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.【分析】利用基本作图可判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到△ACD的周长=AB+AC,再把AB=8,AC=4代入计算即可.【解答】解:由作法得MN垂直平分BC,则DC=DB,所以△ACD的周长=CD+AC+AD=DB+AD+AC=AB+AC=8+4=12.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.【分析】利用∠ACD=∠ACB,CD=CB,加上公共边可根据“SSS”判断△ABC≌△ADC.【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故选:A.【点评】本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.9.【分析】先用不同方法表示出图形中各个部分的面积,利用面积不变得到等式,变形再判断即可.【解答】解:A.大正方形的面积等于四个矩形的面积的和,∴(a+b)2=a2+2ab+b2,以上公式为完全平方公式,∴A选项不能说明勾股定理;B.由图可知三个三角形的面积的和等于梯形的面积,∴ab+ab+c2=(a+b)(a+b),整理得a2+b2=c2,∴B选项可以证明勾股定理;C.大正方形的面积等于四个三角形的面积加小正方形的面积,∴4×ab+c2=(a+b)2,整理得a2+b2=c2,∴C选项可以证明勾股定理;D.整个图形的面积等于边长为b的正方形的面积+边长为a的正方形面积+2个直角三角形的面积,也等于边长为c的正方形面积+2个直角三角形的面积,∴b2+a2+2×ab=c2+2×ab,整理得a2+b2=c2,∴D选项可以证明勾股定理,故选:A.【点评】本题主要考查勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.【分析】①根据BD⊥FD,FH⊥BE和∠FJD=∠BJH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,证明结论正确;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);③正确;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,故选:D.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分.)11.【分析】由题意知,共有5种等可能的结果,其中座位是靠窗的结果有2种,利用概率公式可得答案.【解答】解:由题意知,共有5种等可能的结果,其中座位是靠窗的结果有2种,∴座位是靠窗的概率为.故答案为:.【点评】本题考查列表法与树状图法、概率公式,熟练掌握概率公式是解答本题的关键.12.【分析】首先根据CD是边AB上的中线得S△ACD=S△BCD=3,进而得S△ABC=6,然后根据三角形的面积公式可求出AE的长.【解答】解:∵CD是边AB上的中线,∴AD=BD,∴△ACD和△BCD等底同高,∴S△ACD=S△BCD=3,∴S△ABC=6,∴,∴,∴AE=3.故答案为:3.【点评】此题主要考查了三角形的面积,解答此题的关键是理解同底(等底)同高(等高)的两个三角形的面积相等.13.【分析】根据平方根的性质建立等量关系,求出a的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣15)=0,解得:a=4.∴(a+3)2=72=49.故答案为:49.【点评】本题考查了平方根,先根据平方根互为相反数,求出a的值再求出这个数是解题的关键.14.【分析】根据平行线的性质得到∠C=∠CBF,根据角平分线的定义得到∠ABC=∠CBF,推出AB=AC,根据角平分线的性质得到DC=BD,根据全等三角形的性质得到DE=DF,CE=BF=2,于是得到结论.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD平分∠BAC,∴DC=BD,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA)∴DE=DF,CE=BF=2,∵AE=2BF,∴AC=3BF,∴AB=3BF=6,故答案为:6.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,等腰三角形的性质,平行线的性质,熟练掌握角平分线的性质是解题的关键.15.【分析】由∠BAC=90°,得∠B+∠C=90°,由折叠得AD=AB=3,DE=CE,∠ADB=∠B,∠EDC =∠C,∠ADB+∠EDC=∠B+∠C=90°,所以∠ADE=90°,于是得32+DE2=(5﹣DE)2,求得DE =,于是得到问题的答案.【解答】解:∵∠BAC=90°,AB=3,AC=5,∴∠B+∠C=90°,由折叠得AD=AB=3,DE=CE,∠ADB=∠B,∠EDC=∠C,∴∠ADB+∠EDC=∠B+∠C=90°,AE=5﹣CE=5﹣DE,∴∠ADE=180°﹣(∠ADB+∠EDC)=90°,∴AD2+DE2=AE2,∴32+DE2=(5﹣DE)2,解得DE=,故答案为:.【点评】此题重点考查翻折变换的性质、直角三角形的两个锐角互余,勾股定理等知识,证明∠ADE =90°是解题的关键.三、解答题(本大题共10个小题,共90分.请写出文字说明或演算步骤.)16.【分析】(1)利用平方差公式进行计算,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答.【解答】解:(1)=18﹣3=15;(2)=3﹣2+=2.【点评】本题考查了二次根式的混合运算,平方差公式,准确熟练地进行计算是解题的关键.17.【分析】根据∠CED=∠AEB得∠CEA=∠DEB,进而可依据“ASA”判定△ACE和△BDE全等,然后根据全等三角形的性质可得出结论.【解答】解:∵∠CED=∠AEB,∴∠CED+∠AED=∠AEB+∠AED,即∠CEA=∠DEB,在△ACE和△BDE中,,∴△ACE≌△BDE(ASA),∴∠C=∠EDB,即∠EDB=∠C.【点评】此题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解决问题的关键.18.【分析】先利用平方差公式,单项式乘多项式的法则计算括号里,再算括号外,然后把x,y的值代入化简后的式子进行计算,即可解答.【解答】解:[(2x+y)(2x﹣y)﹣y(6x﹣y)]÷2x=(4x2﹣y2﹣6xy+y2)÷2x=(4x2﹣6xy)÷2x=2x﹣3y,当,y=1时,原式=2×(﹣)﹣3×1=﹣1﹣3=﹣4.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.19.【分析】(1)根据轴对称的性质作图即可.(2)取AC的中点D,连接BD即可.(3)连接A1C,交直线l于点P,此时AP+CP的值最小,最小值为A1C的长,利用勾股定理计算即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,取AC的中点D,连接BD,则BD即为所求.(3)连接A1C,交直线l于点P,连接AP,此时AP+CP=A1P+CP=A1C,为最小值,由勾股定理得,A1C==,∴AP+CP的最小值为.故答案为:.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题、勾股定理,熟练掌握轴对称的性质、勾股定理是解答本题的关键.20.【分析】(1)利用勾股定理的逆定理证明∠CHB=90°,根据垂线段最短,即可得出结论;(2)先求出∠CHA=90°,再利用勾股定理求出AC的长度,减去CH的长度即可.【解答】解:(1)CH是村庄C到河边最近的路;理由如下:∵CH2+HB2=1.22+0.92=2.25,CB2=1.52=2.25,∴CH2+HB2=CB2,∴△CHB是直角三角形,且∠CHB=90°,∴CH⊥AB,∵垂线段最短,∴CH是村庄C到河边最近的路;(2)∵∠CHB=90°,∴∠CHA=90°,∴AC2=AH2+CH2,∴AC===1.3(千米),∴AC﹣CH=0.1km,答:新路CH比路CA少0.1千米.【点评】本题考查了勾股定理及其逆定理的应用,掌握勾股定理及其逆定理是解决问题的关键.21.【分析】设∠DAE=x°,则∠BAC=2x°,由等腰三角形的性质求出∠ABC=×(180°﹣2x°)=90°﹣x°,由角平分线定义得到∠ABE=∠ABC=45°﹣x°,由直角三角形的性质得到45°﹣x°+2x°+x°=90°,求出x=18,即可得到∠DAE=18°.【解答】解:设∠DAE=x°,则∠BAC=2x°,∵AB=AC,∴∠ABC=∠ACB=×(180°﹣2x°)=90°﹣x°,∵BD平分∠ABC,∴∠ABE=∠ABC=45°﹣x°,∵AE⊥BD,∴∠ABE+∠BAE=90°,∴45°﹣x°+2x°+x°=90°,∴x=18,∴∠DAE=18°.【点评】本题考查等腰三角形的性质,关键是由等腰三角形的性质,直角三角形的性质列出关于x的方程.22.【分析】(1)观察可以发现AB正好等于正方形的对角线长,利用勾股定理求出对角线长即可;(2)根据几何概率公式分别求出它停在“台灯”上与空白区域的概率,即可作出判断.【解答】解:(1)对比图2与图1,可以发现AB正好等于正方形的对角线长,∵正方形的边长为cm,∴对角线长为=12(cm),故答案为:12cm,(2)不相同.说明:∵AB=BC.AB=12cm,∴BC=16cm,∴P(它停在“台灯”上)==,P(它停在空白区域)=,∵≠,∴它停在“台灯”上与空白区域的可能性不相同,【点评】本题通过七巧板考查正方形的性质,勾股定理,几何概率,理解题意,发现AB与图1中的正方形对角线间的关系,以及掌握几何概率公式是解题的关键.23.【分析】(1)在Rt△ABC中,利用勾股定理求出的AC长,即可得到结论;(2)在Rt△A′BC中,根据勾股定理求出A′B,即可得到结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,BC=15米,AB=17米,由勾股定理,可得AC==8米,∴AD=AC+CD=8+1.5=9.5(米),答:风筝离地面的垂直高度为9.5米;(2)如图,当风筝沿DA方向再上升12米,A'C=20米,在Rt△A′BC中,∠A'CB=90°,BC=15米,由勾股定理,可得A′B==25米,则应该再放出25﹣17=8(米),答:他应该再放出8米长的线.【点评】本题考查了用勾股定理解决实际问题,解题的关键是熟练掌握直角三角形中的三边关系.24.【分析】(1)根据函数的定义解答即可;(2)根据题意和函数图象中的数据可以求得甲乙的速度;(3)根据题意和图象中的数据,可以分别得到a、b的值;(4)由图象可知甲乙相距7.5km有两种情况,然后分别计算两种情况下乙出发的时间即可解答本题.【解答】解:(1)图②中的自变量是乙行驶的时间,因变量是甲、乙两人之间的路程差;故答案为:乙行驶的时间;甲、乙两人之间的路程差;(2)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h),故答案为:25,10;(3)由图可得,b=25×(1.5﹣0.5)﹣10×1.5=10,a=1.5,故答案为:1.5,10;(4)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发x h时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发h或h时,甲、乙两人路程差为7.5km.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.【分析】(1)证△CAD≌△EAB(SAS)即可证出CD=BE,再根据8字型得∠COF=∠CAE=90°;(2)先证△ADE≌△ABC,再证EM=AM,最后通过线段和差即可得证;(3)按照前问思路构造“手拉手模型”全等,从而将CD转化到求BM上来,在利用勾股定理求BM即可.【解答】解:(1)∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∵∠BAD=∠CAE=90°,∴∠BAD+∠CAB=∠CAE+∠CAB,即∠BAE=∠CAD,在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE,∠ACD=∠AEB,设BE与CD交于点O,AC与BE交于点F,∵∠AFE=∠OFC,∴∠COF=∠CAE=90°,∴BE⊥CD.故答案为:BE=CD,BE⊥CD.(2)DC=BC+2AM,理由如下,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∵∠BAD=∠CAE=90°,∴∠BAD﹣∠EAB=∠CAE﹣∠EAB,即∠DAE=∠BAC,在△ADE和△ABC中,,∴△ADE≌△ABC(SAS),∴DE=BC,∵AC=AE,AM⊥CE,∴EC=2EM,∵△ACE为等腰直角三角形,AM⊥CE,∴∠AEM=∠EAM=45°,∴EM=AM,∴EC=2AM,∴DC=DE+EC=BC+2AM.(3)如图,作AM⊥AC,使AM=AC,连接BM、CM,则△ACM为等腰直角三角形.按照第二问思路同理可证:△BAM≌△DAC(SAS),∴BM=CD,∵△ACM是等腰直角三角形,∴∠ACM=45°,∵∠ACB=45°,∴∠BCM=90°,∵AC=15=AM,∴CM==30,在Rt△BCM中,BC=40,∴BM==50米,∴CD=50米,故答案为:50.【点评】本题主要考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等内容,熟练掌握相关知识和添加合适的辅助线是解题关键。
2016-2017学年山东省七年级(下)期末数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里。
每小题3分,共36分。
1.下列各运算中,正确的是()A. 3a+2a=5a2 B.(﹣3a3)2=9a6[来源:学科网ZXXK] C. a4÷a2=a3 D.(a+2)2=a2+4 2.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性 B.两点之间线段最短C.两点确定一条直线 D.垂线段最短3.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10 B. 12 C. 14 D. 164.如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A. 30° B. 32.5°[来源:学*科*网] C. 35° D. 37.5°5.观察图中的汽车商标,其中是轴对称图形的个数为()A. 2 B. 3 C. 4 D. 56.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4) D.(4)(6)(1)7.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A. SAS B. ASA C. AAS D. SSS9.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是610.一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为()A. B. C. D.11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).下列说法错误的是()A.“龟兔再次赛跑”的路程为1000米B.兔子和乌龟同时从起点出发C.乌龟在途中休息了10分钟D.兔子在途中750米处追上乌龟12.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C. C、D两点关于OE所在直线对称D. O、E两点关于CD所在直线对称二、填空题:每小题4分,共24分13.(﹣2m+3)()=4m2﹣9,(﹣2ab+3)2=14.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.[来源:学科网]15.等腰三角形的一个角为50°,那么它的一个底角为.16.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.17.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为.18.如图,先将正方形ABCD对折,折痕为EF,将这个正方形展平后,再分别将A,B对折,使点A,B都与折痕EF上的点G重合,则∠NCG的度数是度.三、解答题(满分共60分)19.计算:(1)﹣14﹣+﹣42015×0.252014(2)化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.20.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)作出△ABC的边BC边上的高AE,垂足为点E.(不写画法);(3)△ABC的面积为.21.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD ∥BC.求证:AD=BC.22.(1)观察图中的(1)~(4)中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图(5)的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所定的两个共同特征.23.一个口袋中装有4个白球、6个红球,这些球除颜色外完全相同,重复搅匀后随机摸出一球,发现是白球.[来源:学*科*网Z*X*X*K](1)如果将这个白球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个白球不放回,再摸出一球,那么它是白球的概率是多少.24.如图,△ABC中,AB=AC=6,BC=4,∠A=40°.(1)用尺规作出边AB的中垂线交AB于点D,交AC于点E(不写作法,保留作图痕迹,并在图中表明字母)(2)连接BE,求△EBC的周长和∠EBC的度数.25.如图,直线l1⊥l2,l1⊥l3,垂足分别为D、E,把一个等腰三角形(AC=BC,∠ACB=90°)放入图中,使三角板的三个顶点A、B、C分别在直线l3、l2、l1上滑动(l3、l2也可以左右移动,但l3始终在l2的右边),在滑动过程中你发现线段BD、AE与DE有什么关系?试说明你的结论.(1)如图1,根据条件请完成填空.证明:∵l1⊥l2,l1⊥l3∴∠BDC=∠CEA=90°∴∠ACE+∠CAE=90°∵∠ACB=90°∴∠ACE+∠BCD=90°[来源:学科网ZXXK]∴∠CAE=∠BCD()在△CBD和△ACE中∴△CBD≌△ACE()∴BD=CE,AE=DC∴DE=DC+CE=AE+BD(2)如图2,BD、AE与DE有什么关系,猜想并证明.猜想关系:DE= .证明:(3)如图3,BD、AE与DE有什么关系?猜想关系:DE= .(只写结论,不必证明)2016-2017学年山东省七年级(下)期末数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里。
每小题3分,共36分。
1.下列各运算中,正确的是()A. 3a+2a=5a2 B.(﹣3a3)2=9a6 C. a4÷a2=a3 D.(a+2)2=a2+4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、3a+2a=5a,原式计算错误,故本选项错误;B、(﹣3a3)2=9a6,原式计算正确,故本选项正确;C、a4÷a2=a2,原式计算错误,故本选项错误;D、(a+2)2=a2+4a+4,原式计算错误,故本选项错误;故选B.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.2.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性 B.两点之间线段最短C.两点确定一条直线 D.垂线段最短考点:三角形的稳定性.分析:根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.解答:解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.点评:本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.3.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10 B. 12 C. 14 D. 16考点:三角形三边关系.分析:根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.解答:解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:C.点评:首先根据三角形的三边关系确定第三边的取值范围,再根据第三边是偶数确定第三边的长.4.如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A. 30° B. 32.5° C. 35° D. 37.5°考点:平行线的性质.分析:根据平行线的性质求出∠EOB,根据三角形的外角性质求出即可.解答:解:设AB、CE交于点O.∵AB∥CD,∠C=65°,∴∠EOB=∠C=65°,∵∠E=30°,∴∠A=∠EOB﹣∠E=35°,故选:C.点评:本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠EOB 的度数和得出∠A=∠EOB﹣∠E.5.观察图中的汽车商标,其中是轴对称图形的个数为()A. 2 B. 3 C. 4 D. 5考点:轴对称图形.分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对对称轴,找出每个图中的对称轴,即可选出答案.解答:解:第一、二、四、五个图形都是轴对称图形,第三个是中心对称图形,故选:C.点评:此题主要考查了轴对称图形的定义,关键是正确找出每个图中的对称轴.6.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4) D.(4)(6)(1)考点:全等三角形的判定.分析:根据三角形全等的判定方法对各选项分析判断利用排除法求解.解答:解:A、(1)(5)(2)符合“SAS”,能判断△ABC与△DEF全等,故本选项错误;B、(1)(2)(3)符合“SSS”,能判断△ABC与△DEF全等,故本选项错误;C、(2)(3)(4),是边边角,不能判断△ABC与△DEF全等,故本选项正确;D、(4)(6)(1)符合“AAS”,能判断△ABC与△DEF全等,故本选项错误.故选C.点评:本题考查了全等三角形的判定,熟记三角形全等的判定方法是解题的关键.7.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.考点:剪纸问题.专题:计算题.分析:结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.解答:解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.点评:本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A. SAS B. ASA C. AAS D. SSS考点:全等三角形的判定与性质.专题:作图题.分析:根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:[来源:学科网]解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.9.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6考点:随机事件;概率公式.专题:常规题型.分析:根据必然事件、不可能事件、随机事件的概念以及概率的求法即可作出判断.解答:解:A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,故A选项正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B选项正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故C选项错误;D.,取得的是红球的概率与不是红球的概率相同,所以m+n=6,故D选项正确.故选:C.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念以及概率的求法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为()A. B. C. D.考点:概率公式.分析:由一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,直接利用概率公式求解即可求得答案.解答:解:∵一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,∴从袋子中随机摸出一个球是白球的概率为:=.故选:C.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).下列说法错误的是()A.“龟兔再次赛跑”的路程为1000米B.兔子和乌龟同时从起点出发C.乌龟在途中休息了10分钟D.兔子在途中750米处追上乌龟考点:函数的图象.分析:由函数图象的纵坐标,可判断A;根据函数图象的横坐标,可判断B;根据函数图象的横坐标,可判断C;根据函数图象的交点,可判断D.解答:解:A、由纵坐标看出“龟兔再次赛跑”的路程为1000米,故A正确;B、由横坐标看出乌龟早出发40分钟,故B错误;C、由横坐标看出乌龟在途中休息了10分钟,故C正确;D、y1=20x﹣200,y2=100x﹣4000,y1于y2的交点(47.5,750),兔子在途中750米处追上乌龟,故D正确.故选:B.点评:本题考查了函数图象,观察函数图象的横坐标得出时间,函数图象的纵坐标得出路程是解题关键.12.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C. C、D两点关于OE所在直线对称D. O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.专题:压轴题.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE 是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选:D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.二、填空题:每小题4分,共24分13.(﹣2m+3)(﹣2m﹣3 )=4m2﹣9,(﹣2ab+3)2= 4a2b2﹣12ab+9考点:平方差公式;完全平方公式.分析:(1)利用平方差公式,先把4m2﹣9分解因式,解得所求.(2)是完全平方公式,第一个数是﹣2ab,第二个数是3,运用和的平方公式展开即可.解答:解:(1)4m2﹣9=(﹣2m+3)(﹣2m﹣3),故填(﹣2m﹣3);(2)(﹣2ab+3)2=4a2b2﹣12ab+9.故填4a2b2﹣12ab+9.点评:本题考查了平方差公式,完全平方公式,熟练掌握公式并灵活运用是解题的关键.14.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.考点:几何概率.分析:首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出小鸟落在阴影方格地面上的概率.解答:[来源:学.科.网]解:∵正方形被等分成16份,其中黑色方格占4份,∴小鸟落在阴影方格地面上的概率为:=.故答案为:.点评:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.15.等腰三角形的一个角为50°,那么它的一个底角为50°或65°.考点:等腰三角形的性质.分析:已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.解答:解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.点评:此题主要考查了三角形的内角和定理及等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为14cm .考点:等腰三角形的判定与性质;平行线的性质.分析:两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB.解答:解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+EC=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.点评:本题考查了平行线的性质和等腰三角形的判定及性质,正确证明△OBD、△EOC均为等腰三角形是关键.17.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为E6395 .考点:镜面对称.分析:利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.解答:解:根据镜面对称的性质,题中所显示的图片中的数字与“E6395”成轴对称,则该车牌照的部分号码为E6395.故答案为:E6395.点评:本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧.18.如图,先将正方形ABCD对折,折痕为EF,将这个正方形展平后,再分别将A,B对折,使点A,B都与折痕EF上的点G重合,则∠NCG的度数是15 度.考点:翻折变换(折叠问题).分析:根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解答:解:由折叠可知CG=BC,DG=AD,又AD=AB=BC=DC,∴CG=DG=CD,故∠GCD=60°,∠NCG=(90°﹣∠GCD)=15°.点评:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.三、解答题(满分共60分)19.计算:(1)﹣14﹣+﹣42015×0.252014(2)化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.考点:整式的混合运算—化简求值;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用乘方的意义计算,第二项利用负整数指数幂法则计算,第三项利用零指数幂法则计算,最后一项逆用积的乘方运算法则计算即可得到结果;(2)原式中括号中利用完全平方公式,多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=﹣1﹣4+1﹣4×(4×0.25)2014=﹣1﹣4+1﹣4=﹣8;(2)原式=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=y﹣x,当x=﹣2,y=时,原式=.点评:此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)作出△ABC的边BC边上的高AE,垂足为点E.(不写画法);(3)△ABC的面积为8.5 .考点:作图-轴对称变换.分析:(1)根据轴对称的性质画出△A1B1C1即可;(2)过点A作AE垂直CB的延长线与点E,则线段AE即为所求;(3)利用矩形的面积减去三个顶点上三角形的面积即可.解答:解:(1)如图所示;(2)如图所示;(3)S△ABC=4×5﹣×1×4﹣×1×4﹣×3×5=8.5.故答案为:8.5.点评:本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.21.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD ∥BC.求证:AD=BC.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.解答:证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.点评:[来源:学.科.网Z.X.X.K]本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.22.(1)观察图中的(1)~(4)中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图(5)的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所定的两个共同特征.考点:作图—应用与设计作图.专题:作图题;网格型.分析:(1)从它们的对称性和面积来分析即可;(2)作一个面积为4的正方形即可.解答:解:(1)都是轴对称图形,面积都是4;(2)点评:本题需仔细分析题意,结合图形,利用图形的对称性和面积即可解决问题.23.一个口袋中装有4个白球、6个红球,这些球除颜色外完全相同,重复搅匀后随机摸出一球,发现是白球.(1)如果将这个白球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个白球不放回,再摸出一球,那么它是白球的概率是多少.考点:概率公式.分析:(1)摸出一个白球放回对第二次摸到白球没有影响,直接利用概率公式求解即可;(2)确定摸出一个白球不放回的白球和红球的个数,直接利用概率公式求解即可.解答:解:(1)如果将白球放回,再摸出一球P(摸到的球是白球)==;(2)如果先摸出一白球,这个白球不放回,那么第二次摸球时,有3个白球和6个红球,再摸出一球P(摸到的球是白球)==.点评:本题考查了概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.24.如图,△ABC中,AB=AC=6,BC=4,∠A=40°.(1)用尺规作出边AB的中垂线交AB于点D,交AC于点E(不写作法,保留作图痕迹,并在图中表明字母)(2)连接BE,求△EBC的周长和∠EBC的度数.考点:作图—基本作图;线段垂直平分线的性质;等腰三角形的性质.分析:(1)利用基本作图中作已知线段的中垂线作图即可,(2)先利用等腰△ABC求出∠ABC的值,再利用等腰△AEB求出,∠ABE的值,可求得∠EBC 的值,由△EBC的周长=BC+BC+EC=BC+AE+EC=BC+AC即可求得△EBC的周长.解答:解:(1)如图:(2)如图1,连接BE,∵AB=AC=6,∠A=40°∴∠ABC=(180°﹣40°)÷2=70°,∵DE垂直平分AB,∴∠ABE=∠A=40°,AE=BE∴∠EBC=70°﹣40°=30°,△EBC的周长=BC+BC+EC=BC+AE+EC=BC+AC=4+6=10.点评:本题主要考查了基本作图,线段垂直平分线的性质及等腰三角形的性质,解题的关键是熟记基本作图,线段垂直平分线的性质及等腰三角形的性质.25.如图,直线l1⊥l2,l1⊥l3,垂足分别为D、E,把一个等腰三角形(AC=BC,∠ACB=90°)放入图中,使三角板的三个顶点A、B、C分别在直线l3、l2、l1上滑动(l3、l2也可以左右移动,但l3始终在l2的右边),在滑动过程中你发现线段BD、AE与DE有什么关系?试说明你的结论.(1)如图1,根据条件请完成填空.证明:∵l1⊥l2,l1⊥l3∴∠BDC=∠CEA=90°∴∠ACE+∠CAE=90°∵∠ACB=90°∴∠ACE+∠BCD=90°∴∠CAE=∠BCD(同角的余角相等)在△CBD和△ACE中∴△CBD≌△ACE(AAS )∴BD=CE,AE=DC∴DE=DC+CE=AE+BD(2)如图2,BD、AE与DE有什么关系,猜想并证明.猜想关系:DE= BD﹣AE .证明:(3)如图3,BD、AE与DE有什么关系?猜想关系:DE= AE﹣BD .(只写结论,不必证明)考点:全等三角形的判定与性质.分析:(1)根据同角的余角相等,全等三角形的判定定理即可得出结论;(2)根据(1)中的思路△CBD≌△ACE,然后依据全等三角形的性质进行证明即可;(3)依据(1)、(2)的结论,结合图形即可得出结论.解答:解:(1)如图1,根据条件请完成填空.证明:∵l1⊥l2,l1⊥l3∴∠BDC=∠CEA=90°∴∠ACE+∠CAE=90°∵∠ACB=90°∴∠ACE+∠BCD=90°[来源:Z_xx_]∴∠CAE=∠BCD(同角的余角相等)在△CBD和△ACE中,∴△CBD≌△ACE(AAS)∴BD=CE,AE=DC∴DE=DC+CE=AE+BD(2)如图2,BD、AE与DE有什么关系,猜想并证明.猜想关系:DE=BD﹣AE.证明:∵l1⊥l2,l1⊥l3∴∠BDC=∠CEA=90°∴∠ACE+∠CAE=90°∵∠ACB=90°∴∠ACE+∠BCD=90°∴∠CAE=∠BCD在△CBD和△ACE中,∴△CBD≌△ACE.∴BD=CE,AE=DC∴DE=CE﹣CD=BD﹣AE.(3)如图3,DE=AE﹣BD.证明:∵l1⊥l2,l1⊥l3∴∠BDC=∠CEA=90°∴∠ACE+∠CAE=90°∵∠ACB=90°∴∠ACE+∠BCD=90°∴∠CAE=∠BCD在△CBD和△ACE中,∴△CBD≌△ACE.∴BD=CE,AE=DC∴DE=CD﹣CE=AE﹣BD.点评:本题主要考查的是全等三角形的性质和判定,证得△CBD≌△ACE是解题的关键.。