2016-2017学年山东省东营市利津县九年级(上)数学期中试卷带解析答案
- 格式:doc
- 大小:1.00 MB
- 文档页数:20
东营九年级期中试卷数学专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边分别是8cm和10cm,那么第三边的长度可能是多少?A. 5cmB. 12cmC. 15cmD. 18cm3. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 如果一个正方形的边长是6cm,那么它的面积是多少?A. 12cm²B. 24cm²C. 36cm²D. 48cm²5. 下列哪个数是无理数?A. √9B. √16C. √25D. √2二、判断题(每题1分,共5分)1. 任何一个整数都是自然数。
()2. 0是最小的自然数。
()3. 任何一个正整数都是合数。
()4. 任何一个负数都比0大。
()5. 任何一个正数都有两个平方根。
()三、填空题(每题1分,共5分)1. 1的相反数是______。
2. 如果一个正方形的边长是a,那么它的面积是______。
3. 任何一个正数都有______个平方根。
4. 如果一个数的平方是36,那么这个数可能是______。
5. 下列哪个数是整数?______四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 解释什么是无理数。
3. 解释什么是相反数。
4. 解释什么是因数。
5. 解释什么是平方根。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a. 3²b. √49c. -2²d. √642. 如果一个长方形的长是10cm,宽是5cm,那么它的面积是多少?3. 如果一个数的平方是81,那么这个数可能是多少?4. 找出下列各数的因数:a. 12b. 18c. 20d. 245. 如果一个三角形的两边分别是6cm和8cm,那么第三边的长度可能是多少?六、分析题(每题5分,共10分)1. 解释为什么0既不是正数也不是负数。
2. 解释为什么一个数的平方总是非负数。
新九年级(上)数学期中考试题 ( 含答案 )一、选择题(每题 4 分,共 40 分)1、圆内接四边形 ABCD 中,已知∠ A = 70°,则∠ C =()A .20°B . 30°C .70°D .110°2、⊙O 的半径为 5cm ,点 A 到圆心 O 的距离 OA = 3cm ,则点 A 与圆 O 的地点关系为()A .点 A 在圆上B .点 A 在圆内C .点 A 在圆外D .没法确立3、将抛物线 y =x 2+1 向右平移 2 个单位,再向上平移 3 个单位后,抛物线的分析式为()A.=() 2 B .y =( x ﹣2) 2﹣4yx+2+4C .=(x ﹣ )2D .y =( x+2) 2﹣ 4y 2 +44、若圆锥的母线长是 12,侧面睁开图的圆心角是 120°,则它的底面圆的半径为()A .2B . 4C .6D .85.如图,以某点为位似中心,将△ AOB 进行位似变换获得△ CDE ,记△ AOB 与△CDE 对应边的比为 k ,则位似中心的坐标和 k 的值分别为( )A .( 0, 0),2B .(2,2),1C .( 2, 2),2D .(2,2),326、如图,在△ ABC 中,点 D 是AB 边上的一点,若∠ ACD =∠ B ,AD =1,AC =3,△ ADC 的面积为 1,则△ ABC 的面积为()A .9B . 8C .3D .27、如图,若二次函数 y = ax 2+bx+c (a ≠0)图象的对称轴为 x =1,与y 轴交于 点C ,与x 轴交于点 A 、点B (﹣1,0),则① 二次函数的最大值为 a+b+c② a ﹣b+c <0;③ b 2﹣4ac < 0; ④ 当 y > 0 时,﹣ 1< x < 3.此中正确的个数是()A .1B . 2C .3D .48、如图,在平行四边形 ABCD 中,点 E 在CD 上,若 DE :CE =1:2,则△ CEF 与△ ABF 的周长比为()A .1:2B . 1: 3C .2:3D .4:99、圆心角为 60°的扇形面积为 S ,半径为 r ,则以下图象能大概描绘 S 与r 的函数关系的是()A .B .C .D .10、 对某一个函数给出以下定义:假如存在常数M ,对于随意的函数值 y ,都知足 y ≤ M ,那么称这个函数是有 上界函数;在全部知足条件的M 中,其最小值称为这个函数的上确界.比如,函数 y =﹣( x+1)2+2 ,y ≤2, 因 此是有上界函数,其上确界是 2,假如函数 y =﹣ 2x+1(m ≤x ≤ n , m < n )的上确界是 n ,且这个函数的最 小值不超出 2m ,则 m 的取值范围是( )A . m ≤1 1 1 1 13B . mC .mD . m3322二、填空题(每题 4分,共24分)11.如图,△ ABC 中,点 D 、 E 分别在边 AB 、 BC 上, DE ∥ AC .若 BD = 4, DA = 2, BE = 3,则 EC = 12、在二次函数 yx 2 2x 1 的图像中,若 y 随x 增大而增大,则 x 的取值范围是 . 13、 如图, ⊙ O 与△ ABC 的边 AB 、AC 、 BC 分别相切于点 D 、 E 、 F ,假如 AB = 4, AC = 5, AD = 1,那么 BC的长为.第 8题第11题第13题14、 高 4m的旗杆在水平川面上的影子长6m ,此时,旗杆旁教课楼的影长 24m ,则教课楼高 m .15、若对于 x 的一元二次方程 内有解,则 k 的取值范围是 16、如图,正方形 ABCD 的边长为x 2 2x6,点 Ok 0 (k 为常数)在 2 x。
一、选择题1.-5的倒数是( )A 、5B 、51-C 、 51 D 、5- 【答案】B考点:倒数的定义2.下列一元二次方程中,两根之和为-1的是( )A .x 2+x+2=0B .x 2-x -5=0C .x 2+x -3=0D .2 x 2-x -1=0【答案】C【解析】试题分析:对于一元二次方程20ax bx c ++=的两根为1x 和2x ,则12b x x a+=-;本题中A 选项的方程没有实数根.考点:韦达定理3.已知25=y x ,那么下列等式中不一定正确的是( )A 、y x 52=B 、1252=+y x x C 、27=+y y x D 、4722=++y x 【答案】D【解析】试题分析:根据已知可得:2x=5y ;A 选项正确;B 、12x=10x+5y ,则2x=5y ,B 选项正确; C 、2x+2y=7y ,则2x=5y ,则C 选项正确;D 、2x+8=7y+14,则D 选项错误.考点:比的性质4.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是 ( )A .100(1+x )=121B . 100(1-x )=121C . 100(1+x )2=121D . 100(1-x )2=121【答案】C【解析】试题分析:对于增长率的问题的基本公式为:增长前的数量×(1)+增长次数增长率=增长后的数量. 考点:一元二次方程的应用5.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==AC AD AB AE ,则BCED ADE S S 四边形△:的值为( ) A 、3:1 B 、1:3 C 、1:8 D 、1:9【答案】C【解析】试题分析:考点:相似三角形的应用根据题意可得:△ADE ∽△ACB ,则ADE ACB S S △△:=1:9,则BCED ADE S S 四边形△:=1:8.6.下列说法正确的是( )A 、平分弦的直径垂直于弦B 、三角形的外心到这个三角形的三边距离相等C 、相等的圆心角所对的弧相等D 、等弧所对的圆心角相等【答案】D考点:圆的基本性质7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=3,则⊙O 的直径为( )A. 8B. 10C.15D.20第5题【答案】C【解析】试题分析:连接OC ,设OC=r ,则OE=r -3,CE=6,根据Rt △OCE 的勾股定理可得:222(3)6r r -+=,解得:r=7.5,则圆的直径为7.5×2=15.考点:垂径定理8.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =70°,连接AE ,则∠AEB 的度数为( )A .20°B .24°C .25°D .26°【答案】A考点:圆的基本性质9.如图,在△ABC 中,AC=BC ,CD 是AB 边上的高线,且有2CD=3AB ,又E ,F 为CD 的三等分点,则∠ACB 与∠AEB 和为 ( )A 、45 ° 8、75° C 、90 ° D 、135°第7题 第8题第9题【答案】C【解析】试题分析:根据相似三角形的性质可得:∠ACB+∠AEB=90°.考点:相似三角形的应用10.如图,已知AB=12,点C、D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4.A.0个 B.1个 C.2个 D.3个第10题【答案】C【解析】试题分析:分别延长AE、BF交于点H.∵等腰Rt△APE和等腰Rt△PBF,∴∠A=∠FPB=45°,∠B=∠EPA=45°,∴AH∥PF,BH∥PE,∠EPF=180°-∠EPA-∠FPB=90°,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也为PH中点,即在P的运动过程中,G始终为PH的中点,∴G的运行轨迹为△HCD的中位线MN.∵CD=12-2-2=8,∴MN=4,即G的移动路径长为4.故③EF的中点G移动的路径长为4,正确;∵G为EF的中点,∠EPF=90°,∴①△EFP的外接圆的圆心为点G,正确.∵点P从点C沿线段CD向点D运动(运动到点D停止),∴AP不断增大,∴四边形的面积随之变化,故③错误.考点:三角形的外接圆的性质二、填空题11.方程x2=2的根是_____________【答案】2【解析】试题分析:本题利用直接开平方法进行解方程.考点:一元二次方程的解法12.在比例尺为1:5000的江阴市城区地图上,某段路的长度约为25厘米,则它的实际长度约为________米【答案】1250米【解析】试题分析:实际距离=5000×25=125000cm=1250米.考点:比例尺的应用13.如果点O 为△ABC 的外心,∠BOC=70°,那么∠BAC 等于_____________【答案】35°或145°【解析】试题分析:当△ABC 为锐角三角形时,则∠BAC=70°÷2=35°;当△ABC 为钝角三角形时,则∠BAC=90°+70°÷2=135°.考点:三角形外心的性质14.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,可添加一个条件________【答案】∠C=∠ABD考点:三角形相似15.将一副三角板按图叠放,∠A=45°,∠D=60°,∠ABC=∠DCB=90°,则△AOB 与△DOC 的面积之比为__________【答案】1:3【解析】第14题 ADO C B第15题试题分析:根据题意可得:△AOB ∽△COD ,则根据三角形的面积之比等于相似比的平方可得面积比为1:3. 考点:三角形相似的应用16.如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径长为_______【答案】13【解析】试题分析:连接AC ,根据∠ABC=90°可得AC 为直径,则∠ADC=90°,根据Rt △ACD的勾股定理可得:=考点:圆的基本性质17.如图是一个汽油桶的截面图,其上方有一个进油孔,该汽油桶的截面直径为50dm ,此时汽油桶内液面宽度AB=40dm ,现在从进油孔处倒油,当液面AB=48dm 时,液面上升了__________dm .【答案】8或22考点:垂径定理18.如图,已知△ABC,外心为O ,BC=6,∠BAC=60°,分别以AB 、AC 为腰向形外作等腰直角三角形△ABD 与△ACE ,连接BE 、CD 交于点P ,则OP 的最小值是_________第16题 第17题【答案】3-【解析】试题分析:当△ABC 为等边三角形时,OP 存在最小值,OP=3-考点:外接圆的性质 三、解答题 19.解下列方程 (1)0652=--x x (2)()()3332-=-x x x (3)0522=--x x (配方法) 【答案】(1)、1x =6,2x =-1;(2)、1x =3,2x =23;(3)、1211x x ==-【解析】试题分析:第一个利用十字相乘法;第二个利用提取公因式法;第三个利用配方法进行求解. 试题解析:(1)、(x -6)(x+1)=0 解得:1x =6,2x =-1 (2)、2(x -3)-3x(x -3)=0 (x -3)(2-3x)=0 解得:1x =3,2x =23 (3)、2x -2x=5 2x -2x+1=6 2(1)x -=6解得:1211x x ==-考点:一元二次方程的解法 20.先化简,再计算:)12(122x x x x x x --÷+-,其中x 是方程0222=--x x 的正数根.【解析】 试题分析:根据分式的计算法则将分式进行化简,然后求出方程的解,从而得出代数式的值.试题解析:原式=2(1)(1)(1)(1)x x x x x x +-+-11x -解方程得311>+=x,0311<-=x∴原式考点:分式的化简求值21.如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为【答案】略考点:相似三角形 22.如图,在Rt △ABC 中,∠C=90°,△ACD 沿AD 折叠,使得点C 落在斜边AB 上的点E 处.(1)求证:△BDE ∽△BAC ;(2)已知AC=6,BC=8,求线段AD 的长度.【答案】略;【解析】试题分析:根据折叠得出∠C=∠BED=90°,结合∠B 为公共角得出三角形相似;首先求出AB 的长度,然后设CD=x ,根据折叠得出DE 和BE 的长度,从而根据Rt △BDE 的勾股定理求出DE 的长度,然后根据Rt △ADE 的勾股定理求出AD 的长度.试题解析:(1)、∵∠C=90° 根据折叠图形的性质 ∴∠BED=90° ∴∠C=∠BED 又∵∠B=∠B ∴△BDE ∽△BAC(2)、根据Rt △ABC 的勾股定理可得AB=10,设CD=x ,则BD=8-x ,DE=x ,AE=AC=6,则BE=10, 根据Rt △BDE 的勾股定理可得:DE=3, 根据Rt △ADE 的勾股定理可得:考点:三角形相似的证明23、2013年,江阴市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)【答案】10%;可以实现.【解析】试题分析:首先设下调的百分率为x ,根据题意列出一元二次方程,从而得出方程的解;根据百分比求出2016年的房价,从而得出答案.试题解析:(1)设平均每年下调的百分率为x ,根据题意得:5265)1(65002=-x 解得:x 1=0.1,x 2=1.9(舍去)答:平均每年下调率为10%(2)2016年房价为:385.47%)101(5265100=-⨯⨯万元∵20+30>47.385,∴张强的愿望可以实现考点:一元二次方程的应用24、如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连AD.(1)求证:AD=AN ;(2)若AB=24,ON=1,求⊙O 的半径.(3)若,:△△8:1=ADN CMN S S 且AE=4,求CM【答案】略;3;CM=2.试题解析:(1)、根据图示可得:∠B=∠D ∵AM ⊥BC ,AB ⊥CD ∴∠B=∠ANE∴∠ANE=∠D ∴AD=AN(2)、∵AB=24,AE ⊥CD ,∴AE=22,又∵ON=1,∴设NE=x ,则OE=x-1,NE=ED=x ,r=OD=OE+ED=2x-1 连结AO ,则AO=OD=2x-1,∵△AOE 是直角三角形,AE=22,OE=x-1,AO=2x-1, ∴222)12()1()22(-=-+x x解得x=2,∴r=2x-1=3.(3)、∵AD=AN,AB ⊥CD ,∴AE 平分ND ,∴S △ANE=S △ADE ∵S △CMN :S △AND=1:8,∴S △CMN :S △ANE=1:4, 又∵△CMN ∽△AEN ,∴41)(2=AE CM ∵AE=4,∴CM=2考点:圆的基本性质、三角形相似.25、如图,在Rt △ABC 中,∠C =90º,AB =10cm ,AC ∶BC =4∶3,点P 从点A 出发沿AB 方向向点B 运动,速度为1cm/s ,同时点Q 从点B 出发沿B →C →A 方向向点A 运动,速度为2cm/s ,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)设点P 的运动时间为x (秒),△PBQ 的面积为y (cm 2),当△PBQ 存在时,求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当x =5秒时,在直线PQ 上是否存在一点M ,使△BCM 得周长最小,若存在,求出最小周长,若不存在,请说明理由.(3)当点Q 在BC 边上运动时,是否存在x ,使得以△PBQ 的一个顶点为圆心作圆时,另外两个顶点均在这个圆上,若存在,求出 x 的值;不存在,说明理由.【答案】y=-245x +8x (0<x ≤3),y=23514255x x -+;16;x=5017. 【解析】 BP .(2)存在.理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为: MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM的周长最小值为16.(3)由题意得△PBQ为等腰三角形。
东营市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共46分)1. (3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为()A . 1B . -1C . ±1D . 02. (3分) (2017·丽水) 如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A . 俯视图与主视图相同B . 左视图与主视图相同C . 左视图与俯视图相同D . 三个视图都相同3. (2分)(2016·海曙模拟) 如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为()A . 3:5:4B . 1:3:2C . 1:4:2D . 3:6:54. (3分)用公式法解方程x2-2=-3x时,a , b , c的值依次是()A . 0,-2,-3B . 1,3,-2C . 1,-3,-2D . 1,-2,-35. (3分) (2019九上·丹东月考) 如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A .B .C .D .6. (3分)如图,在一个半径为6cm圆形纸片上,挖去一个半径为r cm的圆,若余下圆环面积为11π,则r 为()A . 2cmB . 3cmC . 4cmD . 5cm7. (3分)下列说法正确的是()A . 若AP= AB,则P是AB的中点B . 若AB=2PB,则P是AB的中点C . 若AP=PB,则P是AB的中点D . 若AP=PB= AB,则P是AB的中点8. (3分) (2017九上·路北期末) 将一个半径为5的半圆O,如图折叠,使弧AF经过点O,则折痕AF的长度为()A . 5B . 5C . 5D . 109. (3分)如图中的曲线是反比例函数y=图象的一支,则m的取值范围是()A . m>﹣5B . 0<m<5C . ﹣5<m<0D . m<﹣510. (3分)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是().A . 1秒B . 2秒C . 3秒D . 4秒11. (3分) (2019九上·萧山期中) 已知点在同一个函数的图象上,这个函数可能是()A .B .C .D .12. (3分) (2018九上·罗湖期末) 在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA 边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N.给出以下结论,①HO=OF②0F2=ON·OB③HM=2MG④S△HOM= ,其中正确的个数有()A . 1B . 2C . 3D . 413. (3分)若x=a是方程x2+x﹣1=0的一个实数根,则代数式3a2+3a﹣5的值是________.14. (3分)(2017·都匀模拟) 如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上,以原点O为位似中心,画△A1B1C1 ,使它与△ABC的相似比为2,则点B的对应点B1的坐标是________.15. (2分) (2019七上·集美期中) 若x-2y=3,则3-2x+4y的值为________.16. (3分) (2020七下·哈尔滨期中) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CH为△ABC斜边上的中线,点F为CH上一点,连接BF并延长交AC于点D,过点A作AE⊥AC,连接CE和DE,若∠ACE=2∠ABF,CE=13,CD=8,则△CDE的面积为________.二、解答题 (共7题;共52分)17. (8分)已知方程=1的解是a,求关于y的方程+ay=0的解.18. (6分)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.19. (6分) (2017八下·重庆期中) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)20. (6分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,与y轴相交于点C,请完成下面的填空:(1)该抛物线的解析式为________.(2)在该抛物线的对称轴上存在点Q,使得△QAC的周长最小,则Q点的坐标为________.(3)在抛物线上的第二象限上存在一点P,使△PBC的面积最大,则点P的坐标为________,△PBC的最大面积为________.21. (8分)(2020·河西模拟) 小王计划批发“山东大樱桃”和“泰国榴莲”两个品种的水果共120斤,樱桃和榴莲的批发价分别为32元/斤和40元/斤.设购买了樱桃x斤 .(1)若小王批发这两种水果正好花费了4400元,那么小王分别购买了多少斤樱桃和榴莲?填写下表,并列方程求解;品种批发价(元)购买斤数小王应付的钱数(元)樱桃32x▲榴莲40▲▲(2)设小王购买两种水果的总花费为y元,试写出y与x之间的函数表达式.(3)若要求所批发的榴莲的斤数不少于樱桃斤数的2倍,那么购买樱桃的数量为多少时,可使小王的总花费最少?这个最少花费是多少?22. (8.0分)(2017·南通) 已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.23. (10.0分) (2017·河南) 如图,直线y=﹣ x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣ x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2) M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案一、选择题 (共16题;共46分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、解答题 (共7题;共52分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-3、23-1、。
山东省东营市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共48分) (共16题;共48分)1. (3分)对于线段a,b,如果a∶b=2∶3,那么下列四个选项一定正确的是()A . 2a=3bB . b-a=1C .D .2. (3分) (2019九上·射阳期末) 人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差3. (3分)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A . a≥1B . a>1且a≠5C . a≥1且a≠5D . a≠54. (3分)将一元二次方程化为的形式,则b=()A . 3B . 4C . 6D . 135. (3分)下表是食品营养成分表的一部分(每100克食品中可食部分营养成分的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是________,平均数是_________.()A . 3 ;5B . 4 ;4C . 2 ;3D . 3;76. (3分) (2017八下·宁波期中) 若关于x的一元二次方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k 的值是()A . 3 或-2B . -3或2C . 3D . -27. (3分)(2019·包头) 已知等腰三角形的三边长分别为,且a、b是关于的一元二次方程的两根,则的值是()A .B .C . 或D . 或8. (3分) (2019九上·阜宁月考) 下列说法中正确的是()A . 两个等腰三角形相似B . 有一个内角是30°的两个直角三角形相似C . 有一个锐角是30°的两个等腰三角形相似D . 两个直角三角形相似9. (3分)如图,E,F,G,H分别为正方形ABCD的边AB,BC,CD,DA上的点,且AE=BF=CG=DH=AB,则图中阴影部分的面积与正方形ABCD的面积之比为()A .B .C .D .10. (3分)如图,在□ABCD中,点E为AD的中点,连接BE交AC于点F,则AF:CF=()A . 1:2B . 1:3C . 2:3D . 2:511. (3分)如图,点O是等边三角形PQR的中心,P′,Q′,R′分别是OP,OQ,OR的中点.此时,△P′Q′R′与△PQR的位似比、位似中心分别为()A . 2,点PB . ,点PC . 2,点OD . ,点O12. (3分)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为()A . 8米B . 米C . 米D . 米13. (3分)(2016·巴彦) 如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A . 30B . 27C . 14D . 3214. (3分) (2019八下·深圳期末) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A . 3.6B . 4C . 4.8D . 515. (3分)一个正方形的边长增加2cm,它的面积就增加了24cm2 ,这个正方形原来的边长是()A . 5cmB . 6cmC . 8cmD . 10cm16. (3分)如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=()A . 9B . 10C . 12D . 13二、填空题(共12分) (共4题;共12分)17. (3分) (2019七下·新田期中) 已知a,b,m,n满足am + bn = 9,an - bm = 3 ,则(a2+b2)(m2+n2)的值为________.18. (3分) (2020九上·东台期末) 某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:20102011201220132014 234233245247256(1)这五年的全年空气质量优良天数的中位数是________,平均数是________;(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的方差________.19. (3分)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律计算:每件商品降价________元时,商场日盈利可达到2100元。
2016-2017学年山东省东营市垦利县九年级(上)期中数学试卷(五四学制)一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.(3分)一元二次方程(x+6)2﹣9=0的解是()A.x1=6,x2=﹣6 B.x1=x2=﹣6 C.x1=﹣3,x2=﹣9 D.x1=3,x2=﹣9 2.(3分)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形3.(3分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm4.(3分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3 C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣35.(3分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.(3分)在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(1,2)7.(3分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45 8.(3分)抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.39.(3分)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.(4分)方程x2﹣5x=0的解是.12.(4分)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是.13.(4分)如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=.14.(4分)抛物线y=x2﹣2x+1的顶点坐标是.15.(4分)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,则m 的取值范围是.16.(4分)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.17.(4分)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC 扫过区域(图中阴影部分)的面积为cm2.(结果保留π)18.(4分)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是.三、解答题:本大题共6小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.(6分)计算:﹣24﹣+|1﹣2|+()﹣1+(π﹣)0.20.(8分)先化简,再求值:,其中a是方程2x2+x﹣3=0的解.21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A 1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标,并画出△A3B3C3.22.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求的值.23.(10分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?24.(12分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.2016-2017学年山东省东营市垦利县九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.(3分)一元二次方程(x+6)2﹣9=0的解是()A.x1=6,x2=﹣6 B.x1=x2=﹣6 C.x1=﹣3,x2=﹣9 D.x1=3,x2=﹣9【解答】解:(x+6)2=9,∴x+6=±3,∴x1=﹣3,x2=﹣9,故选:C.2.(3分)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选:B.3.(3分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm【解答】解:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm,∵⊙O的半径为5cm,∴OC===4cm,故选:B.4.(3分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3 C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3【解答】解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选:D.5.(3分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【解答】解:∵△=a2+4>0,∴,方程有两个不相等的两个实数根.故选:D.6.(3分)在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(1,2)【解答】解:∵△A1OB1是将△AOB绕原点O顺时针旋转180°后得到图形,∴点B和点B1关于原点对称,∵点B的坐标为(2,1),∴B1的坐标为(﹣2,﹣1).故选:A.7.(3分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.8.(3分)抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3【解答】解:抛物线y=2x2﹣2x+1,显然抛物线与y轴有一个交点,令y=0,得到2x2﹣2x+1=0,∵△=8﹣8=0,∴抛物线与x轴有一个交点,则抛物线与坐标轴的交点个数是2,故选:C.9.(3分)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【解答】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选:D.10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c﹣m 与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,故﹣m<2,解得:m>﹣2,故④正确.故选:B.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.(4分)方程x2﹣5x=0的解是x1=0,x2=5.【解答】解:直接因式分解得x(x﹣5)=0,解得x1=0,x2=5.12.(4分)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是150°.【解答】解:∵直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,∴旋转角是∠CAC′=180°﹣30°=150°.故答案为:150°.13.(4分)如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=35°.【解答】解:∵OB=OC,∠OBC=55°,∴∠OCB=55°,∴∠BOC=180°﹣55°﹣55°=70°,由圆周角定理得,∠A=∠BOC=35°,故答案为:35°.14.(4分)抛物线y=x2﹣2x+1的顶点坐标是(1,0).【解答】解:∵y=x2﹣2x+1=(x﹣1)2,∴抛物线顶点坐标为(1,0).故答案为:(1,0).15.(4分)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,则m 的取值范围是m>﹣.【解答】解:∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=32﹣4×2×(﹣m)=9+8m>0,解得:m>﹣.故答案为:m>﹣.16.(4分)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+,2)或(1﹣,2).【解答】解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±,∴P点坐标为(1+,2)或(1﹣,2),故答案为:(1+,2)或(1﹣,2).17.(4分)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.(结果保留π)【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π, S 扇形C′OC ==,∵ ∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π; 故答案为:π.18.(4分)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是 33 .【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n 次操作后,三角形共有4+3(n ﹣1)=3n +1个;当3n +1=100时,解得:n=33,故答案为:33.三、解答题:本大题共6小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.(6分)计算:﹣24﹣+|1﹣2|+()﹣1+(π﹣)0.【解答】解:原式=﹣16﹣2+2﹣1+2016+1=2000.20.(8分)先化简,再求值:,其中a是方程2x2+x﹣3=0的解.【解答】解:原式=÷,=•,=.由2x2+x﹣3=0得到:x1=1,x2=﹣,又a﹣1≠0即a≠1,所以a=﹣,所以原式==﹣.21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标,并画出△A3B3C3.【解答】解:(1)如图,△A1B1C1为所作.因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A3B3C3为所作,A3(5,3),B3(1,2),C3(3,1).22.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求的值.【解答】(1)证明:连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE==2AE,在RT△BEC中,==.23.(10分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.24.(12分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,则S△AMA′=8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x4=,∴P3(,﹣4),P4(,﹣4);②当BQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
山东省东营市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·嘉兴) 如图,在直角坐标系中,已知菱形的顶点,.作菱形关于轴的对称图形,再作图形关于点的中心对称图形,则点的对应点的坐标是()A .B .C .D .2. (2分)在平面直角坐标系中,点A(1,3)关于原点O对称的点A′的坐标为()A . (-1,3)B . (1,-3)C . (3,1)D . (-1,-3)3. (2分)(2018·包头) 已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A . 6B . 5C . 4D . 34. (2分) (2016九上·怀柔期末) 将抛物线向上平移2个单位,则得到的抛物线表达式为()A .B .C .D .5. (2分)方程x2-7=3x的根的情况为()A . 有两个不等的实数根B . 有两个相等的实数根C . 有一个实数根D . 没有实数根6. (2分)在下列二次函数中,其图象对称轴为x=﹣2的是()A . y=(x+2)2B . y=2x2﹣2C . y=﹣2x2﹣2D . y=2(x﹣2)27. (2分) (2019九下·常熟月考) 有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中正确的是()A . n(n﹣1)=15B . n(n+1)=15C . n(n﹣1)=30D . n(n+1)=308. (2分) (2016九上·港南期中) 若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A . 1B . 2C . ﹣1D . ﹣29. (2分)已知二次函数y=ax2+2ax+b(a>0).当x=x1时,对应的函数值为y1 ,当x=x2时对应的函数值为y2 ,若x1<x2且-2<x1+x2<0时,则()A . y1>y2B . y1=y2C . y1<y2D . y1、y2的大小关系不确定10. (2分) (2016八上·吴江期中) 如图,以AB为直径的半圆绕A点,逆时针旋转60°,点B旋转到点B′的位置,已知AB=6,则图中阴影部分的面积为()A . 6πB . 5πC . 4πD . 3π二、填空题 (共6题;共6分)11. (1分) (2020九上·番禺期末) 方程(x﹣1)(x﹣3)=0的解为________.12. (1分) (2019九上·进贤期中) 若,分别是方程的两实根,则的值是________.13. (1分) (2016八下·滕州期中) 如图,在Rt△ABC中,∠ABC=90°,AB=BC= .将△ABC绕点C逆时针旋转60°,得到△MNC,则AM的长是________14. (1分) (2020八下·灯塔月考) 在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则AC=________cm15. (1分)请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2) .你写出的函数表达式是________ .16. (1分) (2017九上·乌兰期中) 如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y 轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=________.三、解答题 (共9题;共100分)17. (15分) (2018九上·建瓯期末) 为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w 元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?18. (5分)一个二次函数的图象顶点坐标为(2,1),形状与抛物线相同,求这个函数解析式。
2016-2017学年山东省东营市利津县九年级(上)期中数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)下列方程,是一元二次方程的有()个①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.2 B.3 C.4 D.52.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2 B.y=3(x+3)2+2 C.y=3(x﹣3)2﹣2 D.y=3(x﹣3)2+24.(3分)用配方法解方程2x2+3=7x时,方程可变形为()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2= 5.(3分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°6.(3分)方程(x﹣3)2=2(x﹣3)的根是()A.2 B.3 C.2,3 D.5,37.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠08.(3分)如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C为AB的三等分点时,S最大9.(3分)如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=12,CD=5,则⊙O的直径的长是()A.5 B.12 C.13 D.2010.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共8小题,每题4分,共32分.11.(4分)关于x的方程x2﹣3x+m=0有一个根是1,则方程的另一个根是.12.(4分)已知点A(1+a,1)和点B(5,b﹣1)是关于原点O的对称点,则a+b=.13.(4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.14.(4分)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.15.(4分)一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是.16.(4分)生物兴趣小组的同学,将自己收集的标本向其他同学各赠送1件,全组共互赠了182件,如果全组有x名同学,则方程为.(不解方程)17.(4分)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.18.(4分)已知直角三角形两边x、y的长满足|x2﹣4|+=0,则第三边长为.三、解答与证明题:本大题共58分.19.(6分)已知抛物线经过点(2,3),且顶点坐标为(1,1),求这条抛物线的解析式.20.(6分)残缺的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.测得AB=24cm,CD=8cm.求这个圆的半径.21.(8分)在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2013年全校坚持每天半小时阅读有1000名学生,2014年全校坚持每天半小时阅读人数比2013年增加10%,2015年全校坚持每天半小时阅读人数比2014年增加340人.(1)求2015年全校坚持每天半小时阅读学生人数;(2)求从2013年到2015年全校坚持每天半小时阅读的人数的平均增长率.22.(8分)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?答:.(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.23.(10分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.25.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?2016-2017学年山东省东营市利津县九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)下列方程,是一元二次方程的有()个①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.2 B.3 C.4 D.5【解答】解:①是一元二次方程;②含有2个未知数,不是一元二次方程;③不是整式方程,则不是一元二次方程;④是一元二次方程;⑤是一元二次方程.是一元二次方程的有3个.故选:B.2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.(3分)把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2 B.y=3(x+3)2+2 C.y=3(x﹣3)2﹣2 D.y=3(x﹣3)2+2【解答】解:抛物线y=3x2先向上平移2个单位,得:y=3x2+2;再向右平移3个单位,得:y=3(x﹣3)2+2;故选:D.4.(3分)用配方法解方程2x2+3=7x时,方程可变形为()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【解答】解:∵2x2+3=7x,∴2x2﹣7x=﹣3,∴x2﹣x=﹣,∴x2﹣x+=﹣+,∴(x﹣)2=.故选:D.5.(3分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.6.(3分)方程(x﹣3)2=2(x﹣3)的根是()A.2 B.3 C.2,3 D.5,3【解答】解:(x﹣3)2=2(x﹣3)(x﹣3)2﹣2(x﹣3)=0,(x﹣3)(x﹣3﹣2)=0,则(x﹣3)(x﹣5)=0,解得:x1=3,x2=5.故选:D.7.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠0【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选:B.8.(3分)如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C为AB的三等分点时,S最大【解答】解:设AC=x,则CB=1﹣x,S=x2+(1﹣x)2即S=2x2﹣2x+1,所以当x==时,S最小.此时,C是AB的中点.故选:A.9.(3分)如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=12,CD=5,则⊙O的直径的长是()A.5 B.12 C.13 D.20【解答】解:∵点A、B、C、D都在⊙O上,∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵AD=12,CD=5,∴AC=,故选:C.10.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0,故此选项正确;∵图象开口向下,∴a<0,∵图象与y轴交于正半轴上,∴c>0,∴ac<0,故ac>0错误;∵对称轴为x=1,点B坐标为(﹣1,0),∴A点坐标为:(3,0),∴当y<0时,x<﹣1或x>3.,故④错误;故选:B.二、填空题:本大题共8小题,每题4分,共32分.11.(4分)关于x的方程x2﹣3x+m=0有一个根是1,则方程的另一个根是x=2.【解答】解:设方程的另一根为x,∵关于x的方程x2﹣3x+m=0有一个根是1,∴1+x=3,解得,x=2;故答案x=2.12.(4分)已知点A(1+a,1)和点B(5,b﹣1)是关于原点O的对称点,则a+b=﹣6.【解答】解:∵点A(1+a,1)和点B(5,b﹣1)是关于原点O的对称点,∴1+a=﹣5,﹣1=b﹣1,解得:a=﹣6,b=0,故a+b=﹣6.故答案为:﹣6.13.(4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.【解答】解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.14.(4分)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【解答】解:∵⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.15.(4分)一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是6米.【解答】解:∵h=﹣5(t﹣1)2+6,∴a=﹣5<0,∴抛物线的开口向下,函数由最大值,=6.∴t=1时,h最大故答案为:6米.16.(4分)生物兴趣小组的同学,将自己收集的标本向其他同学各赠送1件,全组共互赠了182件,如果全组有x名同学,则方程为x(x﹣1)=182.(不解方程)【解答】解:设全组有x名同学,由题意有x(x﹣1)=182.故答案为:x(x﹣1)=182.17.(4分)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.18.(4分)已知直角三角形两边x、y的长满足|x2﹣4|+=0,则第三边长为.【解答】解:∵|x2﹣4|≥0,,∴x2﹣4=0,y2﹣5y+6=0,∴x=2或﹣2(舍去),y=2或3,①当两直角边是2时,三角形是直角三角形,则斜边的长为:=;②当2,3均为直角边时,斜边为=;③当2为一直角边,3为斜边时,则第三边是直角,长是=.三、解答与证明题:本大题共58分.19.(6分)已知抛物线经过点(2,3),且顶点坐标为(1,1),求这条抛物线的解析式.【解答】解:∵顶点坐标为(1,1),设抛物线为y=a(x﹣1)2+1,∵抛物线经过点(2,3),∴3=a(2﹣1)2+1,解得:a=2.∴y=2(x﹣1)2+1=2x2﹣4x+3.20.(6分)残缺的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.测得AB=24cm,CD=8cm.求这个圆的半径.【解答】解:设这个圆的圆心是O,连接OA,设OA=x,AD=12cm,OD=(x﹣8)cm,则根据勾股定理列方程:x2=122+(x﹣8)2,解得:x=13.答:圆的半径为13cm.21.(8分)在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2013年全校坚持每天半小时阅读有1000名学生,2014年全校坚持每天半小时阅读人数比2013年增加10%,2015年全校坚持每天半小时阅读人数比2014年增加340人.(1)求2015年全校坚持每天半小时阅读学生人数;(2)求从2013年到2015年全校坚持每天半小时阅读的人数的平均增长率.【解答】解:(1)由题意,得:2014年全校学生人数为:1000×(1+10%)=1100(人),∴2015年全校学生人数为:1100+340=1440(人).答:2015年全校坚持每天半小时阅读学生为1440人.(2)设从2013年到2015年全校坚持每天半小时阅读的人数的平均增长率为x,根据题意得:1000×(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:从2013年到2015年全校坚持每天半小时阅读的人数的平均增长率为20%.22.(8分)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?答:不正确.(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【解答】解:(1)不正确;故答案为:不正确;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.23.(10分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【解答】解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).(3)根据函数图象可知:x<0或x>3.24.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.【解答】解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)当y=10000时,10000=﹣10x2+1300x﹣30000解得:x1=50,x2=80,当x=80时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50元;(4)y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.25.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.。