高地应力千枚岩地层隧道大变形控制措施探讨
- 格式:pdf
- 大小:601.28 KB
- 文档页数:4
在隧道工程中,软岩地层的变形和收敛一直是一个令人头疼的问题。
尤其是在高地应力地区,软岩隧道的大变形段径向收敛控制措施更加重要。
本文将从技术措施、监测手段和管理方法等方面探讨高地应力隧道软岩大变形段径向收敛的控制措施。
1. 技术措施在软岩地层的隧道施工中,为了控制大变形段径向收敛,可以采取以下技术措施:- 合理的支护结构:选择合适的支护结构对软岩地层进行支护,比如钢架加混凝土梁、喷锚网、锚喷等,以增加地层的稳定性和承载能力,减少变形和收敛。
- 合理的巷道布置:通过合理的巷道布置,使得地层受力均匀,减小高地应力对软岩地层的影响,从而减少变形和收敛的发生。
- 降低开挖面积:通过减小开挖面积和采用分段开挖的方式,减少软岩地层的受力范围,减小地层变形和收敛的情况。
2. 监测手段在施工过程中,为了及时发现软岩地层的变形和收敛情况,可以采用以下监测手段:- 地下水位监测:通过监测地下水位的变化,及时了解软岩地层的湿度情况,从而判断软岩地层的稳定性和变形状况。
- 地表位移监测:采用地表位移监测仪器,对隧道周边地表位移进行实时监测,及时发现软岩地层的变形和收敛情况。
- 支护结构变形监测:通过监测支护结构的变形情况,及时了解支护结构的承载能力和软岩地层的变形情况,为及时采取补救措施提供数据支持。
3. 管理方法在施工管理方面,要加强对软岩地层大变形段径向收敛的管理,可以采用以下管理方法:- 强化监理管理:加强监理单位对软岩地层变形和收敛的监管,及时发现问题并提出解决方案,确保隧道施工的安全和顺利进行。
- 强化施工队伍管理:加强施工队伍对软岩地层变形和收敛的认识和管理,提高施工人员的安全意识和质量管理水平,确保施工质量和隧道安全。
- 强化应急预案管理:建立完善的软岩地层大变形段径向收敛的应急预案,规范应急处理流程,确保在发生问题时能够迅速采取有效措施,保障施工安全。
高地应力隧道软岩大变形段径向收敛控制措施包括技术措施、监测手段和管理方法三个方面。
千枚岩隧道变形分析与关键技术探讨摘要:千枚岩具有千枚状构造的低级变质岩石,典型的矿物成分主要为绢云母、绿泥石和石英、方解石等物质,由于其特性,造成千枚岩地层修建隧道的大变形破坏。
通过千枚岩隧道实际施工的分析,阐述了隧道变形,变形控制施工方式以及关键施工工序,探讨了相关技术在隧道管理中的重要性。
关键词:千枚岩隧道;变形;控制1、千枚岩隧道情况某隧道以千枚岩为主,局部夹有石英脉,板岩薄层状,层理不明显,节理、裂隙发育,呈薄层状角砾结构,产状不稳定,围岩破碎,局部结构面充填泥质物,面光滑、稳定性较差;千枚岩挤压揉皱,松软破碎,其中石英脉多呈酥碎砂状,以散体结构为主。
开挖后呈碎石、角砾状,掌子面无明显渗水,开挖后时有少量渗漏水、滴状及面状洇湿,量小,拱部有掉块、坍塌现象,易风化。
围岩整体稳定性较差。
Ⅳ、V级围岩较多。
工程区地表水系强烈深切,造成地形陡峻,使之地表径流条件良好,从而决定了本工程区岩体内的地下水具有不甚丰富、坡降大、埋藏深的基本特征。
根据地下水的赋存条件及运移特征,可将区内的地下水划分为基岩裂隙水和松散堆积层中的孔隙潜水两种类型。
地下水均受大气降水补给,向沟、谷排泄。
2、隧道结构变形情况一般情况下,隧道开挖后初期支护变形分三个阶段:第一阶段是上台阶开挖支护后一周内,初期支护变形速率多在20mm/d以上,局部断面超过30mm/d;第二阶段是7~20天内,变形速率多在10~20mm/d;第三阶段是20~40天,变形也逐步趋缓,变形量在10mm/d以内,40天后,变形多在3~4mm/d。
但是,广平高速公路谢家坪隧道,局部段落变形速率最大达到100mm/d,个别断面在半月后变形仍超过20mm/d,此种情况下,初期支护均遭到破坏,最终不得不采取换拱处治。
3、影响隧道变形的基本因素影响隧道围岩稳定性的因素主要有两个方面,一是内在因素即地质因素;二是人为因素即施工工艺带来的影响。
(1)客观因素(地质因素),影响开挖后变形的两个客观因素就是初始的应力场和围岩的力学特性、构造特性。
第34卷第11期岩石力学与工程学报V ol.34 No.11 2015年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2015深埋高地应力TBM隧道挤压大变形及其控制技术研究陈卫忠1,2,肖正龙1,田洪铭1(1. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北武汉 430071;2. 山东大学岩土与结构工程研究中心,山东济南 250061)摘要:深部岩体构造复杂、地应力高,对于挤压性地层开挖后容易产生挤压大变形,大量实践经验表明,若不及时合理处置应对将造成巨大的经济损失。
关注TBM隧道,介绍围岩挤压大变形的机制、关于挤压性地层的提前预报方法和监测辨识指标,讨论预测围岩收敛变形的方法并详细介绍人工智能和非确定性分析方法,最后总结归纳常用的应对挤压性地层的处置手段。
各种关于TBM隧道挤压大变形的辨识公式、预测方法以及处置手段都是依托相应的工程案例而建立,盲目的套用并不一定能起到预期的效果,建议具体工程问题应具体分析,综合比选,各取所长。
关键词:隧道工程;高地应力;挤压大变形;TBM隧道中图分类号:U 45 文献标识码:A 文章编号:1000–6915(2015)11–2215–12RESEARCH ON SQUEEZING LARGE DISPLACEMENT AND ITS DISPOSING METHOD OF WEAK ROCK TUNNEL UNDER HIGH IN-SITUSTRESSCHEN Weizhong1,2,XIAO Zhenglong1,TIAN Hongming1(1. State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan,Hubei 430071,China;2. Geotechnical and Structural Engineering Research Center,Shandong University,Jinan,Shandong 250061,China)Abstract:Without timely and reasonable treatments,the large convergence displacement due to high geostress and complex tectonic stress of ground squeezing will result in economic losses. TBM tunnels were the focus of the study. The mechanism of large displacement due to ground squeezing was described. The prediction and recognition methods were presented. The prediction methods of convergence displacement of tunnel including AI method and uncertainty analysis method were discussed in detail. Finally the common disposal methods for grounds under different squeezing levels were summarized. The formulas for recognition,the prediction methods and the disposal technologies of large squeezing displacement of TBM tunnels were developed for corresponding projects,so blindly using these methods yielded no effect. We suggested the choosing of these methods with caution.Key words:tunnelling engineering;high geostress;squeezing large displacement;TBM tunnel收稿日期:2015–07–19;修回日期:2015–07–28基金项目:国家重点基础研究发展计划(973)项目(2015CB057906);国家自然科学基金杰出青年基金项目(51225902);国家自然科学基金资助项目(51379007)作者简介:陈卫忠(1968﹣),男,博士,1990 年毕业于山东矿业学院采矿工程专业,现任研究员、博士生导师,主要从事隧道及地下工程方面的教学与研究工作。
高地应力软岩隧道大变形发生机理及控制技
术研究
高地应力软岩隧道指的是处于高地应力环境下的软岩地层中开挖
的隧道。
由于所处的高地应力环境导致了软岩地层的高地应力状态,
因此开挖隧道时会导致地层变形和破坏,特别是隧道大变形。
因此,
对于这种隧道,需要研究其发生机理和控制技术。
隧道大变形的发生机理主要包括以下几个方面:
1. 地层原有结构的破坏:隧道开挖会破坏地层原有的结构,导致
地层松动和变形。
2. 地层的应力状态改变:隧道开挖会导致地层应力状态的改变,
特别是高应力地区的地层应力状态,从而引起地层的变形和破坏。
3. 近似于松散垫层的软岩:这种软岩原本就具有不易承受应力的
特点,因此在高应力环境下更加容易发生变形和破坏。
4. 地层水文特征:地下水会影响地层的应力状态和稳定性,因此
隧道开挖时需要考虑地下水的影响。
针对以上机理,可以采取以下控制技术:
1. 实施一定的支护措施:在隧道开挖时需要实施适当的支护措施,如喷锚、加固网等,以保证隧道的安全稳定。
2. 降低地层应力状态:采用降水、减载等措施来降低地层应力状态,从而减小隧道的变形和破坏。
3. 优化隧道设计方案:通过优化隧道设计方案,如采用浅埋式隧道、采用适当的半圆形、梯形等断面形式等,来减小隧道变形和破坏。
4. 做好隧道施工管理:严格控制隧道施工期间的工程质量和安全
管理,确保隧道的安全稳定。
综上所述,高地应力软岩隧道大变形的发生机理和控制技术是一
个综合性问题,需要对各种因素进行综合考虑,以保证隧道的安全稳定。
高地应力软岩隧道大变形预测及防治研究摘要:总结高地应力软岩隧道大变形成因,比较各种大变形预测技术,归纳大变形防治措施。
分析表明:大变形形成机制、变形模式与一般围岩变形破坏不同,需要加强研究;目前还没有形成一套系统、完善和易于推广应用的现场地质分析、监测试验、分析评价预测体系;在支护参数方面,需要一套预测预报方法体系和相应工程对策;针对不同机制、不同等级的大变形,需制定合理大变形防治措施。
以期为今后软岩大变形稳定性控制提供有益参考。
关键词:隧道稳定性高地应力大变形预测与防治高地应力下软弱围岩挤压大变形,是目前备受关注的隧道难题之一,其变形机理及结构受力特征复杂,目前尚未得到完整的解决。
首例严重的交通隧道围岩大变形是1906年竣工的长19,8km辛普伦I线隧道;我国南昆铁路线家竹箐隧道390m(IDK579+170~+560)洞段发生大变形:日本艾那山I线400m大变形路段用36个月才得以通过。
总之,目前在围岩大变形机制、围岩大变形的预测理论和控制技术方法体系方面值得进一步深入研究,具有科学理论意义和现实价值。
1 大变形成因分析1.1地质方面的原因根据我国大量隧道统计,大变形隧道多发生在泥岩、页岩、千枚岩等软岩,在构造及风化影响显著时变形更大,同时伴有地下水渗流和高地应力时更易产生大变形。
1.2施工方面的原因隧道围岩变形量的大小除受地质条件客观因素影响外,与施工方法及手段有很大的关系。
如果喷锚支护施做不到位、仰拱和二次衬砌距离掌子面距离过长、开挖后无法及时封闭成环,而重点放在施工进度,施工单位变形监控量测不规范或不及时、钢架底部悬空或长期积水浸泡,得不到及时处理等因素都对大变形的发生有直接的影响,甚至促进了大变形发生。
1.3设计方面的原因主要表现在对地质条件了解不够,根据有限的探孔了解地质情况,对变形程度估计不足,以致支护措施不到位。
如果设计的锚杆不够长,就无法穿过松动圈,对围岩加固起不到很好的作用。
工程建设高地应力富水区千枚岩隧道变形控制马殷军(中国铁路兰州局集团有限公司,甘肃兰州730000)摘要:千枚岩由于其遇水软化、自稳性差、收敛变形大等特性,在高地应力和地下水压作用下极易产生滑塌。
以银兰高速铁路尖山隧道破碎千枚岩段为依托,对千枚岩特性及其滑塌机理进行归纳,并针对高地应力、地下水压对隧道大变形产生的影响进行数值模拟,从开挖工法、注浆加固、支护时机等方面分析隧道大变形的控制方法。
结果表明:对于富水区千枚岩隧道施工,建议预留变形量250~300mm,并采用二台阶+预留核心土法施工;可采用厚度3m的注浆加固圈,提高隧道围岩结构的稳定性,若隧道围岩纵向变形很大,则采用厚度4m的注浆加固圈;当隧道变形达到极限位移的80%,施加二次衬砌支护,可取得良好的隧道变形控制效果。
该研究可为类似项目提供参考。
关键词:高地应力;千枚岩;富水区;隧道;施工工法;变形控制中图分类号:U457文献标识码:A文章编号:1001-683X(2022)06-0036-07 DOI:10.19549/j.issn.1001-683x.2022.02.16.0040引言近年来,随着“一带一路”倡议对铁路建设的需求,铁路网络逐渐向西辐射,我国铁路隧道工程建设重心逐步转移至工程地质条件复杂的西部地区。
我国西部地区地质灾害频发,许多隧道存在地应力高、围岩软弱、节理裂隙发育等问题,隧道工程建设难度极大[1-4]。
其中,高地应力作用下的软弱围岩隧道建设问题较严重,由于隧道埋深大、节理发育、地下水丰富,导致出现围岩变形、支护结构破坏、边坡滑塌等事故,严重影响工程进度[5-8]。
针对上述问题,众多学者进行了大量有意义的研究工作。
张闯等[9]通过巴西劈裂试验,得到在地下水、层理与孔洞耦合作用下,千枚岩的力学特征与破坏形式;蔡国军等[10]通过不同浸水环境中的岩石直剪试验,分析千枚岩的破裂形式,总结了水化作用对千枚岩力学特性的影响;牛雪凯等[11]以茂县千枚岩隧道穿越富水地层为背景,以减小施工中围岩扰动、加强衬砌支护为目标,对施工工法、爆破设计等研究提出作者简介:马殷军(1976—),男,高级工程师。
高地应力千枚岩地层隧道大变形控制措施探讨
宋嘉辉
中铁第一勘察设计院集团有限公司,陕西 西安 710043
[摘要]根据兰渝线两水隧道施工中出现大变形的工程实例,对其高地应力地层岩性、变形规律、支护破坏特征、变形原因进行了分析。
根据现场科研试验段控制措施调整情况及现场控制效果,总结了该类地层中隧道大变形控制技术措施。
结合现场变形监测数据结果,探讨了千枚岩、炭质千枚岩地层大变形的发展规律。
隧道工程;千枚岩;高地应力;变形规律;监测;控制措施
TU452;U459.1A1002-8498(2012)13-0090-03
Discussion on Large Deformation Controls for Tunnels
in High Geo-stress Phyllite Stratum
Song Jiahui
2012-02-23
l敦状。
围岩能特点。
但随者塑性区可出瑚
断面闭合程。
两水,优化施:
@@[1] 田金山.盾构施工地面沉降监测技术及沉降规律分析[J]. 天津建设科技,2008(1):39-41.
@@[2] 吴张中,李丽平,陈少华.地铁隧道盾构施工地表沉降的预测 分析[J].路基工程,2007(4):46-48.
@@[3]李大勇,王晖,武亚军.盾构掘进对周围环境的影响分析[J]. 地下空间与工程学报,2005( S1):84-86.
@@[4] 曾晓清,张庆贺.土压平衡盾构同步注浆浆液性能试验研究 [J].中国市政工程,1995(1):46-50.
@@[5] 于哲,郭全国,刘双全.亦庄线盾构浅覆土小间距施工方法 [J].市政技术,2010(S2):137-139,143.
@@[1]关宝树,赵勇.软弱围岩隧道施工技术[M].北京:人民交通 出版社,2011.
@@[2] 黄林伟.软岩隧道大变形力学行为及控制技术的研究[D]. 重庆:重庆大学,2008.
@@[3]张文强,王庆林,李建伟,等.术寨岭隧道大变形控制技术 [J].隧道建设,2010(4):157-161.
@@[4] 张文新,孙韶峰,刘虹.木寨岭隧道高地应力软岩大变形施工 技术[J].现代隧道技术,2011 (2):78-81.
@@[5] 周乾刚,方俊波.乌鞘岭隧道岭脊段控制千枚岩大变形快速 施工[J].隧道建设,2007 (4):43-47.
@@[6]刘招伟,王明胜,方俊波.高地应力大变形隧道支护系统的试 验研究[J].土木工程学报,2010(5):111-116.@@[7]何磊,杨斌,王更峰,等.高地应力软岩隧道施工动态控制与 优化研究[J].现代隧道技术,2011(2):44-48.@@[8] 蔡景献,张继奎,方俊波.高地应力千枚岩大变形隧道支护参 数试验研究[J].隧道建设,2005( S1):21-24,31.@@[9] 马天华.乌鞘岭隧道深埋软弱千枚岩变形控制施工技术[J]. 西部探矿工程,2006( S1):320-322.
@@[10] 张宇,王刚,汪涛.乌鞘岭隧道志留系板岩夹千枚岩地段结构 验证试验研究[J].现代隧道技术,2006(5):38-44.。