sas第九章 t检验和方差分析
- 格式:doc
- 大小:227.51 KB
- 文档页数:17
第九章 t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。
样本差异可能是由抽样误差所致,也可能是由本质的不同所致。
应用统计学方法来处理这类问题,称为“差异的显著性检验”。
若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。
第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。
它常用于以下场合:1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。
SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。
2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验) 比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。
SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。
3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。
两组样本所包含的个数可以相等,也可以不相等。
每组观测值都是来自正态总体的样本。
设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTEST 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL)和方差不齐(UNEQUAL)输出t 值和P 值以及基本统计量。
第九章 t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。
样本差异可能是由抽样误差所致,也可能是由本质的不同所致。
应用统计学方法来处理这类问题,称为“差异的显著性检验”。
若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中M EANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR 1WAY 过程。
第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。
它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。
SAS 中采用MEAN S 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。
2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。
SAS 中采用MEAN S 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。
3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。
两组样本所包含的个数可以相等,也可以不相等。
每组观测值都是来自正态总体的样本。
设与为两样1X 2X 本的均值,1n 与为两样本2n 数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTES T 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL )和方差不齐(UNEQU AL)输出t 值和P 值以及基本统计量。
第九章t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。
样本差异可能是由抽样误差所致,也可能是由本质的不同所致。
应用统计学方法来处理这类问题,称为“差异的显著性检验”。
若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。
第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。
它常用于以下场合:1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。
SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。
2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。
SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。
3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。
两组样本所包含的个数可以相等,也可以不相等。
每组观测值都是来自正态总体的样本。
设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTEST 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL)和方差不齐(UNEQUAL)输出t 值和P 值以及基本统计量。
SPSS:数据分析3、T检验(TTest)⽅差分析(ANOVA)(Chi-squareTe。
⽬录1、数据采集2、数据是否服从正态分布3、T检验(T Test)4、⽅差分析(ANOVA)5、卡⽅检验(Chi-square Test)6、灰⾊关联度分析(Grey Relation Analysis,GRA)7、弗⾥德曼检验(Friedman Test)8、箱图(Box)1、数据采集1、数据分类定性观察、访谈、调查定量⼿动测量、⾃动测量、问卷打分主观等级、排序、感觉、有⽤性客观时间、数量、错误率、分数⾃变量不同的实验条件因素,研究的因素因变量不同的实验条件所影响的、要观测的因素连续数量值(preference)时间、数量、错误率------离散数量值(usability问卷打分等级数量值(usability)等级、排序变量类型Norminal Data 定类变量 | 变量的不同取值仅仅代表了不同类的事物,这样的变量叫定类变量。
问卷的⼈⼝特征中最常使⽤的问题,⽽调查被访对象的“性别”,就是定类变量。
对于定类变量,加减乘除等运算是没有实际意义的。
Ordinal Data 定序变量 | 变量的值不仅能够代表事物的分类,还能代表事物按某种特性的排序,这样的变量叫定序变量。
问卷的⼈⼝特征中最常使⽤的问题“教育程度“,以及态度量表题⽬等都是定序变量,定序变量的值之间可以⽐较⼤⼩,或者有强弱顺序,但两个值的差⼀般没有什么实际意义。
Interval Data 定距变量 | 变量的值之间可以⽐较⼤⼩,两个值的差有实际意义,这样的变量叫定距变量。
有时问卷在调查被访者的“年龄”和“每⽉平均收⼊”,都是定距变量。
Ratio Data 定⽐变量 | 有绝对0点,如质量,⾼度。
定⽐变量与定距变量在市场调查中⼀般不加以区分,它们的差别在于,定距变量取值为“0”时,不表⽰“没有”,仅仅是取值为0。
定⽐变量取值为“0”时,则表⽰“没有”。
T检验在正态或近似正态分布的计量资料中,经常在使用前一章统计描述过程分析后,还要进行组与组之间平均水平的比较。
本章介绍的T 检验方法,主要应用在两个样本间比较。
如果需要比较两组以上样本均数的差别,这时就不能使用上述的T检验方法作两两间的比较。
对于两组以上的均数比较,可以使用方差分析方法。
用户可以指定一个或多个变量作为分组变量。
如果分组变量为多个,还应指定这些分组变量之间的层次关系。
层次关系可以是同层次的或多层次的。
同层次意味着将按照各分组变量的不同取值分别对个案进行分组;多层次表示将首先按第一分组变量分组,然后对各个分组下的个案按照第二组分组变量进行分组。
计算公式SPSS单样本T检验:检验某个变量的总体均值和某指定值之间是否存在显著差异。
统计的前提样本总体服从正态分布。
也就是说单样本本身无法比较,进行的是其均数与已知总体均数间的比较。
计算公式如下。
单样本T检验的零假设为H0总体均值和指定检验值之间不存在显著差异。
采用T检验方法,按照下面公式计算T统计量:如果相伴概率值P小于或等于用户设想的显性水平a,则拒绝H,可以认为总体均值和检验值之间存在显著性差异独立样本是指两个样本之间彼此独立没有任何关联,两个独立样本各自接受相同的测量,研究者的主要目的是了解两个样本之间是否有显著差异存在。
这个检验的前提如下。
1、两个样本应是互相独立的,即从一总体中抽取一批样本对从另一总体中抽取一批样本没有任何影响,两组样本个案数目可以不同,个案顺序可以随意调整。
1、两个总体应该服从正态分布。
2、T验的零假设H0为两总体均值之间不存在显著差异。
具体的计算中需要通过两步来完成:第一,利用F检验判断两总体的方差是否相同;第二,根据第一步的结果,决定T统计量和自由度计算公式,进而对T检验的结论作出判断SPSS采用Levene F方法检验两总体方差是否相同。
(1)两总体方差未知且相同情况下,T统计量计算公式为(2)两总体方差未知且不同情况下,T统计量计算公式为T统计仍然服从T分布,但自由度采用修正的自由度,公式为从两种情况下的T统计量计算公式可以看出,如果待检验的两样本均值差异较小,t值较小,则说明两个样本的均值不存在显著差异;相反,t值越大,说明两样本的均值存在显著差异。
第九章 t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。
样本差异可能是由抽样误差所致,也可能是由本质的不同所致。
应用统计学方法来处理这类问题,称为“差异的显著性检验”。
若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。
第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。
它常用于以下场合:1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。
SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。
2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。
SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。
3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。
两组样本所包含的个数可以相等,也可以不相等。
每组观测值都是来自正态总体的样本。
设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTEST 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL)和方差不齐(UNEQUAL)输出t 值和P 值以及基本统计量。
在作方差齐性检验时,用F 检验。
F 值计算公式为:),(),(22212221S S Min S S Max F =9.1.2 用MEANS 过程作t 检验1.过程格式PROC MEANS MEAN STD STDERR T PRT ;VAR 变量表;2.说明(1)PROC MEANS 语句中,选择了5个统计量:均值、标准差、标准误差、t 值、P 值。
(2)VAR 语句中的变量是分析变量。
缺省时,计算所有数值型变量。
3.举例例1: 样本均值与总体均值差别的显著性检验。
已知某水样中含CaCO 3的真值为20.7mg /L ,现用某方法重复测定该水样11次,CaCO 3的含量为:20.99,20.41,20.10,20.00,20.91,22.60,20.99,20.41,20,23,22。
问用该法测CaCO 3的含量所得的均值与真值有无显著差别 ?程序: (yp111.sas)编程说明:在数据步中,变量x 读取测定值,产生一个差值变量y(y=x-20.7),在过程步中,计算出Y 的均值、标准差、标准误差、t 值、P 值。
结果说明:因t =1.0636907,0.05<p=0.3125,故用此法测定水中CaCO 3的含量的均值与真值间无显著差异。
此法可信。
例2:配对比较的t 检验。
研究食物中维生素E 与肝脏中维生素A 含量的关系。
将大白鼠按性别、体重配对。
每对随机分配,一个用正常饲料,一个用缺乏维生素E 的饲料。
经过一个时期饲养,杀死动物测定肝中维生素A 的含量,结果如下表:大白鼠肝脏中维生素A含量(IU/g)配对号 1 2 3 4 5 6 7 8正常饲料3550 2000 3000 3950 3800 3750 3450 3050 缺乏E饲料2450 2400 1800 3200 3250 2700 2500 1750程序:(yp112.sas)编程说明:数据步中,把每对数据中的一个作为x,另一个作为y,计算出差数d(d=x-y),在过程步中,计算差数d的均值、标准差、标准误差、t值、P值。
结果说明:因t=4.21 p=0.0040<0.05,故有非常显著差异,即正常饲料组鼠肝维生素A含量比维生素E缺乏组的含量大。
例3 自身对照比较的t检验。
应用克矽平治疗矽肺患者10名,治疗前后血红蛋白的含量如下表,问该药是否会引起血红蛋白的变化?治疗前后血红蛋白的含量(mg%)治疗前11.3 15.0 15.0 13.5 12.8 10.0 11.0 12.0 13.0 12.3 治疗后14.0 13.8 14.0 13.5 13.5 12.0 14.7 11.4 13.8 12.0程序:(yp113.sas)编程说明:数据步中,把每对数据中的一个作为x,另一个作为y,计算出差数d(d=x-y),在过程步中,计算差数d的均值、标准差、标准误差、t值、P值。
结果说明:因t=1.1989377,O.05<p≤O.2612,故差别无显著差异,即该药不会引起血红蛋白的变化。
9.1.3用TTEST过程作t检验1.过程格式PROC TTEST [DATA=数据集];CLASS变量;VAR变量表;2.说明(1)CLASS语句中的变量是分类变量,其水平值只能有两个,并对应两组观察。
是必选语句。
(2)VAR语句中的变量是被分析的变量,如果缺省,则对所有的数值型变量进行分析。
3.举例观察某药物对大白鼠肉瘤的影响。
数据如下表,试作差异性检验。
对照组56 55 54 53 56 52 57 54 52 56实验组50 48 49 49 50 50 60 55 43 52 56 57 程序: (yp114.sas)编程说明:数据步中,用循环控制变量a作分类变量,其水平值为1(对照组)和2(实验组),变量n表示样本数,分别为10和12,用变量x读取原始数据,在过程步中,用CLASS语句标识分类变量,用VAR语句标识分析变量。
结果说明:输出的最后:H0:Variances are equal(方差相等)表示给出的是对方差相等假设的结果。
先看方差齐性检验(F检验),然后根据F检验的结果,选择方差齐(Equal)或不齐(Unequal)的t值和p值,以及两组观察的均值、标准差、标准误差、最大值、最小值。
找Prob>F’=右边的值,即方差相等假设检验的P值,如果此值大于0.01则在方差相等假设下继续进行,否则只能使用近似T检验。
因P=0.0074,说明方差差异显著,即方差不齐。
当方差不齐时,T=2.0000,0.05<P≤0.0644,故无显著差异,即此药物对大白鼠肉瘤无显著影响。
第二节方差分析当试验结果受到多个因素的影响,而且也受到每个因素的各水平的影响,为从数量上反映各因素以至各因素诸水平对试验结果的影响时使用方差分析的方法。
方差分析的基本思想是把全部数据关于总均值的离差平方和分解成几个部分,每一部分表示某因素交互作用所产生的效应,将各部分均方与误差均方相比较,从而确认或否认某些因素或交互作用的重要性。
用公式概括为:总变异=组间变异+组内变异其中:组间变异由各因素所引起,组内变异由个体差异所引起的,或者说由误差引起的。
常用的方差分析法有以下4种:(1)完全随机设计资料的方差分析(单因素方差分析)(2)随机区组设计资料的方差分析(二因素方差分析)(3)拉丁方设计资料的方差分析(三因素方差分析)(4)R*C析因设计资料的方差分析(有交互因素的方差分析)SAS系统中,ANOVA过程可以处理以上情形的方差分析,但它要求每个分类因子的组合观察数相等,即数据是均衡的。
若不均衡,就要求用GLM过程进行处理。
在只考虑组间变异和误差变异时,称为单向方差分析。
此时ANOVA会自动处理均衡和非均衡数据。
在方差分析中,每次只研究1个指标时,称之为一元方差分析(简称ANOVA),同时考虑多个指标时,称之为多元方差分析(MANOVA)。
在这一节里,我们还将讨论协方差分析。
9.2.1 均衡数据的方差分析(ANOVA过程)1.过程格式PROC ANOVA 选项CLASS 变量表;MODEL 因变量表=效应;MEANS 效应[/选择项];2.使用说明(1)程序中,CLASS语句和MODEL语句是必需的,而且,CLASS语句必须出现在MODEL语句之前。
(2)CLASS语句中的变量是分类变量,可以是数值型,也可以是字符型。
(3)MODEL语句指明因变量和自变量(因子变量)效应。
效应是分类变量的各种组合,效应可以是主效应、交互效应、嵌套效应和混合效应。
对应的效应模型如下:·主效应模型MODEL y=a b c;模型中,a,b,c是主效应,y是因变量。
下同。
·交互模型MODEL y=a b c a*b a*c b*c a*b*c;模型中,a*b,a*c,b*c,a*b*c是交互效应。
·嵌套效应模型MODEL y=a b c(a b);模型中,c(a b)是嵌套效应。
·混合效应模型MODEL y=a b(a) c(a) b*c(a);(4)MEANS语句是选择语句,计算并输出所列的效应对应的因变量均值,若指明了选择项,则将进行主效应均值间的检验。
常用的选择项如下:BON、DUNCAN、LSD、REGWF、REGWO、SNK(Q检验)、SCHEFFE、SIDAK、SMM(GT2)、TUKEY、WALLER。
以上选择项在实际应用中,一般选择一种或两种方法即可。
ALPHA=p确定检验的显著性水平。
缺省值是0.05。
3.举例(1)完全随机设计资料的方差分析(单因素方差分析)某劳动卫生研究所研究棉布、府绸、的确凉、尼龙四种衣料吸附十硼氢量。
每种衣料各做五次测量,所得数据如下表。
试检验各种衣料吸附十硼氢量有没有显著差别?各种衣料间棉花吸附十硼氢量棉布府绸的确凉尼龙2.33 2.483.064.002.00 2.343.06 5.132.93 2.683.004.612.73 2.34 2.66 2.802.33 2.223.06 3.60程序: (yp115.sas)编程说明:数据步中,用循环控制变量a做分类变量,其水平数是4,分别代表不同的衣料。
过程步中,用CLASS语句指明一个因素a,用MODEL 语句反映出该因素的效果模型。
结果说明:在输出中,找CLASS语句指出的变量的P值。
此例中,P≤0.0003,可得出各衣料组间有非常显著差异。