2018云南普洱省考行测技巧:数量关系之方阵问题
- 格式:doc
- 大小:208.50 KB
- 文档页数:1
2018公务员行测:如何巧解方阵问题以下内容是由编辑整理的“2018公务员行测:如何巧解方阵问题”,欢迎查看!一、什么是方阵问题:这是一类横竖排问题,横着排称为行,竖着排称为列。
如行数与列数相等,则正好排成一个正方形,此图形被称为方阵。
对于方阵问题,是这样定义的:士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵。
二、方阵问题的具体特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2人;(2)每边人(或物)数和四周人(或物)的关系:四周人(或物)数=[每边人(或物)数-1]×4;(3)实心方阵的总人数(或物)=每边人(或物)数×每边人(或物)数;(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4。
三、方阵问题的五大计算公式:(1)方阵总数=最外层每边数目的平方;(2)方阵最外一层总数比内一层总数多8(行数和列数分别大于2);(3)方阵最外层每边数目=(方阵最外层总数÷4)+1;(4)方阵最外层总数=[最外层每边数目-1]×4;(5)去掉一行、一列的总数=去掉的每边数目×2-1。
四、方阵问题的巧解:【例题1】阅兵队伍排成一个4层空心方阵,最内层人数是28人,这支阅兵队伍有多少人?A.69B.52C.127D.160【答案】D。
中公解析:已知方阵每层数目之间相差8,最内层人数是28,第二层到第四层依次是36,44,52,所以28+36+44+52=160人,选D。
【例题2】阅兵队伍排成一个4层空心方阵,最内层人数是28人,这支阅兵队伍有多少人?A.69B.52C.127D.160【答案】D。
中公解析:已知方阵每层数目之间相差8,最内层人数是28,第二层到第四层依次是36,44,52,所以28+36+44+52=160人,选D。
特值在云南公务员考试中应用广泛,是快速解题时的必备法宝之一,特值是运用特殊值法,以实际数代替未知数,利在简化计算,旨在提升解题效率,在争分夺秒的战场上无疑是一种利器,那么什么样特征的题目可以用特值来解题?普洱中公教育专家这就带考生看些例子。
一、含任意字眼
例1:任取一个数,相继依次写下它所包含的偶数的个数,奇数的个数与这两个数字的和,将得到一个正整数。
对这个新的数再把它的偶数个数和奇数个数与其和拼成另外一个正整数,如此进行,则最后运算的结果是() A11 B111 C121 D123
中公答案:B
中公解析:题目中出现“任取”字眼,想到用特值,取数字0,包含的偶数个数1,奇数个数0,这两个数字的和是1,拼成101;接下来101包含的偶数个数1,奇数个数2,这两个数字的和为3,拼成123,如此进行得到123,选择D。
二、纯文字、纯字母
例2:在减法中,被减数、减数、差相加的和,除以被减数,所得的商是多少?
A0 B1 C2 D3
中公答案:C
中公解析:减法任取5-2=3,被减数、减数、差的和为10,除以被减数5,商为2,选择C选项。
更多资讯可关注普洱中公教育。
数量关系十大知识要点一、行程问题1.核心公式:S=V x T,路程二速度x时间2.平均速度二总路程!总时间3.若物体前一半时间以速度V1运动,后一半时间以速度V2, ... ............................. V1 + V 2运动,则全程平均速度为4.若物体前一半路程以V1运动,后一半路程以V2运动,则全程平均速度为个2V1 + V 25.相遇时间二相遇路程+速度和6.追及时间二追及路程+速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-1)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。
如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速=(顺水速度+逆水速度)+2;水速=(顺水速度-逆水速度)+210.火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)+火车速度二、几何问题1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2) 180°4. 几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的M倍,体积变为原来的n,倍三、十字交叉Aa + Bb=(A+B>cA c -b整理变用后可得B a~c (a>c>b).用图示可简单表示为::二c工二*B b - a-其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8 的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质♦溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。
行测工程问题解答找特殊数字2018云南普洱省考资料数量关系是考生学习行测的一个难点,很多学生在学习的时候都认为很难,在学习当中需要付出更多的努力,所以需要给学生找一种较为简单的,直接的做法,帮助学生对数量关系建立信心,同时也能建立关于数量关系的信心。
工程问题是常见的题型,这类题型的考察相对固定,对于题型中的问题掌握相对比较容易,所以中公教育专家就跟大家介绍一下关于特值法在工程问题当中的应用。
一、常见的比例统一的类型1.设总量为特值。
在题目当中若总量一定,已知时间或者效率都可以设总量为特值。
例如:一个项目,甲完成需要8天,乙完成需要10天,甲乙合作需要多少天?类似于这样的题目当中,需要对总量做出假设,这时可以设8与10的公倍数,设为40,这时可以得到甲的效率为5,乙的效率为4,由此可以利用总量除以效率求出时间,即:。
2.设效率或时间为特值当中的特值。
在题目当中若存在时间比例关系或效率比例关系,也可以根据比例关系的情况设特值,也可以根据根据题目描述设时间或效率为特值。
例如:一项工作若甲乙合作需要10天完成,已知甲:乙的效率比为1:2,那么这项工程让甲完成需要多久?面对这种题目时,可以假设甲和乙的效率分别为1和2,由此我们得到这项工作的工作总量为30,利用总量除以效率的方式求得,甲完成这项工作需要30天。
二、比例统一常见的应用例1:一项工程甲完成需要30天,甲、乙合作需要18天,乙、丙合作需要15天,甲乙丙共同完成需要几天?A.8B.9C.10D.11中公解析:可设总量为180,则甲的效率为6,甲与乙的效率和是10,所以乙的效率为4,乙和丙合作是15天,乙和丙的效率和是12,乙的效率是4,则丙的效率是8,甲乙丙三个的效率是18,又已知总量为180,所以三人合作完成需要10天。
答案选C。
例2.一项工程甲一天的工作等于乙两天的工作,等于丙三天的工作。
现有一项工程甲完成需要两天,则乙丙合作需要几天?A.12B.5C.2.4D.10中公解析:由题意可知,甲与乙的比例关系是2:1,甲与丙的比例关系是3:1,所以甲、乙、丙的比例关系是6:3:2,可设甲乙丙的效率分别是6、3、2,甲两天完成,则工程总量是12,乙与丙的下路和是5,则完成12个工作量需要2.4天。
方阵问题
一、考情分析
通过近几年的国考来看,方阵问题虽然并不像行程问题、利润问题那样年年都会考查。
但是作为公务员考试的一个常考知识点,大家还是应该对其引起重视,尤其近两年常会碰到的方阵的转换及变形,以及空心方阵问题都有一定难度,需要大家熟记方阵问题的公式。
二、基础知识
1.题型简介
方阵问题是数学运算中一类常见的数学问题,是许多人或物按一定的条件排成正方形(简称方阵),再根据排成的方阵,找出规律,寻求解决问题的方案。
2.概念区分
行:排队时,横着排叫做行。
列:排队时,竖着排叫做列。
实心方阵:中心区域没有空缺,叫实心方阵。
如图1是实心方阵。
奇数型实心方阵:如图2方阵每行每列都为奇数,叫奇数型实心方阵,其几何中心恰好存在一个元素。
偶数型实心方阵:如图3方阵每行每列都为偶数,叫偶数型实心方阵,其几何中心不存在元素,其中心区域由4个元素构成。
空心方阵:中心区域有空缺,叫空心方阵。
如图4是一层的空心方阵,图5是二层的空心方阵。
3.方阵问题的基本概念
(1)方阵不管在哪一层,每边人的数量都相同,每向里面一层,每边的数就减少2。
(2)方阵每相邻两层之间的总人数都相差8。
4.解题思路
在解决方阵问题时,首先应该准确判断方阵的类型,要搞清方阵中的一些量(如层数、最外层人数、最里层人数、总人数)之间的关系。
解题时要开动脑筋,运用相关公式,用多种方法来解题。
给人改变未来的力量【行测】数学运算之方阵问题的解题技巧方阵问题是数量关系中一类非常常规的题目,它的出现频率很高。
由于这一类问题公式比较繁琐,考生在做题过程中经常感觉无从下手,有些考生遇见此类题目时现场推导公式,既费时又费力。
其实方阵问题难度并不大,或者说公式很多,但是重要的公式只有那么几个。
中公教育考试研究与辅导专家下面就来去繁为简,与大家分享这类问题的解决办法。
方阵问题要点:1、最外层每边人数为n,则最外层人数为4(n-1),总人数为n*n;2、在方阵中,相邻两层人数构成等差数列,公差为8。
记住这两个公式,基本上可以解决绝大多数的题目了。
【例1】若干学校联合进行团体体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共多少人?A.625B.841C.1024D.1369【答案】B。
中公解析:因为第二层有104个人,所以最外层有112个人数,故最外层每边人数为112/4+1=29,所以总的人数为29的平方,故答案为841,选B。
【例2】一队学生排成中空方队,最外层的人数为44人,最内层为28人,这一方阵共站了多少人?A.108B.106C.120D.160【答案】A。
中公解析:因为相邻两层人数相差为8,故可以知道各层人数为44,36,28,总共有3层,所以总的人数为36×3=108,所以可以确定答案为A。
通过以上两道题的解析,可知方阵在实际问题中没必要记太多的公式,只需要理解清楚每边人数,每层人数,总人数之间的具体关系,在做题中熟练应用以上两个公式定理,对于其他的公式可以不做记忆,因为记太多,又不理解公式的由来,很有可能造成思维的混乱,希望考生在备考中打好基础,多做题目,只有这样才能在考试中快速准确解题。
金融银行。
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。
★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。
3.N 边行每边有 a 人,则一共有 N(a-1) 人。
4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。
三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。
N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。
公务员考试行测方阵问题快速解题技巧1.观察行和列的和方阵的每一行和每一列的和可以暗示一些数学规律。
当我们观察到行和列的和相等时,通常可以推测方阵中每个位置的数字都应该是相等的。
如果行和列的和不相等,我们可以根据和的大小关系来判断数字的排列情况。
2.填充数字的排列原则方阵问题中,我们需要根据给出的部分数字,填充其他位置的数字。
当我们观察到一些位置的数字和周围位置的关联时,可以根据这些关联来筛选填充数字的可能性。
例如,当一个位置的数字与上方和左方位置的数字有关联时,我们可以根据已知的数字,排除一些不可能的数字。
3.观察数字间的关系在方阵中,数字之间可能有一些隐含的关系。
例如,两个位置的数字之和等于另一个位置的数字,或者两个位置的数字之差等于另一个位置的数字。
观察到这些关系后,可以通过运算来确定其他位置的数字。
4.利用对称性方阵通常具有对称性,我们可以利用对称性来加快求解速度。
当我们观察到方阵中一些位置的数字与其对称位置的数字有关联时,我们可以根据已知数字的位置确定对称位置的数字。
5.求解策略在解决方阵问题时,可以采用自顶向下或自底向上的求解策略。
自顶向下是指从尽可能多的已知数字开始,逐步向其他位置填充数字;自底向上是指从尽可能少的已知数字开始,逐步向其他位置填充数字。
根据具体情况选择合适的求解策略,有时可以提高解题效率。
以上是一些解决方阵问题的技巧和策略。
在面对方阵问题时,考生应该准确分析问题,观察数字之间的关系,灵活运用数学规律,尽可能用有限的已知信息推导出更多的数字,从而在有限的时间内解决问题。
同时,做题时注意细节,避免粗心错误。
通过反复练习和总结,在考试中能够熟练应用这些技巧,提高解题速度和准确率。
更多公职类考试信息和资料
方阵问题是指许多人或物按一定条件排成正方形(方阵),根据方阵找出规律,进而解决问题。
在解决问题时,首先要搞清方阵中的一些量(如层数、最外层人数、最里层人数、总人数)
之间的关系,再选择方阵问题中常用的公式及性质。
方阵相邻两层人数相差8,此处需注意一种特殊情况,当实心方阵的最外层每边人数为奇数时,从内到外每层人数依次是1、8、16、24…;
实心方阵总人数=最外层每边人数的平方
空心方阵总人数利用等差数列求和公式求解(首项为最外层总人数,公差为-8的等差数列)
方阵每层总人数=方阵每层每边人数×4-4;
在方阵中若去掉一行一列,去掉的人数=原来每行人数×2-1;
在方阵中若去掉二行二列,去掉的人数=原来每行人数×4-2×2.
在明白了方阵问题的基本原理之后,我们会发现方阵问题并不难理解,关键就是能够将已经总结出的公式会在具体题目中的使用,所以接下来我们通过几个例题深刻理解方阵问题。
【例题1】五年级学生分成两队参加广播操比赛,排成甲、乙两个实心方阵,其中甲方阵最外层每边的人数为8.如果两队合并,可以另排成一个空心的丙方阵,丙方阵最外层每边的人数比乙方阵最外层每边的人数多4人,且甲方阵的人数正好填满丙方阵的空心。
五年级一共有多少人?
A.200
B.236
C.260
D.288
【答案】C.
【中公解析】此题答案为C 。
空心的丙方阵人数=甲方阵人数+乙方阵人数,若丙方阵为实心的,那么实心的丙方阵人数=2×甲方阵人数+乙方阵人数,即实心丙方阵比乙方阵多8×8×2=128人。
丙方阵最外层每边比乙方阵多4人,则丙方阵最外层总人数比乙方阵多4×4=16人,即多了16÷8=2层。
这两层的人数即为实心丙方阵比乙方阵多的128人,则丙方阵最外层人数为(128+8)÷2=68人,丙方阵最外层每边人数为(68+4)÷4=18人。
那么,共有18×18-8×8=260人。
【例题2】参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少33人。
问参加团体操表演的运动员有多少人?
A.196
B.225
C.289
D.324
【答案】C 。
【中公解析】去掉一行、一列的总人数=去掉的每边人数×2-1,去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17.方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289人。
相信通过例题的讲解,广大考生对于方阵问题会得到更深刻的理解,方阵问题在近几年考试当中虽然出现较少,但是也需要将这类问题有所了解才可以,解题时要先确定方阵的类型,搞清方阵中一些量(如层数、最外层人数、最里层人数和总人数)之间的关系,然后套用正确的公式求解。