八年级数学下册 3 图形的平移与旋转专题训练五旋转的性质和旋转作图试题 新版北师大版
- 格式:doc
- 大小:200.50 KB
- 文档页数:2
专题1旋转构造等腰(边)及等腰直角三角形类型1旋转构成等腰(等边)三角形1.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°第1题图第2题图2.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1 cm,将Rt△ABC绕点A逆时针旋转得到Rt △AB′C′,使点C′落在AB边上,连接BB′,则BB′的长度是()A.1 cm B.2 cmC. 3 cm D.2 3 cm3.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC 边上,且AB′=CB′,则∠C′的度数为()A.18°B.20°C.24°D.28°第3题图第4题图4.如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为.5.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE.若AB=6,BC=8,则BD=.6.如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.(1)依题意补全图形;(2)若OA=2,OB=3,OC=1,求∠OCM的度数.类型2旋转后构成直角(等腰直角)三角形7.如图,在△ABC中,AB=6,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3B.23C.22D.48.如图,在等边△ABC内有一点D,AD=4,BD=3,CD=5,将△ABD绕A点逆时针旋转,使AB与AC 重合,点D旋转至点E,则四边形ADCE的面积为()A.12 B.12+4 3 C.6+4 3 D.6+83第8题图变式图【变式】如图,在△ABC中,∠ACB=90°,BC=AC,点P是△ABC内的一点.如果AP=3,BP=1,CP=2,那么∠BPC的度数是.9.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点.若∠CAE=90°,BD=2,则AB 的长为.专题2利用旋转理解几何模型模型1特殊三角形中的“手拉手”模型错误!1.如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE,连接AE,BD交于点O,则∠AOB 的度数为_ .2.如图1,在△ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将△ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE,延长BD交CE于点F.连接AF.若AD⊥BD,BD=6,CF=4,则DF=.3.两块等腰直角三角尺AOB与COD(不全等)如图1放置,则有结论:①AC=BD;②AC⊥BD.若把三角尺COD绕着点O逆时针旋转一定的角度后,如图2所示,判断结论:①AC=BD;②AC⊥BD是否都还成立?若成立请给出证明,若不成立请说明理由.模型2“对角互补”模型4.如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点.若直角EDF绕点D旋转,分别交AC于点E,交BC于点F,则下列说法:①AE=CF;②EC+CF=2AD;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值,其中正确的有.5.如图,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,则以下结论:①PM=PN恒成立;②OM-ON的值不变;③△OMN的周长不变;④四边形PMON的面积不变.其中正确的序号为.模型3“半角”模型6.(1)如图1,在△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,为了探究BD,DE,CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD,DE,CE 之间的等量关系式是;图1 图2(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD,DE,CE之间的等量关系,并证明你的结论.模型4“倍长中线”(旋转180°)模型7.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使得DE=AD,再连接BE(或将△ACD 绕点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.参考答案:专题1旋转构造等腰(边)及等腰直角三角形1.D2.B3.C4.2.5.10.6.如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.(1)依题意补全图形;(2)若OA=2,OB=3,OC=1,求∠OCM的度数.解:(1)依题意补全图形,如图所示.(2)连接OM.∵△ABC为等边三角形,∴∠ABC=60°.∵△BAO旋转得到△BCM,OA=2,OB=3,∴MC=OA=2,MB=OB=3,∠OBM=∠ABC=60°.∴△OBM为等边三角形.∴OM=OB= 3.∵在△OMC中,OC=1,MC=2,OM= 3.∴OC2+MC2=OM2.∴∠OCM=90°.7.A8.C【变式】135°.9.专题2利用旋转理解几何模型1._120°_.2.23.解:①②都还成立.证明:∵∠AOB=∠COD=90°,∴∠AOB+∠DOA=∠COD+∠DOA.∴∠COA =∠DOB. 在△ACO 和△BDO 中,⎩⎨⎧CO =DO ,∠COA =∠DOB ,OA =OB ,∴△ACO ≌△BDO (SAS ). ∴AC =BD ,∠OBD =∠OAC.设AO 与BD 交于点E ,AC 与BD 交于点N ,则∠BEO =∠AED. ∴∠AOB =∠ANE =90°. ∴AC ⊥BD.综上所述:①AC =BD ,②AC ⊥BD 都还成立. 4.①②③④. 5.①④.6.(1)BD 2+CE 2=DE 2;图1 图2(2)如图2,在△ABC 中,∠BAC =120°,AB =AC ,D ,E 在BC 上,∠DAE =60°,∠ADE =45°,试仿照(1)的方法,利用图形的旋转变换,探究BD ,DE ,CE 之间的等量关系,并证明你的结论.解:仿照(1)将△AEC 绕点A 顺时针旋转120°后为△AFB ,连接DF ,则△AEC ≌△AFB. ∴BF =CE ,AE =AF ,∠EAC =∠FAB. ∵∠BAC =120°,∠DAE =60°,∴∠BAD +∠EAC =60°,即∠FAD =∠DAE =∠FAB +∠BAD =60°. ∴△AFD ≌△AED (SAS ). ∴∠ADF =∠ADE ,FD =DE.∵∠ADE =45°,∴∠ADF =45°.∴∠BDF =90°. 在Rt △BDF 中,由勾股定理,得BF 2=BD 2+DF 2. ∴CE 2=BD 2+DE 2.7.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC 中,若AB =5,AC =3,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使得DE =AD ,再连接BE (或将△ACD 绕点D 逆时针旋转180°得到△EBD ),把AB ,AC ,2AD 集中在△ABE 中,利用三角形的三边关系可得2<AE <8,则1<AD <4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC 中,D 是BC 边上的中点,DE ⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.解:①延长FD到点G,使得DG=DF,连接BG,EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG.∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.②BE2+CF2=EF2.证明:若∠A=90°,则∠EBC+∠FCB=90°,由①知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.。
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。
北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,是中心对称图形的是()A. B. C. D.2、如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.73、下列地铁标志图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5、随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C. D.6、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形7、下列四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个8、如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC= ,则△ABC移动的距离是()A. B. C. D. ﹣9、京剧脸谱、剪纸等图案一般蕴含着对称美,下列选取的图片中既是轴对称图形,又是中心对称图形的是()A. B.C. D.10、始于唐代的青花瓷给人以古朴、典雅之美.关于如图所示的青花瓷图案,下列说法正确的是()A.它是中心对称图形,但不是轴对称图形B.它是轴对称图形,但不是中心对称图形C.它既是中心对称图形,又是轴对称图形D.它既不是中心对称图形,又不是轴对称图形11、如图,△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段EC的长度C.线段BE的长度D.线段EF的长度12、下列现象是数学中的平移的是()A.树叶从树上落下B.电梯从底楼升到顶楼C.碟片在光驱中运行 D.卫星绕地球运动13、下列图形中,是中心对称图形的是()A. B. C. D.14、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2D.∠AC2O=45°15、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.22cmC.20cmD.24cm二、填空题(共10题,共计30分)16、如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为________.17、如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=________.18、如图,将直角三角形 ABC 沿 AB 方向平移 AD 的长度得到三角形DEF,已知BE=5, EF=8, CG=2,则图中阴影部分的面积为________.19、如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________ .20、如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为________.21、平移不改变图形的________和________,只改变图形的________.22、如图,一处长方形展览大厅内,修建了宽为米的通道,其余部分摆放展品,则可供摆放展品的面积为________平方米.23、已知三点A、B、O.如果点A'与点A关于点O对称,点B'与点B关于点O 对称,那么线段AB与A'B'的关系是________.24、如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是________.25、如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是________平方米.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,将一副三角板,如图放置在桌面上,让三角板OAB的30°角顶点与三角板OCD的直角顶点重合,边OA与OC重合,固定三角板OCD不动,把三角板OAB绕着顶点O顺时针转动,直到边OB落在桌面上为止。
新北师大版数学八年级下第三章图形在平移与旋转附答案A.6 B.8 C.10 D.12第12题图第13题图第15题图13.如图,在正方形ABCD中,点E为DC边上的点,连接BE,将△BCE绕C点按顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为( ) A.10° B.15° C.20° D.25°14.如图,Rt△ABC向右翻滚,下列说法正确的有( )(1)①→②是旋转;(2)①→③是平移;(3)①→④是平移;(4)②→③是旋转.A.1种 B.2种 C.3种 D.4种15.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是( ) A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形 D.△ADE的周长是9二、填空题(本大题共5小题,每小题5分,共25分)16.2019年是香港回归祖国20周年,如图所示的香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转形成的,这四次旋转中旋转角最小是________度.第16题图第17题图第18题图17.将△ABC绕着点C按顺时针方向旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是________.18.如图是一个以A为对称中心的中心对称图形,若∠C=90°,∠B=45°,AC =1,则BB′=________.19.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.19题图第20题图20.如图,长方形ABCD的对角线AC=10,边BC=8,则图中五个小长方形的周长之和为________.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(8分)如图,经过△ABC平移后,顶点A移到了点D,请作出平移后的△DEF.22.(8分)如图,正方形网格中每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″.23.(10分)如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=BE.24.(12分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补全图形;(2)若EF∥CD,求证:∠BDC=90°.25.(12分)如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.26.(14分)如图,4×4的网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中按下列要求涂上阴影.(1)在图①中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图②中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.27.(16分)两块等腰直角三角形纸片AOB 和COD 按图①所示放置,直角顶点重合在点O 处,AB =25.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转α(0°<α<90°)角度,如图②所示.(1)利用图②证明AC =BD ,且AC ⊥BD ;(2)当BD 与CD 在同一直线上(如图③)时,若AC =7,求CD 的长.参考答案与解析1.D 2.C 3.A 4.D 5.B 6.D 7.C 8.A 9.A10.B 11.B 12.B 13.B 14.C15.B 解析:∵△ABC 是等边三角形,∴∠ABC =∠C =60°.∵将△BCD 绕点B 逆时针旋转60°得到△BAE ,∴∠EAB =∠C =∠ABC =60°,∴AE ∥BC ,故选项A 正确;∵△ABC 是等边三角形,∴AC =AB =BC =5.∵△BAE 是由△BCD 逆时针旋转60°得到,∴AE =CD ,BD =BE ,∠EBD =60°,∴△BDE 是等边三角形,∴DE =BD =4,∴△AED 的周长为AE +AD +DE =AD +CD +BD =AC +BD =9,故选项C 与D 正确;∵没有条件证明∠ADE =∠BDC ,∴选项B 错误,故选B.16.72 17.80° 18.2 2 19.1320.28 解析:∵长方形ABCD 的对角线AC =10,BC =8,∴AB =AC 2-BC 2=102-82=6,由平移的性质可知五个小长方形的周长之和为2×(AB +BC )=2×14=28.21.解:如图,△DEF 即为所求.(8分)22.解:(1)如图,△AB ′C ′即为所求.(4分)(2)如图,△A ′B ″C ″即为所求.(8分)23.证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB =OD ,OA =OC .(3分)∵AF =CE ,∴OF =OE .(5分)在△DOF 和△BOE 中,OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE (SAS),(8分)∴FD =BE .(10分)24.(1)解:补全图形,如图所示.(5分)(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.(7分)∵∠ACB =90°,∴∠DCE +∠BCD =90°,∴∠ECF =∠BCD .∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC =90°.(9分)在△BDC 和△EFC 中,⎩⎨⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC (SAS),∴∠BDC =∠EFC =90°.(12分)25.解:(1)∵将△ABC 沿AB 边所在直线向右平移3个单位得到△DEF ,∴CF =AD =BE =3.∵AB =5,∴DB =AB -AD =2.(4分)(2)作CG ⊥AB 于G .在△ACB 中,∵∠ACB =90°,AC =3,AB =5,∴由勾股定理得BC =AB 2-AC 2=4.(7分)由三角形的面积公式得12CG ·AB =12AC ·BC ,∴3×4=5·CG ,解得CG =125.(9分)∴S 梯形CAEF =12(CF +AE )·CG =12×(3+5+3)×125=665.(12分) 26.解:(1)答案如图所示(答案不唯一).(7分)(2)答案如图所示(答案不唯一).(14分)27.(1)证明:延长BD 交OA 于点G ,交AC 于点E .(1分)∵△AOB 和△COD 是等腰直角三角形,∴OA =OB ,OC =OD ,∠AOB =∠COD =90°,∴∠AOC +∠AOD =∠DOB +∠DOA ,∴∠AOC =∠DOB .(4分)在△AOC 和△BOD 中,⎩⎨⎧OA =OB ,∠AOC =∠BOD ,OC =OD ,∴△AOC ≌△BOD ,∴AC =BD ,∠CAO =∠DBO .(7分)又∵∠DBO +∠OGB =90°,∠OGB =∠AGE ,∴∠CAO +∠AGE =90°,∴∠AEG =90°,∴AC ⊥BD .(9分)(2)解:由(1)可知AC =BD ,AC ⊥BD .∵BD ,CD 在同一直线上,∴△ABC 是直角三角形.(12分)由勾股定理得BC =AB 2-AC 2=252-72=24.(14分)∴CD =BC -BD =BC -AC =17.。
八年级数学下册第三章图形的平移与旋转综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)∆,点B的对应点点D恰好落在边BC 1、如图,将Rt ABC∆绕点A按顺时针旋转一定角度得到Rt ADE上,若AC=60∠=,则CD的长为()ABC︒A.3 B.2 C D.12、下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1 B.2 C.3 D.43、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A.50°B.60°C.40°D.30°4、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()A.14B.12C.34D.15、下列图形中,是中心对称图形的是()A.B.C.D.6、下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7、下列图形中不是中心对称图形的是()A.B.C.D.8、如图下面图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.9、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10、如图,把含30°的直角三角板ABC绕点B顺时针旋转至如图△EBD,使BC在BE上,延长AC交DE于F,若AF=8,则AB的长为()A.4 B.C.D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长为1的正六边形ABCDEF 放置于平面直角坐标系中,边AB 在x 轴正半轴上,顶点F 在y 轴正半轴上,将正六边形ABCDEF 绕坐标原点O 顺时针旋转,每次旋转60︒,那么经过第2022次旋转后,顶点D 的坐标为________.2、若点(),5A n 与点()1,B m -关于原点对称,则n m +的值为______.3、若点A (m ,5)与点B (-4,n )关于原点成中心对称,则m +n =________.4、如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AC =3,将Rt △ABC 绕点A 逆时针旋转得到Rt △AB ′C ′,使点C ′落在AB 边上,连接BB ′,则BB ′的长度为 _____.5、在平面直角坐标系xOy 中,点()4,7-关于原点的对称点坐标为_______. 三、解答题(5小题,每小题10分,共计50分)1、如图,直线CD 与EF 相交于点O ,将一直角三角尺AOB 的直角顶点与点O 重合.(1)如图1,若90EOD ∠=︒,试说明BOD EOA ∠=∠;(2)如图2,若60EOD ∠=︒,OB 平分EOD ∠.将三角尺AOB 以每秒5°的速度绕点O 顺时针旋转,设运动时间为t 秒.①042t ≤≤,当t 为何值时,直线OE 平分AOB ∠;②当1218t <<,三角尺AOB 旋转到三角POQ (A 、B 分别对应P 、Q )的位置,若OM 平分COP ∠,求AOMEOP∠∠的值.2、如图,在正方形网格中,每个小正方形的边长为1,A 、B 、C 三点都在格点上(网格线的交点叫做格点),现将△ABC 先向上平移4个单位长度,再向右平移3个单位长度就得到△A 1B 1C 1(1)在图中画出△A 1B 1C 1,点C 1的坐标是 ;(2)如果将△A 1B 1C 1看成由△ABC 经过一次平移得到的,那么一次平移的距离是 . 3、如图,正方形ABCD 的顶点A 、B 在x 轴的负半轴上,顶点CD 在第二象限.将正方形ABCD 绕点A 按顺时针方向旋转,B 、C 、D 的对应点分别为B 1、C 1、D 1,且D 1、C 1、O 三点在一条直线上.记点D 1的坐标是(m,n),C1的坐标是(p,q).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.4、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A 1B1C1;(2)在图中作出A 1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A 2B2C2内部的对应点P2的坐标为.5、如图1,△ABC,△AED是等腰直角三角形,∠EAD=90°,点B在线段AE上,点C在线段AD上.(1)请直接写出线段BE与线段CD的数量关系为______;(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<90°),则(1)中的结论是否仍成立?若成立,请利用图2证明;若不成立,请说明理由.-参考答案-一、单选题1、B【分析】由直角三角形的性质可得AB=2,BC=2AB=4,由旋转的性质可得AD=AB,可证△ADB是等边三角形,可得BD=AB=2,即可求解.【详解】解:∵AC=60∠=,∠BAC=90°ABC︒∴∠C=90°-30∠=ABC︒∴BC=2AB∵BC2=AC2+AB2∴AB=2,BC=2AB=4,∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,∴AD=AB,且∠B=60°∴△ADB是等边三角形∴BD =AB =2, ∴CD =BC −BD =4−2=2 故选:B . 【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键. 2、B 【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解 【详解】第一个图形是中心对称图形,又是轴对称图形, 第二个图形是中心对称图形,又是轴对称图形, 第三个图形不是中心对称图形,是轴对称图形, 第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形. 故选:B . 【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3、A 【分析】根据旋转的性质求解80,BOD AOC 110,CA 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.解:将△OAB绕点O逆时针旋转80°得到△OCD,80,BOD AOC∠A的度数为110°,∠D的度数为40°,110,1801104030,C A COD803050,AOD故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.4、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形)=34;故选:C.【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.5、C根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.6、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.7、B根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.8、B【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.9、D解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.是轴对称图形,不是中心对称图形,故本选项符合题意;D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【分析】根据旋转的性质得到AB=BE,∠A=∠E=30°,设BC=x,根据直角三角形的性质得到AB=DE=,根据题意列方程即可得到结论.2x,根据勾股定理得到AC【详解】解:∵把含30°的直角三角板ABC绕点B顺时针旋转得到△EBD,∴AB=BE,∴∠A=∠E=30°,∵∠ACB=90°,∴∠EDF=90°,设BC=x,∴AB=BE=2x,,∴CE=x,AC∵∠ECF=90°,∠E=30°,EF,∴CF=12∴CF x , ∵AF =8,8=,∴x =∴AB =2x =故选:C【点睛】本题考查了旋转的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键.二、填空题1、3(2【分析】连接AD 、BD ,由勾股定理可得BD ,求出∠OFA =30°,得到OA 的值,进而求得OB 的值,得到点D 的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点D 的坐标.【详解】解:如图,连接AD ,BD ,在正六边形ABCDEF 中,1,2,90AB AD ABD ︒==∠=,∴BD =在Rt AOF ∆中,1,60AF OAF ︒=∠=,∴30OFA ︒∠=, ∴1122OA AF ==, ∴32OB OA AB =+=,∴3(2D ,∵将正六边形ABCDEF 绕坐标原点O 顺时针旋转,每次旋转60°,∴6次一个循环,∵20226337÷=,∴经过第2022次旋转后,顶点D 的坐标与第一象限中D 点的坐标相同,故答案为:3(2.【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D 坐标的规律.2、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答.【详解】解:由点(),5A n 与点()1,B m -关于原点对称,可得n =1,5m =-,∴=15=4n m +--故答案为:﹣4.【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数.3、1-【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.【详解】解:∵点A (m ,5)与点B (-4,n )关于原点成中心对称,∴m =4,n =-5,∴m +n =-5+4=-1,故答案为:-1.【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.4、6【分析】利用含30°角的直角三角形的性质可得AB =6,∠BAC =60°,根据旋转可证△ABB '是等边三角形,从而BB '=AB =6.【详解】解:在Rt △ABC 中,∵∠C =90°,∠ABC =30°,∴∠BAC =60°,AB =2AC =6,∵将Rt △ABC 绕点A 逆时针旋转得到Rt △AB ′C ′,∴∠BAB '=∠CAC '=60°,AB =AB ',∴△ABB '是等边三角形,∴BB '=AB =6.故答案为:6【点睛】本题主要考查了图形的旋转,等边三角形判定和性质,直角三角形的性质,熟练掌握相关知识点是解题的关键.5、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ),进而得出答案.【详解】解:点()4,7-关于原点的对称点坐标为(-4,7),故答案是:(-4,7).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.三、解答题1、(1)见解析;(2)①3t =或39t =;②12AOM EOP ∠=∠ 【分析】(1)根据垂直的性质即可求解;(2)①分当OE 平分AOB ∠时,和OF 平分AOB ∠时根据旋转的特点求出旋转的角度即可求解; ②根据1218t <<,可知OP 在EOB ∠内部,根据题意作图,分别表示出EOP ∠, AOM ∠,故可求解.【详解】解:(1)∵90AOB EOD ∠=∠=︒,∴90AOE EOB EOB BOD ∠+∠=∠+∠=︒,∴AOE BOD ∠=∠.(2)①∵OB 平分EOD ∠,60EOD ∠=︒, ∴1302BOE EOD ∠=∠=︒. 情况1:当OE 平分AOB ∠时, 则旋转之后1452BOE AOB ∠=∠=︒, ∴OB 旋转的角度为453015︒-︒=︒,∴515t =,3t =.情况2:当OF 平分AOB ∠时,同理可得,OB 旋转的角度为45150195︒+︒=︒,∴5195t =,39t =.综上所述,3t =或39t =.②∵1218t <<,∴OP 在EOB ∠内部,如图所示,由题意知,5AOP t ∠=︒,∴()560EOP AOP AOE t ∠=∠-∠=-︒,∵OM 平分COP ∠, ∴()11556030222COM COP t t ⎛⎫∠=∠=+︒=+︒ ⎪⎝⎭, ∴5530603022AOM COM AOC t t ⎛⎫⎛⎫∠=∠-∠=+︒-︒=-︒ ⎪ ⎪⎝⎭⎝⎭, ∴()530125602t AOM EOP t ⎛⎫-︒ ⎪∠⎝⎭==∠-︒.【点睛】此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.2、(1)△A 1B 1C 1为所求,图形见详解;(5,3);(2)5.【分析】(1)先求出点A (-3,2),点B (-2,-2),点C (2,-1),根据点平移的特征上加下减,右加左减原则可得A 1(0,6),点B 1(1,2),点C 1(5,3),利用描点A 1(0,6),点B 1(1,2),点C 1(5,3),连接A 1B 1、B 1C 1、C 1 A 1,则△A 1B 1C 1为所求;(2)根据勾股定理求出AA 1的长即可.【详解】解:(1)根据图形位置点A (-3,2),点B (-2,-2),点C (2,-1),△ABC 先向上平移4个单位长度,再向右平移3个单位长度就得到△A 1B 1C 1,根据点平移的特征上加下减,右加左减原则可得:A 1(-3+3,2+4)即(0,6),点B 1(-2+3,-2+4)即(1,2),点C 1(2+3,-1+4)即(5,3), 在平面直角坐标系中描点A 1(0,6),点B 1(1,2),点C 1(5,3),顺次连结A 1B 1、B 1C 1、C 1 A 1,则△A 1B 1C 1为所求;故答案为:(5,3);(2)根据勾股定理AA 1,将△A 1B 1C 1看成由△ABC 经过一次平移得到的,那么一次平移的距离是5,故答案为5.【点睛】本题考查平移作图,勾股定理,掌握平移作图方法是先求点坐标,在根据平移的方向与距离平移到指定位置,连线成图,和勾股定理应用是解题关键.3、(1)4;(2)-1或-7【分析】(1)如图,130DAD ∠=︒且11D C O 、、三点在一条直线上的情况,连接1D O ,过点D 向x 作垂线交点为E ,在直角三角形1D EO 中,1130AD E AOD ∠=︒=∠,11sin30D E OD =︒,可求1D O 的长; (2)如图,过点1D 向x 作垂线交点为N ,过点1C 作x 轴垂线交于点G ,作11D M C G ⊥交点为M ;由111111111AND C MD AD N C D M AD C D ∠=∠⎧⎪∠=∠⎨⎪=⎩,知111AND C MD ≌,11D N D M =,点G 坐标为()4,0G -,得4p =-,由2225p q +=知q 的值,从而得到p q +的值.【详解】解:(1)∵∠DAD 1=30°且D 1、C 1、O 三点在一条直线上 ∴如图所示,连接1OD ,过点1D 向x 作垂线交点为E∴1130AD E AOD ∠=︒=∠ ∵12n D E ==111sin302D E OD ∴=︒= 14OD ∴=.(2)如图过点1D 向x 作垂线交点为N ,过点1C 作x 轴垂线交于点G ,作11D M C G ⊥交点为M11190AND D MC ∠=∠=︒,111111190AD N ND C ND C C D M ∠+∠=∠+∠=︒111AD N C D M ∴∠=∠在1AND 和11C MD 中111111111AND C MD AD N C D M AD C D ∠=∠⎧⎪∠=∠⎨⎪=⎩()111AND C MD AAS ∴≌11D N D M ∴=G 点横坐标可表示为14m NG m D M m n +=+=+=-()4,0G ∴-4p ∴=-2225p q +=3q ∴=±∴p +q =-7或-1.【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.4、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)由题意得:P(﹣a﹣4,b﹣5).故答案为:(﹣a﹣4,b﹣5);【点睛】本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.5、(1)BE =CD ,理由见解析;(2)成立,理由见解析【分析】(1)根据等腰直角三角形的性质可得AB =AC ,AE =AD ,再根据等量关系可得线段BE 与线段CD 的关系;(2)根据等腰直角三角形的性质得到AB =AC ,AE =AD ,由旋转的性质可得∠BAE =∠CAD ,根据全等三角形的性质即可得到结论.【详解】解:(1)BE =CD ,理由:∵△ABC 和△AED 都是等腰直角三角形,∠BAC =∠EAD =90°,∴AB =AC ,AE =AD ,∴AE -AB =AD -AC ,∴BE =CD ,故答案为:BE =CD ;(2)成立,理由:∵△ABC 和△AED 都是等腰直角三角形,∠BAC =∠EAD =90°,∴AB =AC ,AE =AD ,由旋转的性质可得∠BAE =∠CAD ,在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△CAD(SAS),∴BE=CD.【点睛】本题考查了等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,熟练掌握旋转的性质是解题的关键.。
北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、如图下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、线段AB经过平移得到线段CD,若CD=5cm,则AB等于()A.3cmB.4cmC.5cmD.6cm3、如图,将周长为5的△ABC沿BC方向平移了1个单位长度得到△DEF,连接AD,则四边形ABFD的周长为()A.5B.6C.7D.84、下列车标,可看作图案的某一部分经过平移所形成的是 ( )A. B. C. D.5、下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是()A. B. C. D.6、下列说法错误的是()A.矩形的对角线相等B.正方形的对称轴有四条C.平行四边形既是中心对称图形又是轴对称图形D.菱形的对角线互相垂直且平分7、经过平移或旋转不可能将甲图案变成乙图案的是()A. B. C. D.8、下列电视台的台标,是中心对称图形的是()A. B. C. D.9、将下列图案通过平移后可以得到的图案是()A. B. C. D.10、观察下列图形,是中心对称图形的是()A. B. C. D.11、下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.12、下列电视台的台标,是中心对称图形的是()A. B. C. D.13、下列图形中,是中心对称图形的是( )A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,在△ABC中,∠ABC=90°,将△ABC沿AB方向平移AD的长度得到△DEF,已EF=8,BE=3,CG=3,则图中阴影部分的面积是()A.12.5B.19.5C.32D.45.5二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、如图,与都是直角三角形,,点在上,.如果经顺时针旋转后能与重合,那么旋转中心是点________,旋转了________度.18、如图,往竖直放置的在A处山短软管连接的粗细均匀细管组成的“U形装置中注入一定量的水,水面高度为9cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度为________cm.19、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转到△A′B′C,使得点A′恰好落在AB上,则旋转角度为________.20、如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=________21、如图,已知∠AOB=45°,将射线OA绕点O逆时针旋转α°(0 α 360),得到射线OA′.若OA′⊥OB,则α的值是________.22、钟表的时针匀速旋转一周需12小时,则时针经过3小时后,时针所转过的角度为________,如果时针从12时开始,绕中心旋转了120°,则它所指向的具体数字是________.23、“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n个图形中小梅花的个数是________.24、在图中,是由基本图案多边形ABCDE旋转而成的,它的旋转角为________.25、如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转________次,每次旋转________度形成的.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图,已知A(-2,-3),B(-3,-1),C(-1,-2)是平面直角坐标系中三点.(1)请你画出ABC关于原点O对称的A1B1C1;(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在A1B1C1内部,指出h的取值范围.28、找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.29、在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1, AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.30、在下面的正方形网格中,每个小正方形的边长为1.(1)直接写出图①共有多少条对称轴;(2)图②中的阴影图案可以看成是由某个基本图形绕着一个点依次旋转一定的角度后得到的.请在图中标出这个点;(3)利用图③的方格,设计一个新图案,要求与图①②的图案都不相同,但面积相同,且能沿某条直线分割后两旁的图形完全相同.(在图④中把你画的图案涂成阴影并画出分割线)参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、B5、B6、C7、C8、D9、A10、D11、D12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
第三章《图形的平移与旋转》单元测试卷一.选择题(每小题3分36分)1.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为()A.2B.3C.5D.73.如图,把△ABC绕点C顺时针旋转某个角度q后得到△A′B′C′,若∠A=30°,∠1=70°,则旋转角q等于()A.30°B.50°C.40°D.100°4.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于A.55°B.70°C.125°D.145°5.下列标志既是轴对称图形又是中心对称图形的是()6.点P(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是().A.110°B.80°C.40°D.30°8.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)9.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D 的坐标是()A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)10.下列图形:线段、角、圆、平行四边形、矩形、正方形中,既是轴对称图形又是中心对称图形的有()A.6个B.5个C.4个D.3个11.如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( ). A.30,2 B.60,2 C.60,23D.60,312.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB =150°;④四边形AOBO ′的面积为AOC AOBS S+=其中正确的结论是( )A. ①②③B.①②③④C.①②③⑤D.①②③④⑤二.填空题(题型注释)13.点P (-2,1)向上平移2个单位后的点的坐标为__________ .14.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,点O 分斜边AB 为BO :OA =1,将△BOC 绕C 点顺时针方向旋转到△AQC 的位置,则∠AQC = .15. 如图,在正方形ABCD 中,边AD 绕点A 顺时针旋转角度m (︒<<︒3600m ),得到线段AP ,连接PB ,PC .当△BPC 是等腰三角形时,m 的值为 .16.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为_________.三.解答题(共52分)17.如图,已知△ABC 三个顶点的坐标分别为A (-2,-1),B (-3,-3),C (-1,-3),(1)、画出△ABC 向右平移三个单位的对应图形△111C B A ,并写出1A 的坐标; (2)、画出△ABC 关于原点O 对称的△222C B A ,并写出2A 的坐标;18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 绕点B 顺时针旋转90°得到△A ′BC ′,请画出△A ′BC ′;(2)求BA边旋转到B A′位置时所扫过图形的面积.19.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(4分)(2)当AE=1时,求EF的长.(4分)21.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD 的长.22.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用.旋转的性质证明.......你的结论。
北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A. B. C. D.2、下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B. C. D.3、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.4、下列图形中,不是中心对称图形的为()A. B. C. D.5、下列图形中既是中心对称又是轴对称的是()A.可回收垃圾B.其他垃圾C.有害垃圾D.厨余垃圾6、在下列四个标志中,既是中心对称又是轴对称图形的是( )A. B. C. D.7、下列交通标志中,是中心对称图形的是()A. B. C. D.8、若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.9、下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.10、下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形;B.等腰梯形;C.平行四边形;D.正十边形11、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.12、如图,已知△ABC的面积为24,将△ABC沿BC方向平移到△A1B1C1,使B1和C重合,连接AC1交A1C于点D,则四边形ABCD的面积为()A.30B.36C.40D.4813、如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点NB.点M,点QC.点N,点PD.点P,点Q14、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.15、下列图案可以看作某一部分平移后得到的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为________.17、请任意写出一个既是轴对称,又是中心对称的图形是________.18、点P(﹣2,1)向上平移2个单位后的点的坐标为________19、如图,线段OA=4,点C是OA的中点,以线段CA为对角线作正方形ABCD.将线段OA绕点O向逆时针方向旋转60°,得到线段OA′和正方形A′B′C′D′.在旋转过程中,正方形ABCD扫过的面积是________.(结果保留π)20、在你所学过的图形中,是中心对称图形但不是轴对称图形的是________ .21、如图,等腰直角三角形ABC经过旋转得到△DBE,∠ACB和∠E都是直角,那么逆时针旋转的角度是________,旋转中心是________.22、如图,将△ABC绕点A逆时针旋转90°得到△ADE,点C和点E是对应点,若AB=1,则BD=________.23、如图,平面直角坐标系中,A(m,0)(m<0),以A为圆心,2个单位长为半径作⊙A,过点B(0,3)作垂直于y轴的直线l. 若把⊙A绕原点O顺时针旋转90°得到的圆与直线l相切,则m的值为________.24、如图,在方格纸中,图形②可以看作是图形①经过若干次图形变化(平移、轴对称、旋转)得到的,写出一种由图形①得到图形②的变化过程:________.25、等边△ABC的边长为2,等边△DEF的边长为1,把△DEF放在△ABC中,使∠D与∠A重合,点E在AB边上,如图所示,此时点E是AB的中点,在△ABC 内部将△DEF按照下列的方式旋转:绕点E顺时针旋转,使点F与点B重合,完成一次操作,此时点D是BC的中点,△DEF旋转了________°;再绕点D顺时针旋转,使点E与点C重合,完成第二次操作;…每次绕△DEF的某个顶点连续旋转下去,第11次操作完成时,CD=________.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、不同的“基本图形”的旋转可能具有相同的旋转效果.如图,点O是六个正三角形的公共顶点,这个图案可以看作是哪个“基本图形”以点O为旋转中心经过怎样旋转组合得到的?28、如图,将三角形沿射线平移后能与三角形重合(点、分别与点、对应),如果的长为12,点在边上,且,求边长的取值范围.29、如图,四边形是平行四边形,,,点的坐标为,求点、、的坐标.30、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).①请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;②请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、D5、C6、C7、C8、C9、B10、D11、B12、B13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
第三章 图形的平移与旋转1.下列图案中,是中心对称图形但不是轴对称图形的是( )2. 下列图形中可由其中的部分图形经过平移得到的是( )3. 如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A .55°B .60°C .65°D .70°4.如图所示,在Rt △ABC 中,BC 是斜边,P 是三角形内一点,将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,如果AP =3,则PP′的长为( ) A . 2 B .3 2 C .2 2 D .35.如图,已知正方形ABCD 的边长为3,点E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM.若AE =1,则FM 的长为( )A .2B .252C .3D .526. 如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB的延长线上,连接AD,下列结论一定正确的是( )A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC7. 下列图形中,能由左图经过一次平移得到的图形是()8. 已知某一运动方式为:先竖直向上运动1个单位长度后,再水平向左运动2个单位长度,现有一动点P第一次从原点O出发,按运动方式运动到P1,第2次从点P1出发按运动方式运动到点P2,则此时点P2的坐标是()A.(4,2)B.(-4,2) C.(-4,-2) D.(4,-2)9. 如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.65°B.70°C.75°D.80°10. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )A.(4n-1,3) B.(2n-1,3) C.(4n+1,3) D.(2n+1,3) 11. 如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=a度;②A1E=CF;③DF=FC;④BE=BF.其中正确的有(只填序号).12. 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为.14. 点A(4,3)向左平移个单位长度后得到A′(-1,3).15. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是.16. 将一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°,旋转前后所有的图形共同组成的图形是正形.17. 如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是且.18. 下列图形中,能通过旋转得到的有个.19. 如图所示,若A、B、C分别为三个圆的圆心,且圆的半径都是2cm,则圆B可看做是圆A沿水平方向平移cm得到的;圆C可看做圆A沿着与水平方向成°角的方向平移cm得到的,点C到AB的距离是cm.20. 如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,求CE′的长.21. 如图,在等腰Rt△ABC中,∠ACB=90°,AB=142,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.如图,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.22. 如图,△ABC是等边三角形,将△ABC沿直线BC向右平移,使B点与C 点重合,得到△DCE,连接BD,交AC于点F.猜想AC与BD的位置关系,并证明你的结论.23. 如图,点P是等边△ABC内一点,PA=4,PB=3,PC=5,线段AP绕点A逆时针旋转60°得到线段AQ,连接PQ.(1)求PQ的长;(2)求∠APB的度数.答案;1---10 CACBD CCBAC11. ①②④12. (-2,-4)13. 1014. 515. ②④16. 六边17. 平行相等18. 419. 4 60 4 2320.解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,∴AB=BC=22,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′=2,在Rt△BCH中,CH=BC2-BH2=6,∴CE′=2+ 6.21. 解:由旋转的性质得:CD =CF ,∠DCF=90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO=90°,CD =BD =AD ,∴∠DCF=∠ADC,在△ADO 和△FCO 中,∵⎩⎪⎨⎪⎧∠AOD=∠FOC ∠ADO =∠FCO AD =FC,∴△ADO≌△FCO(AAS),∴DO =CO ,∴BD =CD =2DO.22. 解:垂直.证明:∵△DCE 由△ABC 平移而来,∴△DCE≌△ABC, ∴△DCE 是等边三角形,∴BC=CD ,∠ACB=∠DCE=60°,∴∠ACD=180°-120°=60°,∴∠ACD=∠ACB,∵BC=CD ,∴AC⊥BD.23. 解:(1)∵AP=AQ ,∠PAQ=60°,∴△APQ 是等边三角形,∴PQ=PA =4; (2)连接QC ,∵△ABC,△APQ 都是等边三角形,∴∠BAC=∠PAQ=60°,∴∠BAP=∠CAQ=60°-∠PAC,在△ABP 和△ACQ中,⎩⎪⎨⎪⎧AB =AC ∠BAP=∠CAQAP =AQ,∴△ABP≌△ACQ(SAS),∴BP =CQ =3,∠APB =∠AQC ,∵在△PQC 中,PQ 2+CQ 2=PC 2,∴△PQC 是直角三角形,且∠PQC =90°, ∵△APQ 是等边三角形,∴∠AQP =60°,∴∠APB =∠AQC =60°+90°=150°.。
专题训练(五) 旋转的性质和旋转作图
类型1 旋转的性质
1.(玉溪中考)如图,点A ,B ,C ,D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转的角度为(C)
A .30°
B .45°
C .90°
D .135°
2.(眉山中考)如图,△ABC 中,∠C =67°,将△ABC 绕点A 顺时针旋转后,得到△AB ′C ′,且点C ′在BC 上,则∠B ′C ′B 的度数为(C)
A .56°
B .50°
C .46°
D .40°
3.(毕节中考改编)如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE ,连接BD ,CE 交于点F.求证:△AEC ≊△AD B.
证明:由题意得,△ABC ≌△ADE ,
∴AD =AB ,AE =AC ,∠DAE =∠BAC.
又∵AB =AC ,
∴AD =AE =AB =AC.
∵∠DAE +∠EAB =∠CAB +∠EAB ,
∴∠DAB =∠EAC.
∴在△AEC 和△ADB 中,
⎩⎪⎨⎪⎧AE =AD ,∠EAC =∠DAB ,AC =AB ,
∴△AEC ≌△ADB(SAS).
类型2 旋转作图
4.(长春中考)如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.
(1)作△ABC 关于点P 的对称图形△A ′B ′C ′;
(2)再把△A ′B ′C ′绕点C ′逆时针旋转90°,得到△A ″B ″C ′,请你画出△A ″B ″C ′(不要求写画法).
解:△A ′B ′C ′和△A ″B ″C ′如图所示.
5.(眉山中考)如图,方格纸中△ABC 的三个顶点均在格点上,将△ABC 向右平移5格到△A 1B 1C 1,再将△A 1B 1C 1绕点
A 1逆时针旋转180°,得到△A 1
B 2
C 2.
(1)在方格纸中画出△A 1B 1C 1和△A 1B 2C 2;
(2)设B 点坐标为(-3,-2),B 2点坐标为(4,2),△ABC 与△A 1B 2C 2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.
解:(1)△A 1B 1C 1和△A 1B 2C 2如图所示.
(2)△ABC 与△A 1B 2C 2成中心对称.连接CC 2(或BB 2)交A A 1于点P ,则P 点即为对称中心.
∵B(-3,-2),B 2(4,2),
∴A(-2,0),A 1(3,0).∴P(12
,0). 6.(毕节中考)在下列的网格图中,每个小正方形的边长均为1个单位.在Rt △ABC 中,∠C =90°,AC =3,BC =4.
(1)试在图中作出△ABC 以点A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1;
(2)若点B 的坐标为(-3,5),试在图中画出直角坐标系,并标出A ,C 两点的坐标;
(3)根据(2)中的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2,C 2两点的坐标.
解:(1)△AB 1C 1如图所示.
(2)如图所示,A(0,1),C(-3,1).
(3)△A 2B 2C 2如图所示,B 2(3,-5),C 2(3,-1).。