透明氧化铝陶瓷的研究进展
- 格式:pdf
- 大小:227.43 KB
- 文档页数:3
氧化铝陶瓷材料的研究进展自从人类掌握了冶金工艺,就开始了各种金属材料的应用研究,人们不断地发掘着新的金属材料,如今用于各种领域的合金已经非常普遍。
然而,金属材料也有其本身的局限性,如热膨胀系数大、抗氧化性差、重量大等等。
因此,在类似于高温、高压、高强度等严苛环境下的应用中,如冶金、航天、军工等领域,人们就开发了多种氧化铝陶瓷材料作为一种代替金属材料的类型。
氧化铝陶瓷材料是指以氧化铝或其化合物为主体,添加适量的其他原料(如质稳物,碳化物,氮化物等)制成的陶瓷材料。
由于氧化铝陶瓷材料拥有较高的抗氧化性、化学稳定性、热稳定性、机械性能和电性能,因此被广泛应用于陶瓷基复合材料、高温热电工程领域、模具制造、人造腰椎、陶瓷刀具等领域。
高温陶瓷材料是氧化铝陶瓷材料的主要产物之一。
这些材料的热膨胀系数较小,抗高温能力较强,热和电的导热性和绝缘性也很好。
这些理想属性意味着氧化铝陶瓷材料可以被广泛应用于各种极端条件下,如高温轴承、高温热电器件、太阳能电池等。
由于这些应用程序在极端条件下的使用,所以该类陶瓷必须具备极高的品质和可靠性。
氧化铝微细晶晶粒材料也是近年来广泛发展起来的一种氧化铝陶瓷材料。
由于它们具有高度分散的晶粒,所以它们的力学性能、光学性能和电子性能等都比传统氧化铝材料要优越。
在磁盘存储器和微机电系统中,这些材料可以用于制造小型悬臂梁、传感器和电子元器件等微型器件。
在多层陶瓷电容器和激光脉冲反射材料等方面,这些材料也已在市场上拥有了很好的地位。
此外,氧化铝陶瓷材料在模具制造领域也得到了广泛应用。
这些领域的氧化铝陶瓷材料拥有高度精密的密封性能和热稳定性能,而且还具有优异的机械性能和绝缘性能等。
这些特殊性能使得氧化铝陶瓷材料可以用于高精度模具制造领域。
根据相应的研究报告,氧化铝陶瓷材料的模具加工比传统材料更快、更高质量和更节省成本。
除此之外,由于其在模具制造工艺中的高度精密性能,氧化铝陶瓷材料还可以用于切削刀头、陶瓷刀具、化学阀门等高精密领域。
透明氧化铝陶瓷制备的研究进展关键词:透明氧化铝,透光率,烧结助剂,烧结工艺1引言透明氧化铝陶瓷最早是由美国Coble博士发明的,他通过在Al2O3中添加0.25wt% MgO,于1700~1800℃氢气气氛下烧结出呈半透明的氧化铝陶瓷,从此开创了透明氧化铝陶瓷研究和应用的新篇章[1]。
经过半个世纪的不懈努力和研究,科研工作者发现,通过提高氧化铝的纯度、致密度以及合理的调控显微结构,可以显著提高氧化铝陶瓷的透光性。
随着研究的不断开展,制备氧化铝陶瓷的烧结助剂得到了极大地扩展,除了MgO,一些稀土氧化物(如Y2O3、La2O3、ZrO2等)同样可以作为氧化铝陶瓷的烧结助剂,并且采用复合添加剂的效果优于单独使用MgO。
关于添加剂的引入方式,谢志鹏等[2]提出了化学沉淀包覆工艺,在1800℃氢气气氛下烧结,制备了透明氧化铝陶瓷。
与传统的球磨工艺相比,该方法能够实现添加剂在氧化铝基体中的均匀分布,从而大大提高了陶瓷的透光性。
关于透明氧化铝陶瓷的烧结技术,最近的研究工作表明,采用热等静压(HIP)、放电等离子(SPS)等特种烧结工艺可以制备出亚微米晶的高性能透明氧化铝陶瓷。
例如,Jin等[3]采用SPS工艺,于1250~1350℃,80MPa压力下烧结,制备了晶粒尺寸小于1μm,直线透光率为53%的透明陶瓷。
由于晶粒细小,其机械强度也非常优异。
此外,Mao等[4]就氧化铝晶粒光轴取向对透光性的影响进行了研究,他们通过在强磁场条件下进行透明Al2O3陶瓷浆料的注浆成型,使烧结后的Al2O3陶瓷晶粒光轴趋于一致,从而减少六方晶系Al2O3陶瓷因双折射率不同带来的光损失,显著提高透明Al2O3陶瓷的透过率。
下面就影响氧化铝陶瓷透光性的各种因素,以及氧化铝粉体选择、烧结助剂及作用、烧结工艺及透明氧化铝陶瓷的应用进行综述。
2影响氧化铝陶瓷透明性的因素2.1.1气孔对透明陶瓷透光性能影响最大的因素是气孔率,又包括气孔尺寸、数量、种类。
氧化铝透明陶瓷氧化镁透明陶瓷、氧化钇透明陶瓷标题:探索透明陶瓷:氧化铝、氧化镁和氧化钇在现代科技和工业领域,透明陶瓷已经成为一个备受关注的材料。
氧化铝、氧化镁和氧化钇作为透明陶瓷的重要代表,它们在光学、电子、航空航天等领域都有着广泛的应用。
本文将从深度和广度两个方面进行全面评估,以帮助读者更好地理解透明陶瓷的特性和应用。
一、氧化铝透明陶瓷1. 氧化铝的基本特性氧化铝是一种常见的陶瓷材料,具有高强度、抗腐蚀性、耐磨损等优点。
其透明陶瓷具有良好的光学性能和化学稳定性,被广泛应用于光学窗口、激光器件等领域。
2. 氧化铝透明陶瓷的制备方法通过热压、热等静压等方法可以制备出高密度、均匀结构的氧化铝透明陶瓷。
在制备过程中,控制晶粒尺寸和杂质含量对于提高透明度和力学性能至关重要。
3. 氧化铝透明陶瓷的应用氧化铝透明陶瓷广泛应用于高温、高压、强腐蚀环境下的光学元件、传感器、航天器件等领域。
其在光学窗口、透镜、激光窗口等方面具有独特的优势。
二、氧化镁透明陶瓷1. 氧化镁的基本特性氧化镁是一种重要的陶瓷材料,具有高熔点、高硬度、高热导率等特点。
透明陶瓷具有较好的透明度和热稳定性,在光学和高温环境下有着重要应用。
2. 氧化镁透明陶瓷的制备方法氧化镁透明陶瓷的制备可以通过热等静压、热同步处理等方法进行。
在制备过程中,要控制晶粒尺寸和晶界的清晰度,以获得更好的透明度和性能。
3. 氧化镁透明陶瓷的应用氧化镁透明陶瓷在激光窗口、红外透镜、高温传感器等领域有着广泛的应用。
其在光学、电子等高技术领域有着独特的地位和作用。
三、氧化钇透明陶瓷1. 氧化钇的基本特性氧化钇是一种重要的稀土陶瓷材料,具有优良的光学、电学性能和磁学特性。
透明陶瓷具有良好的透明度和光学性能,在激光器件、光学窗口等方面有着广泛应用。
2. 氧化钇透明陶瓷的制备方法氧化钇透明陶瓷的制备可以通过固相反应、热等静压等方法进行。
在制备过程中,要控制杂质含量、晶界结构等因素,以提高透明度和性能。
氧化铝陶瓷的制备及应用研究氧化铝陶瓷是一种重要的陶瓷材料,具有许多优良的性质,比如高温稳定性、化学惰性、机械强度高等。
因此,在航空航天、化工、医疗、电子等领域都有广泛的应用。
本文将从氧化铝陶瓷的制备、性质和应用三个角度来阐述相关研究进展。
1.氧化铝陶瓷制备研究氧化铝陶瓷的制备有多种方法,包括焙烧法、注模成型、压制烧结法和激光烧结法等。
其中,焙烧法是一种常用的制备方法。
该方法首先将氧化铝粉末与有机混合物混合,在不同温度条件下煅烧,得到所需的陶瓷材料。
注模成型则是将氧化铝粉末与有机胶水混合,注入成型模具中制作成所需形状的陶瓷体。
压制烧结法则是将氧化铝粉末压制成形体后,在高温下烧结成陶瓷。
激光烧结法则是利用激光束对氧化铝粉末进行加热和压缩,形成陶瓷材料。
以上几种制备方法都有其优缺点。
焙烧法制备简单、成本低,但制备出的陶瓷材料中可能存在杂质,影响材料性能。
注模成型方法可以制作出形状复杂的陶瓷,但需要使用有机胶水作为粘合剂,可能影响材料的稳定性。
压制烧结法可以制备出高性能的氧化铝陶瓷,但加工难度较大、成本较高。
激光烧结法具有制备速度快、高温高压条件下制备的陶瓷具有均匀致密的优点,但设备成本高,生产成本也较高。
2.氧化铝陶瓷性质研究氧化铝陶瓷具有多种优良的性质,例如高机械强度、硬度、抗腐蚀性、化学稳定性、热稳定性等。
其中,氧化铝陶瓷的高机械强度和硬度使其成为制作切割工具、芯片基板等高性能材料的理想选择。
氧化铝陶瓷的化学稳定性和抗腐蚀性,使其成为能源、石油化工等领域中重要的结构材料。
氧化铝陶瓷的热稳定性则使其成为航空航天、电子等领域的重要材料。
同时,氧化铝陶瓷在生物医疗、环保等领域也有广泛的应用,如制备生物医疗器械、过滤器等。
3.氧化铝陶瓷应用研究氧化铝陶瓷在各个领域都有着广泛的应用。
在航空航天领域中,氧化铝陶瓷被应用于制造高温发动机、导弹隔热材料等。
在化工领域中,氧化铝陶瓷被应用于制作化工反应器、催化剂等。
氧化铝多孔陶瓷的制备及性能研究氧化铝多孔陶瓷的制备及性能研究摘要:氧化铝多孔陶瓷因其优良的化学稳定性、高温强度和机械性能被广泛应用于电子、石油、化工等领域。
本文基于氧化铝多孔陶瓷的制备方法和性能研究,综述了其制备工艺、表征方法以及性能研究的结果。
1. 引言氧化铝多孔陶瓷是由高纯度氧化铝粉末经过压制、烧结等工艺制备而成的一种陶瓷材料。
其孔隙结构使其具有较大的比表面积和孔隙率,从而使其具备了优异的吸附性能和渗透性能。
氧化铝多孔陶瓷被广泛应用于催化、过滤、电子以及化工等领域。
2. 制备方法氧化铝多孔陶瓷的制备方法包括模板法、发泡法、溶胶-凝胶法等。
模板法主要通过使用模板材料,在烧结过程中得到孔隙结构;发泡法则采用制泡剂,在高温下产生气泡形成多孔结构;溶胶-凝胶法则通过溶胶的凝胶过程形成多孔陶瓷。
其中,模板法制备的氧化铝多孔陶瓷具有较大的孔隙直径和均匀的孔隙分布,具有较好的热稳定性;发泡法制备的氧化铝多孔陶瓷具有较小的孔隙直径和较大的孔隙率,具有较好的过滤性能;溶胶-凝胶法制备的氧化铝多孔陶瓷具有较高的比表面积和孔隙率,具有较好的吸附性能。
3. 表征方法氧化铝多孔陶瓷的性能主要通过其孔隙结构、比表面积等参数进行表征。
通常采用扫描电子显微镜(SEM)、比表面积分析仪、压汞法等方法对其进行表征。
SEM能够直观地观察到其孔隙结构形貌,并且可以进行孔径分布的分析;比表面积分析仪则能够测量其比表面积,通过比表面积与孔隙率的关系推导出其孔隙结构参数;压汞法则能够通过测量其对气体的吸附能力来计算出其孔隙分布和孔径大小。
4. 性能研究氧化铝多孔陶瓷的性能研究主要包括孔隙结构对吸附和过滤性能的影响,以及化学稳定性、机械性能等方面的研究。
孔隙结构对吸附和过滤性能的影响可以通过调节制备方法来实现,如改变模板材料、制泡剂的种类和用量等;化学稳定性的研究可以通过浸泡在不同溶液中来验证其抗化学侵蚀性能,并通过SEM等表征手段来观察其表面形貌的变化;机械性能的研究可以通过测量其抗压强度、硬度等参数来评估。
氧化铝陶瓷膜材料的制备与性能研究一、研究背景氧化铝陶瓷是一种重要的高温材料,具有良好的耐热性、耐腐蚀性、低介电常数等特性,被广泛应用于高温环境中的机械、电子、光学等领域。
氧化铝陶瓷材料主要通过氧化铝膜材料制备而成,因此氧化铝膜材料的制备和性能研究对于氧化铝陶瓷材料的开发和应用具有重要意义。
二、氧化铝膜材料的制备1. 溶胶-凝胶法溶胶-凝胶法是制备氧化铝膜材料的常用方法之一。
该方法主要通过水解混合溶液中的铝硝酸盐,使其形成胶体溶液,然后通过加热干燥形成氧化铝凝胶。
最后,利用高温处理方法将氧化铝凝胶转化为氧化铝膜材料。
2. 离子束溅射法离子束溅射法是一种物理气相沉积方法,可以制备出高质量的氧化铝膜材料。
该方法主要通过将高能离子束瞄准于氧化铝靶材表面,使其表面原子被击碎并在基底表面沉积形成氧化铝薄膜。
该方法制备出的氧化铝膜具有良好的致密性和均匀性。
3. 电化学氧化法电化学氧化法是利用电化学反应制备氧化铝膜的方法。
该方法主要利用铝或铝合金作为阳极,在电解液中施加电压,通过电化学反应形成氧化铝膜。
该方法简单易行,但制备出来的氧化铝膜厚度较薄且致密性不如其他方法。
三、氧化铝膜材料的性能研究1. 机械性能氧化铝膜材料具有较高的硬度和弹性模量,能够承受较大的外力和划伤,因此可以应用于高硬度和高耐磨的领域,如磨损件、机械密封件等领域。
2. 光学性能氧化铝膜材料具有良好的透明性和高反射率,可用于光学透镜、光学滤波器等领域。
同时,氧化铝膜材料还能应用于红外技术中,具有良好的透过红外光的性能。
3. 电学性能氧化铝膜材料具有低介电常数和良好的绝缘性能,也具有较高的耐电性能和高压电常数,可用于超高频和微波领域的电子元件。
四、结论氧化铝陶瓷膜材料制备和性能研究对于氧化铝陶瓷材料的开发和应用具有重要意义。
溶胶-凝胶法、离子束溅射法和电化学氧化法是常用的氧化铝膜材料制备方法。
氧化铝膜材料具有较高的机械性能、光学性能和电学性能,同时具有广泛的应用前景。
陶瓷透明AlON陶瓷研究现状及应用田庭燕杜洪兵孙峰姜华伟陈广乐刘妍彭珍珍(北京中材人工晶体有限公司北京100018)摘要主要介绍透明氮氧化铝(Al()N)陶瓷的研究进展。
对Al()N的制备方法和应用傲了综述翱介绍‘.并对其发展前景和存在的问题作了展望与分析。
关键词透明陶瓷AI()N制备应用TheResearchStatusQuooftheTransparentAIONCerami缁andItsApplication【TianTingyan,DuHongbing,SunFeng,JiangHuawei.ChenGuangle。
LiuYan.PcngZhenzhen(BeijingSinomaSyntheticCrysracsCo,Ltd,Beijing,100018)Abstract:ThispaperreviewedtheresearchprogressintransparentAluminumoxynitride(AI()N)ceramics,ineludingoflhefabricationsandapplicationsofAI()N..AndtheprospectsofAIONalsodiscussed.Keywords:“Fransparentceramics;Aluminumoxynitride;Fabrication;Application1980年美国Raytheon公司在军方资助下研制出透明AlON陶瓷材料,作为一种日益引起人们广泛重视的新兴透明陶瓷材料,AloN具有很好的光学透明性,从近紫外(O.2肛m)到中红外(5.0弘m)的平均光学透过率大予80%;在毫米波频段,具有优良的介电性能(介电常数小于10),损耗角正切小(在1mnl波长处为0.0002);男外还具有优良的抗渣侵蚀性和抗渣渗透性[J一;良好的耐高温性,抗热震性和抗侵蚀性能。
所以在导弹窗口和头罩材料等领域获得日益广泛的应用。
氧化铝陶瓷的性能与应用研究氧化铝陶瓷作为一种重要的精细陶瓷材料,具有优异的物理、化学和力学性能,在众多的领域得到了广泛的应用。
本文将就氧化铝陶瓷的性能、生产工艺、应用领域等方面进行研究和探讨,并对其未来的发展方向提出建议。
一. 氧化铝陶瓷的性能氧化铝陶瓷具有优异的物理和化学性质,其主要性质如下:1. 物理性能氧化铝陶瓷的物理性质主要包括高硬度、高熔点、高热导率、高绝缘性、低热膨胀系数、良好的耐磨性和耐侵蚀性等。
2. 化学性能氧化铝陶瓷的化学性质主要表现为其耐腐蚀性能好,抗氧化性强,并且在高温下具有较好的化学稳定性能。
此外,它在一些酸、碱溶液中也表现出良好的化学稳定性。
3. 力学性能氧化铝陶瓷的力学性能表现出高强度、高模量、高韧性和高断裂韧性等特点。
这些性能有助于提高氧化铝陶瓷的使用寿命、延缓断裂、减少磨损和疲劳等问题。
二. 氧化铝陶瓷的生产工艺氧化铝陶瓷的生产工艺主要包括湿法法、干法法和共烧法三种方法。
1. 湿法法湿法法是指通过化学反应法,将铝酸盐或铝氢氧化物溶解在水中,再通过沉淀、干燥、成型、烧结等步骤制得氧化铝陶瓷。
2. 干法法干法法是指通过高温氧化铝粉末直接制备氧化铝陶瓷。
这种方法的主要特点是生产成本低、节能环保。
3. 共烧法共烧法是指将氧化铝和其他陶瓷材料一起烧结制得氧化铝陶瓷。
这种方法可以大大降低生产成本,提高陶瓷的性能。
三. 氧化铝陶瓷的应用领域氧化铝陶瓷广泛应用于陶瓷、电子、航空、医疗等领域。
1. 陶瓷领域氧化铝陶瓷在陶瓷领域的应用主要是制作高温、高压和耐磨的陶瓷制品,如办公家居、日用陶瓷、建筑装饰、花瓶、餐具、厨房用具等。
2. 电子领域氧化铝陶瓷在电子领域的应用主要是制作高温、高压和耐腐蚀的电极、热敏电阻、IC封装、半导体材料、航天器外壳等。
3. 航空领域氧化铝陶瓷在航空领域的应用主要是制作发动机叶片、传动件、气密结构、陶瓷涂层等。
4. 医疗领域氧化铝陶瓷在医疗领域的应用主要是制作关节假体、牙科修复物、透析器、支架、人工中耳等医疗器械。
氧化铝陶瓷的制备及其微观结构研究氧化铝陶瓷是一种种类非常广泛的陶瓷材料,其在工业、生活和科研领域都有着广泛应用。
本文将从氧化铝陶瓷的制备入手,探讨其微观结构以及研究现状。
一、氧化铝陶瓷的制备氧化铝陶瓷可以通过多种方法制备,其中最常见的是烧结法。
该方法是将氧化铝粉末与一定量的添加剂混合后,加入适量的有机粘结剂,成型后进行烘干,再经过高温烧结而制得。
此外,还有常压干燥成型法、等离子喷雾法和热压缩成型法等常见制备方法。
在制备过程中,添加剂对氧化铝陶瓷的性能有着重要的影响。
例如,二氧化硅、钙钛矿和氧化锆等添加剂可以提高氧化铝陶瓷的强度和硬度;钇和铈等稀土元素则可以改善其耐高温性能和化学稳定性。
此外,加入碳微粉、碳化硅或碳化硼等还可以提高氧化铝陶瓷的热导率等特性。
二、氧化铝陶瓷的微观结构氧化铝陶瓷具有非常丰富的微观结构,其中最常见的是晶粒和孔隙。
其晶粒大小范围从几纳米到数微米不等,而孔隙则可以分为宏孔、中孔和微孔三种类型。
其中,宏孔是指孔径大于100纳米的孔隙,中孔的孔径在2-50纳米之间,而微孔的孔径小于2纳米。
此外,在氧化铝陶瓷中还存在一些重要的微观结构,如晶界、颗粒界面和内部脆性缺陷等。
晶界是晶粒之间的界面,其中存在大量缺陷位错,会对氧化铝的力学性能有着重要的影响。
颗粒界面是由于颗粒之间聚集而形成的界面,其存在会影响氧化铝陶瓷的致密性和均匀性。
内部脆性缺陷包括裂纹、铸造缺陷和孪晶等,会弱化氧化铝陶瓷的力学性能和耐腐蚀性。
三、氧化铝陶瓷的研究现状目前,国内外学者们对氧化铝陶瓷的研究领域主要包括以下几个方面。
首先是陶瓷材料的稳定性和可靠性。
研究者们通过研究氧化铝陶瓷的微观结构、缺陷机制和加工成型方法等,探究其稳定性和可靠性。
例如,美国科罗拉多大学的研究人员说明,加入少量的氧化铟和氧化钇可以显著改进氧化铝陶瓷材料的稳定性和耐久性。
其次是制备方法和工艺研究。
科学家们对氧化铝陶瓷的制备方法进行研究,探索最优的制备工艺,寻找制备氧化铝陶瓷的新方法和新技术。
多晶透明氧化铝陶瓷材料的研究与制备多晶透明氧化铝陶瓷材料是一种具有高透明度、高硬度、高化学稳定
性和高抗磨损性的陶瓷材料。
其应用广泛,如光学、电子、照明等领域。
制备多晶透明氧化铝陶瓷材料涉及到烧结技术、化学合成技术、凝胶
注模成型技术等。
其中,烧结是制备多晶透明氧化铝陶瓷材料的核心技术。
常用的烧结方法有常压烧结和高压烧结两种。
高压烧结能够获得具有更高
透明度和更高强度的多晶透明氧化铝陶瓷材料。
化学合成技术是制备多晶透明氧化铝陶瓷材料的一种新方法。
该方法
通过控制反应条件和化学成分,能够制备出具有比较均匀细小的颗粒尺寸
的多晶透明氧化铝陶瓷材料。
凝胶注模成型技术是制备多晶透明氧化铝陶瓷材料的另一种新方法。
该方法可制备成型较复杂的器件,并能够制备出具有较高透明度和较高均
匀性的多晶透明氧化铝陶瓷材料。
总之,制备多晶透明氧化铝陶瓷材料是一项重要的研究领域,其制备
技术的改进和发展将有助于陶瓷材料应用领域的发展。
氧化铝陶瓷制备技术研究
1引言
氧化铝陶瓷(Al2O3Ceramic)是一种具有良好光学性能、耐高温性、强度高、质轻且极易加工的陶瓷材料,它可以实现质量上厘、周期超短的高效制造,被广泛应用于医疗、航天、电子等领域。
目前,越来越多的企业和研发机构正力求寻求一种能够快速、有效的制备氧化铝陶瓷的方法和技术,以满足不同领域对于陶瓷材料的大量产业需求。
2熔法
熔法是目前比较常用的一种氧化铝陶瓷制备技术,它的基本原理是在溶解期间形成氧化铝溶胶,再经过一系列的烧结工艺,将氧化铝溶胶最终转换为氧化铝陶瓷。
它具有材料成本低、生产效率高、细致精密等优势,被广泛用于制备各种表面光洁度高、口径精密度高的氧化铝陶瓷产品。
3压辊钻孔
压辊钻孔一种特殊的氧化铝陶瓷制备技术,它是通过将陶瓷半成品/原料经由定形、滚压、表面处理等工序,最终形成相关氧化铝陶瓷零件。
这种制备技术的优势在于尺寸精度高,表面光洁度高,装配安全牢靠,能够有效满足客户对于氧化铝陶瓷零件规格尺寸大小精度要求。
4热压法
热压法是指通过把原料进行一系列的混合和加工,用一定的压力将其压型成型而形成氧化铝陶瓷的一种制备技术。
热压法的优势在于它具有快速、有效的生产,以及对于不同表面光洁度要求更加严格的装配要求,能够满足客户对于该类陶瓷材料的多种要求。
5总结
以上就是关于氧化铝陶瓷制备技术的详细介绍,它们各有优势且用途广泛,分别适用于各种表面光洁度高、口径精密度高和复杂制造等质量要求更高的氧化铝陶瓷制备。
氧化铝陶瓷的制备技术正在不断发展,其真正的潜力和作用仍有待发掘,未来仍有很多的可能性及挑战。
又称半透明氧化铝陶瓷或透明多晶氧化铝陶瓷主晶相1. 概述透明陶瓷特性:耐高温耐腐蚀高绝缘高强度透明一般陶瓷—气孔、杂质、晶界、结构↓对光反射损失+吸收损失↓光学不透明2.透光模型表面反射光↑入射光→陶瓷材料→透射光↓内部吸收光 + 散射光↑↑晶体本身+杂质外表+内散射中心↓杂质+微气孔+晶粒直径↓散射量最大←入射光波长=晶粒直径3.陶瓷透光的基本条件1)致密度>理论密度的99.5%2)晶界无空隙或空隙大小<<入射光波长3)晶界无杂质及玻璃相,或其与微晶体的光学性质相似4)晶粒较小且均匀,其中无空隙5)晶体对入射光的选择吸收很小6)晶体无光学异向性(立方晶系)7)表面光洁4.工艺原理(1)控制以体积扩散为烧结机制的晶粒长大过程晶粒过快生长—晶界裂缝,封闭气孔晶粒生长速度 > 气孔移动速度—包裹于晶体内的气孔更不易排出加入适量MgO(0.1-0.5%) →透明Al2O3陶瓷↓1)MgAl2O4晶界析出,阻止晶界过快迁移2)MgO较易挥发,防止形成封闭气孔↓限制晶粒过快生长—微晶结构透明Al2O3陶瓷(2)控制气孔平均尺寸烧结透明Al2O3陶瓷:晶粒~25μm,大小均匀气孔半径0.5-1.0μm气孔率0.1%热压烧结Al2O3陶瓷:晶粒1-2μm,大小不均气孔半径~0.1μm对可见光散射效应强在可见光区透光率:烧结瓷 >热压瓷(3)其他因素:原料纯度、细度,成型方法,烧结气氛等氢气或真空中烧结,透光率高5.工艺方法1)配料主料:高纯Al2O3(>99.9%) —硫酸铝铵热解法Al2(NH4)2(SO4)4∙24H2O~200℃ → Al2 (SO4)3∙(NH4)2SO4∙H2O + 23 H2O↑500~600 ℃→ Al2 (SO4)3+ 2NH3↑+SO3↑ + 2 H2O↑800~900 ℃ →γ-Al2O3+ 3 SO3↑~1300 ℃/1.0~1.5h →α-Al2O 3(少量γ-Al2O3提高活性,促进烧结)改性料:MgO 以Mg(NO3)2加入,共同热分解—分布均匀,活性较大的MgO2)成型和烧结:a)常温注浆或等静压成型,高温烧结浆料pH=3.5,流动性较好坯体理论密度 > 理论密度的85%氢气或真空下烧结,T=1700-1900℃b)二次烧结法将含有MgO (0.5%)的 Al2O3粉成型1000-1700℃ 氧化气氛,t=1.0h氢气或真空下烧结,T=1700-1950℃c)热等静压烧结透明陶瓷的制备工艺透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。