溶剂萃取
- 格式:pptx
- 大小:3.88 MB
- 文档页数:52
简述溶剂萃取的常见工艺流程及其特点溶剂萃取是一种常见的分离和提纯技术,广泛应用于化工、制药、食品等领域。
其基本原理是利用溶剂与混合物中的某些成分具有不同的亲和力,从而实现分离和提纯。
下面将简述溶剂萃取的常见工艺流程及其特点。
一、常见工艺流程1.单级溶剂萃取单级溶剂萃取是最简单的溶剂萃取方法,其流程包括混合物与溶剂的混合、搅拌、分离和回收。
该方法适用于分离混合物中只有少量目标成分的情况。
2.多级溶剂萃取多级溶剂萃取是在单级溶剂萃取的基础上进行改进的方法,其流程包括多次使用不同的溶剂进行萃取,从而提高目标成分的纯度。
该方法适用于分离混合物中含有多种目标成分的情况。
3.逆流萃取逆流萃取是一种连续的溶剂萃取方法,其流程包括混合物与溶剂的混合、搅拌、分离、回收和再次混合。
该方法适用于分离混合物中含有多种目标成分且需要高纯度的情况。
4.超临界萃取超临界萃取是一种利用超临界流体作为溶剂进行萃取的方法,其流程包括将混合物与超临界流体混合、加热、分离和回收。
该方法适用于分离高沸点、高分子量的物质。
二、特点1.高效性溶剂萃取是一种高效的分离和提纯技术,能够在较短的时间内实现高纯度的目标成分。
2.灵活性溶剂萃取方法可以根据不同的混合物和目标成分进行调整,具有较高的灵活性。
3.成本低溶剂萃取方法的成本相对较低,因为其所需的设备和溶剂都比较常见和便宜。
4.易于控制溶剂萃取方法的操作比较简单,易于控制,因此适用于大规模生产。
5.环保性溶剂萃取方法相对于其他分离和提纯技术来说,对环境的影响较小,因为其所需的溶剂可以回收和再利用。
总之,溶剂萃取是一种常见的分离和提纯技术,其常见工艺流程包括单级溶剂萃取、多级溶剂萃取、逆流萃取和超临界萃取。
其特点包括高效性、灵活性、成本低、易于控制和环保性。
溶剂萃取技术在湿法冶金中的应用由于其技术效果好,在一定条件下经济效果也很高,因此在再生金属的湿法冶金中已有不少研究和应用。
(1)溶剂萃取过程
利用有机溶剂从与其不相混溶的液相中将某种物质提取出来的方法称为溶剂萃取。
①萃取体系的组成萃取体系是由有机溶液(有机相)和水溶液(水相)两个互不相溶的液相所组成的体系;
有机相
萃取剂(与被萃取物有化学结合)
稀释剂(与被萃取物没有化学结合,只起溶剂作用,如煤油等)添加剂(可有可无,加入后或起协萃作用,或抑制三相生成)水相
无机盐(被萃取的物质及杂质等)
无机盐(或盐析剂)
萃取体系最重要的是有机相的选择,它包括萃取剂、稀释剂、添加剂及其浓度的选择,必须根据具体情况通过理论分析和试验加以确定。
②萃取分离金属的原理煤油及其他油类不溶于水的性质称为“疏水性”。
油类之所以有疏水性是因为它的分子极性很小,在强极性的水中难以溶解。
能溶于水溶液中的物质一般是离子化合物,它们在水中可电离并发生离子水化现象而具有“亲水性”,如半径小(如
Li+)或电荷多(Fe3+)的离子的水化程度大。
但物质的疏水性和亲水性并非绝对的,创造一定的条件可使亲水性物质变成疏水,反之亦然。
萃取技术的全过程可以说是使亲水性的金属离子转成疏水而进入有机相中,而反萃取时疏水性的萃合物中的金属离子转成亲水性而进入水相中。
萃取原则流程图如下所示:。
溶剂萃取法
溶剂萃取法(一般称:萃取法),是指利用溶质在互不相溶的溶剂里溶解度的不同,用一种溶剂把溶质从另一溶剂所组成的溶液里提取出来的操作方法。
例如,用四氯化碳从碘水中萃取碘,就是采用萃取的方法。
萃取分离物质的操作步骤是:把用来萃取(提取)溶质的溶剂加入到盛有溶液的分液漏斗后,立即充分振荡,使溶质充分转溶到加入的溶剂中,然后静置分液漏斗。
待液体分层后,再进行分液.如要获得溶质,可把溶剂蒸馏除去,就能得到纯净的溶质。
萃取的机理既有物理的溶解作用,又有化学的配合作用,是一个复杂的物理溶解过程。
按照萃取机理的不同,可分为五种类型:简单分子萃取、中性配合萃取、酸性配合萃取、离子缔合萃取和协同萃取。
溶剂萃取的原理是什么
溶剂萃取是一种常见的分离和提取方法,主要基于溶解度的差异对混合物中的组分进行分离。
其原理可以简单描述如下:
1. 选择合适的溶剂:根据混合物的组成和特性,选择一个适合的溶剂或溶剂组合,使需要提取的成分在该溶剂中具有较高的溶解度。
2. 溶解过程:将混合物与溶剂混合,在适当的条件下(如温度、压力等),使溶质分子在溶剂中溶解。
3. 分相过程:由于混合物中的组分在不同溶剂中的溶解度差异,溶液中的组分会在不同溶剂相中分配。
常见的情况是混合物中的某些组分在有机溶剂中溶解度较高,而其他组分则相对较低。
4. 分离过程:通过分离两个相的方法(如液液分离、萃取等),将希望提取的组分从原始混合物中分离出来。
一般情况下,有机溶剂相中的成分被提取出来,而水相中的成分则留在原始混合物中。
5. 回收溶剂和提取物:经过分离后,有机溶剂中的提取物可以通过蒸馏、浓缩等方法得到纯净的目标物质。
溶剂则可以通过蒸馏、萃取等方法回收和循环使用。
总的来说,溶剂萃取利用溶质在不同溶剂中的溶解度差异实现对混合物中的组分进行分离。
其原理基于物质在不同溶剂中的
溶解度差异,充分利用了溶解度的规律,可应用于各种类型的溶质和混合物分离。
10 溶剂萃取法在液体混合物溶液中加入某种溶剂,使溶液中的组分得到全部或部分分离的过程称为萃取。
溶剂萃取法是从稀溶液中提取物质的一种有效方法。
广泛地应用于冶金和化工行业中。
在黄金行业中,用溶剂萃取法提取纯金、银已有许多研究[1~3],在国外,其成熟技术已经工业应用多年。
用萃取法从含氰废水中提取铜、锌的研究也多有报导[5~6]。
在我国,直到1997年才由清华大学和山东省莱州黄金冶炼厂合作完成了萃取法从氰化贫液中分离铜的工业试验,取得了较好的效果。
9.1 溶剂萃取法的基本原理溶剂萃取法也称液—液萃取法,简称萃取法。
萃取法由有机相和水相相互混合,水相中要分离出的物质进入有机相后,再靠两相质量密度不同将两相分开。
有机相一般由三种物质组成,即萃取剂、稀释剂、溶剂。
有时还要在萃取剂中加入一些调节剂,以使萃取剂的性能更好。
从氰化物溶液中萃取有色金属氰络物一般用高分子有机胺类,如氯化三烷基甲胺(N 263)、稀释剂为高碳醇、溶剂是磺化煤油。
水相即是要处理的废水。
与吸收操作相似,萃取法以相际平衡为过程极限。
这与离子交换法和液膜法也是相近的。
但离子交换法使用固体离子交换树脂做吸收物质;而液膜法使用的是油包水(碱溶液用于吸收氰化氢)组成的吸收物质。
萃取法所用的吸收剂均由有机物组成,其质量密度一定要与水溶液或称萃取原料液有相当大的差别,以使两相靠重力就能较容易地分离开,有机相还要有较高的沸点,以保证有机物在使用过程中不至于损失太大。
萃取过程是一个传质过程,溶质从水相传递到有机相中,直到平衡。
因此要求萃取设备能充分地使水相中的物质在较短时间内扩散到有机相中,而且要求有机相的粘度不要过大,以免被吸收物质在有机相内产生较大浓度梯度而阻碍吸收进程。
萃取过程得到的富集了水相中某种物质或几种物质的有机相叫萃取相。
经过萃取分离出某种物质或几种物质的水相叫萃余液。
通过反萃将萃取相的被萃取物分离出去才能使有机相循环使用。
对于含铜氰络离子的萃取相,可用烧碱溶液将铜络离子从萃取相中反萃出来,得到含铜氰络合物浓度极高的溶液。
1、萃取:当含有生化物质的溶液与互不相溶的第二相接触时,生化物质倾向于在两相之间进行分配,当条件选择得恰当时,所需提取的生化物质就会有选择性地发生转移,集中到一相中,而原来溶液中所混有的其它杂质(如中间代谢产物、杂蛋白等)分配在另一相中,这样就能达到某种程度的提纯和浓缩。
2、反萃取:溶质从萃取剂转移到反萃剂的过程。
在完成萃取操作后,为进一步纯化目标产物或便于下一步分离操作的实施,将目标产物从有机相转入水相的操作就称为反萃取3、物理萃取和化学萃取:物理萃取的理论基础是分配定律,而化学萃取服从相律及一般化学反应的平衡定律。
4、生物萃取与传统萃取相比的特殊性:①成分复杂②传质速率不同③相分离性能不同④产物的不稳定性5、溶剂萃取法的特点:萃取过程有选择性;能与其它步聚相配合;通过相转移减少产品水解;适用于不同规模;传质快;周期短,便于连续操作;毒性与安全环境问题6、分配定律:一定T、P下,溶质在两个互不相溶的溶剂中分配,平衡时,溶质在两相中浓度之比为常数。
7、在常温常压下K为常数;应用前提条件:①稀溶液②溶质对溶剂互溶没有影响③必须是同一分子类型,不发生缔合或离解8、分配系数中CL和CH 必须是同一种分子类型,即不发生缔合或离解。
对于弱电解质,在水中发生解离,则只有两相中的单分子化合物的浓度才符合分配定律。
9、为什么青霉素在酸性(pH≤2.5)条件下,而红霉素却要在碱性(pH≥9.8)条件下才能被萃取到丁酯中去呢?①根据表观分配系数公式可知,弱酸的表观分配系数:K=K0 /(1 +10 pH -pK )弱酸的表观分配系数:K=K0 /(1 +10 pK -pH )对于弱酸:pH< pK 时,分配系数大,对于弱碱:pH> pK 时,分配系数大;②不同pH条件影响弱电解质电离,从而影响分子的极性,根据相似相溶原则,在弱极性的丁酯中极性小的分子溶解度比水中大10、有机溶剂萃取的影响因素:①影响萃取操作的因素:pH、温度、盐析②有机溶剂的选择③带溶剂④乳化与去乳化11、T↑,分子扩散速度↑,故萃取速度↑12、盐析:生化物质在水中溶解度↓;两相比重差↑两相互溶度↓13、常用于生化萃取的有机溶剂有丁醇、丁酯、乙酸乙酯、乙酸丁酯、乙酸戊酯等。
一、什么是萃取?溶剂萃取过程的机理是什么?选择萃取剂的原则是什么?萃取,又称溶剂萃取或液液萃取,是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作。
即,是利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中的方法。
选择萃取剂的原则:1.和原溶液中的溶剂互不相溶2.对溶质的溶解度要远大于原溶剂,萃取剂与溶质相似,相似相溶3.萃取剂溶解极少量或完全不溶杂质4.容易与待萃取物质分离5.萃取剂不能与原溶液发生任何反应6.萃取剂最好是无毒的二、溶剂萃取分离和蒸馏分离过程中分别涉及的最主要的分子间的相互作用是什么?三、影响溶剂萃取的因素,简述当前萃取方法的新技术?萃取方法新技术:超临界流体萃取(supercritical fluid extraction,SFE)是近年来分离科学中发展很快的一个领域。
近年来研究较多的体系包括二氧化碳、水、氨、甲醇、乙醇、氙、戊烷、乙烷、乙烯等,与常用的有机溶剂相比,超临界流体特别是二氧化碳、水还是一种环境友好的溶剂。
与一些传统的分离方法相比,超临界流体萃取具有许多独特的优点,如①超临界流体的萃取能力取决于流体密度,因而很容易通过调节温度和压力加以控制;②溶剂回收简单方便,节省能源。
通过等温降压或等压升温被萃取物就可与萃取剂分离;③由于超临界萃取工艺可在较低温度下操作,故特别适合于热敏组分;④可较快地达到平衡;⑤超临界流体萃取的另一特点是很容易与其它分析方法联用,如SFE-IR[11]、SFE-GC[12]、SFE-SFC[13]、SFE-GPC[14]、SFE-LC[15]、SFE—HPLC[16]、SFE-GCMS[17] 、SFE-LC-GC等,避免了样品转移的损失,减少了人为误差,提高了样品分析整体的精密度与灵敏度。
然而超临界流体萃取因需要较为庞大的仪器设备,限制了它在野外与现场的采样处理。
固相微萃取固相微萃取(solid phase microextraction,SPME)是与固相萃取原理相似,但操作完全不同的一种样品制备与前处理技术与许多经典的样品制备与前处理方法相比,固相微萃取技术不但简便、省时、省力、无需溶剂,而且可以萃取挥发性样品,如顶空固相微萃取法;与吹气捕集法相比,它又可处理低挥发性的样品,而且设备小巧,不需额外面积与空间;特别重要的是固相微萃取容易自动化及与其它分析技术联用,而SPE虽也可自动化及与其它技术联用,但所需设备及投资远比SPME要高,因此SPME在环境监测、农药分析、生物分析、食品检验等领域都有着广泛的应用前景。
溶剂萃取一、概述溶剂萃取:是使互不相溶的两相接触,某些物质从一相转移到另一相的过程。
或者说利用有机溶剂从与其不相混溶的液相中把某些物质提取出来的方法。
用溶剂萃取分离提取富集物质,其过程包括萃取、洗涤、反萃三个阶段,工艺流程如下:萃取:将含有被萃物的水溶液与有机相接触,使萃取剂与被萃物作用,生成萃合物进入有机相的过程叫萃取。
萃取分层后的有机相叫萃取液(负载有机相)。
萃取分层后的水相叫萃余液。
洗涤:用水溶液或水与负载有机相充分接触,使进入有机相的杂质回到水相的过程叫洗涤。
只洗去负载有机相中的杂质,而不使被萃物进入水相。
反萃:用反萃剂与经过洗涤后的负载有机相充分接触,使被萃物重新由有机相进入水相的过程叫反萃。
相:体系中具有相同物理性质和化学组成的均匀部分,互不相溶的相与相之间有界面。
相比:是萃取过程中有机相体积与水相体积的比R =AO V V =水有机V V分配系数:有机相中被萃物的浓度与水相中被萃物的浓度的比值称为分配系数D ;D =水相有机相Me Me C C分配系数D 越大,被萃物的可萃性越好, 二、萃取剂萃取剂是一种能与被萃取物质发生作用生成一种不溶于水而易溶于有机相的化合物的有机试剂。
(一)、分类:(1)中性萃取剂:醇、醚、酯、酮等它们在水溶液中呈中性 (2)酸性萃取剂:一般为有机酸,在水溶液中能电离出H +,呈酸性,如羧酸、磺酸、有机磷酸。
(3)碱性萃取剂:一般为有机碱,在水溶液中能结合H+,呈碱性,如胺类化合物(4)螯合萃取剂:至少具有二个以上的功能团,如羟肟类(二)、萃取剂的结构由功能团、非极性基团组成。
功能团:直接与待萃取组分作用。
如-OH、-SH等非极性基团:烃基(三)、对萃取剂的要求(1)、化学稳定性好,毒性小(2)、容易制备,价格便宜,来源丰富(3)、有较大的萃取容量(4)、选择性好(5)、易反萃(6)、比重小,粘度小,沸点高,挥发性小,闪点高,在水中溶解度小。
闪点(Flash point)是指可燃性液体挥发出的蒸汽在与空气形成可燃性混合物之后,遇火源時能够閃烁起火的最低溫度。
溶剂萃取名词解释
溶剂萃取是一种分离和纯化化合物的方法,通过将化合物溶于适当的溶剂中,然后与另一种溶剂混合,从而可将化合物转移到新的溶剂中。
这种方法的基本原理是根据化合物在不同溶剂中的相对溶解度差异来实现分离纯化的目的。
溶剂萃取一般分为单级溶剂萃取和多级溶剂萃取两种。
单级溶剂萃取是指将化合物溶于一个适当的溶剂中,然后将另一个溶剂与该溶液混合,从而实现化合物的转移。
多级溶剂萃取是指采用多次萃取,通过多种不同的溶剂进行萃取,以达到更好的分离效果。
溶剂萃取常用于制备和分离天然产物、有机合成化学、环境监测和药物制剂等领域。
其优点是操作简单、灵活性高、成本低,但也存在一些缺点,如可能存在某些化合物不能被完全萃取和残留溶剂的问题。
总之,溶剂萃取是一种重要的分离纯化化合物的方法,具有广泛的应用前景。