分离定律概率计算
- 格式:pdf
- 大小:5.70 MB
- 文档页数:31
遗传定律一、基因分离定律1、一对相对性状的杂交实验及解释2、解释的验证以及假说演绎法3、分离定律的实质:等位基因随同源染色体的分离而分离4、证明某性状的遗传是否遵循分离定律的方法—自交或测交5、判断某显性个体是纯合子or杂合子(1)植物:自交,测交,检测花粉类型,单倍体育种(2)动物:测交5、显隐性判断6、概率计算:叉乘法;配子法;是否乘1/2的问题;杂合子连续自交的子代的各基因型概率,7、分离定律中的异常情况(1)不完全显性(2)致死现象:基因型致死(显性,隐性),配子致死(3)和染色体变异联系【显隐性判断】【定义法】1.已知马的栗色与白色为一对相对性状,由常染色体上的等位基因A与a控制,在自由放养多年的一群马中,两基因频率相等,每匹母马一次只生产l匹小马。
以下关于性状遗传的研究方法及推断不正确的是A.选择多对栗色马和白色马杂交,若后代栗色马明显多于白色马则栗色为显性;反之,则白色为显性B.随机选出1匹栗色公马和4匹白色母马分别交配,若所产4匹马全部是白色,则白色为显性C.选择多对栗色马和栗色马杂交,若后代全部是栗色马,则说明栗色为隐性D.自由放养的马群自由交配,若后代栗色马明显多于白色马,则说明栗色马为显性【假设法】2.若已知果蝇的直毛和非直毛是位于X染色体上的一对等位基因。
但实验室只有从自然界捕获的、有繁殖能力的直毛雌、雄果蝇各一只和非直毛雌、雄果蝇各一只,通过一次杂交试验确定这对相对性状中的显性性状,下面相关说法正确的是()A.选择一只直毛的雌蝇和一只直毛的雄蝇杂交,若子代全为直毛则直毛为隐形B.选择一只非直毛的雌蝇和一只非直毛的雄蝇杂交,则子代雌性个体均可为直毛C.选择一只非直毛的雌蝇和一只直毛的雄蝇杂交,若子代雌雄表现型一致,则直毛为显形D.选择一只直毛的雌蝇和一只非直毛的雄蝇杂交,若子代雌雄表现型不一致,则直毛为隐形【性状分离法】3.将黑斑蛇与黄斑蛇杂交,子一代中既有黑斑蛇,又有黄斑蛇;若再将F1黑斑蛇之间交配,F2中既有黑斑蛇又有黄斑蛇。
高中生物分离定律概率计算技巧《高中生物分离定律概率计算技巧》嗨,大家好!我是一个对生物特别感兴趣的小学生,今天我想和大家聊聊高中生物里的分离定律概率计算技巧。
你可能会想,哎呀,高中生物,这对小学生来说是不是太难了呀?其实呀,只要我能懂一点,那大家肯定也能懂呢!咱们先来说说啥是分离定律。
就好像有一堆彩色的小球,有红的有蓝的,放在一个大盒子里。
这些小球呢,就好比是生物里的基因。
比如说,有一种植物,它的花有红色和白色两种颜色,这红色和白色的基因就像那些不同颜色的小球一样。
一个基因呢,是从爸爸那里来的,另一个是从妈妈那里来的。
这就像从盒子里拿两个小球一样。
那概率计算是咋回事呢?就像我们玩猜小球颜色的游戏。
假如说,红色基因是显性的,用A表示,白色基因是隐性的,用a表示。
那当爸爸和妈妈都是Aa的时候,他们生出的孩子是红色花(AA或者Aa)的概率是多少呢?这就需要我们来计算啦。
我们可以画个小表格,就像我们做数学乘法表一样。
爸爸可以给出A或者a,妈妈也可以给出A或者a。
那组合起来就有四种情况啦:AA、Aa、aA、aa。
这里面AA、Aa、aA都是红色花,只有aa是白色花。
那红色花的概率就是3/4,白色花的概率就是1/4。
这就好像我们猜小球颜色,有3次可能是红色,1次可能是白色。
再比如说,要是爸爸是AA,妈妈是Aa呢?那爸爸只能给出A,妈妈可以给出A 或者a。
组合起来就是AA和Aa两种情况,而且都是红色花,那生出红色花孩子的概率就是100%啦。
这就像盒子里大部分都是红色小球,那我们随便拿,大概率拿到的都是红色小球呢。
还有一种情况,要是爸爸是Aa,妈妈是aa呢?爸爸可以给出A或者a,妈妈只能给出a。
组合起来就是Aa和aa,那生出红色花(Aa)的概率就是1/2,白色花(aa)的概率也是1/2。
这就好像盒子里红色小球和白色小球数量差不多,那我们拿到红色或者白色小球的可能性就差不多一样大。
我们在计算的时候,一定要把各种可能的情况都想清楚。
孟德尔定律突破1 根据分离定律进行概率计算的方法1.分离比直接计算法(1)若双亲都是杂合子(Bb),则后代性状分离比为显性∶隐性=3∶1,即Bb×Bb→3B_∶1bb。
(2)若双亲是测交类型,则后代性状分离比为显性∶隐性=1∶1,即Bb×bb→1Bb∶1bb。
(3)若双亲至少有一方为显性纯合子,则后代只表现显性性状,即BB×BB或BB×Bb或BB×bb。
(4)若双亲均为隐性纯合子,则后代只表现隐性性状,即bb×bb→bb。
2.用配子的概率计算(1)方法:先算出亲本产生几种配子,求出产生每种配子的概率,再将相关的两种配子的概率相乘。
(2)实例:如白化病遗传,Aa×Aa→1AA∶2Aa∶1aa,父方产生A、a配子的概率各是1/2,母方产生A、a配子的概率也各是1/2,因此生一个白化病(aa)孩子的概率为1/2×1/2=1/4。
突破体验1.果蝇灰身(B)对黑身(b)为显性,现将纯种灰身果蝇与黑身果蝇杂交,产生的F1再自交产生F2,将F2中所有黑身果蝇除去,让灰身果蝇自由交配,产生F3。
问F3中灰身与黑身果蝇的比例是( )。
A .3∶1B .5∶1 C.8∶1 D .9∶1答案 C解析 根据题意,遗传图解如下:在F 2灰身果蝇中BB 占13,Bb 占23,让它们自由交配,存在三种情况:BB×BB、BB×Bb、Bb×Bb。
只有Bb×Bb 中后代出现黑身性状,其概率为23×23×14=19。
所以灰身的概率为1-19=89,故F 3中灰身与黑身果蝇比例为8∶1。
突破2 基因自由组合定律的几个特殊分离比某些生物的性状由两对等位基因控制,这两对基因在遗传的时候遵循自由组合定律,但是F 1自交后代的表现型却出现了很多特殊的性状分离比,如9∶3∶4、15∶1、9∶7、9∶6∶1等,分析这些比例,我们会发现各比例中数字之和仍然为16,这也验证了基因的自由组合定律,具体情况分析如下表。
分离定律和组合定律
分离定律和组合定律是概率论中的两个基本性质。
1. 分离定律(Law of Separation):假设有两个事件A和B,
如果A和B是互斥的(即A和B不可能同时发生),那么它
们的并集的概率等于它们的概率之和。
即P(A∪B) = P(A) + P(B),其中A和B是互斥的。
例如,假设A表示抛一次硬币出现正面的事件,B表示抛一
次硬币出现反面的事件。
由于硬币只可能出现正面或反面,所以A和B是互斥的。
根据分离定律,P(A∪B) = P(A) + P(B),
即抛一次硬币出现正面或者反面的概率等于抛一次硬币出现正面的概率加上抛一次硬币出现反面的概率。
2. 组合定律(Law of Combination):假设有两个事件A和B,它们不一定是互斥的,那么它们的并集的概率可以通过减去它们的交集的概率来计算。
即P(A∪B) = P(A) + P(B) - P(A∩B)。
例如,假设A表示抛一次骰子得到的数是偶数的事件,B表
示抛一次骰子得到的数是大于3的事件。
根据组合定律,
P(A∪B) = P(A) + P(B) - P(A∩B),即抛一次骰子得到的数是偶
数或者大于3的概率等于抛一次骰子得到的数是偶数的概率加上抛一次骰子得到的数是大于3的概率再减去抛一次骰子得到的数即既是偶数又大于3的概率。
分离定律和组合定律是概率论中常用的计算概率的方法,可以用于推导和计算复杂事件的概率。
思路方法规律(一)分离定律的解题规律和概率计算一、分离定律的解题思路1.分离定律解题依据—六种交配组合2.由亲代推断子代(解题依据正推)(1)若亲代中有显性纯合子(AA),则子代一定为显性性状(A_)。
(2)若亲代中有隐性纯合子(aa),则子代中一定含有隐性遗传因子(_a)。
3.由子代推断亲代(解题依据逆推法)(1)若子代性状分离比为显性∶隐性=3∶1,则双亲一定是杂合子(Aa),即Aa×Aa→3A_∶1aa。
(2)若子代性状分离比为显性∶隐性=1∶1,则双亲一定是测交类型,即Aa×aa→1Aa∶1aa。
(3)若子代性状只有显性性状,则双亲至少有一方为显性纯合子,即AA ×AA 或AA ×Aa 或AA ×aa 。
二、杂合子连续自交问题(1)规律亲代遗传因子组成为Tt ,连续自交n 代,F n 中杂合子的比例为多少?若每一代自交后将隐性个体淘汰,F n 中杂合子的比例为多少?①自交n 代⎩⎪⎨⎪⎧杂合子所占比例:12n 纯合子TT +tt 所占比例:1-12n ,其中TT 和tt 各占1/2×⎝ ⎛⎭⎪⎫1-12n②当tt 被淘汰掉后,纯合子(TT)所占比例为:TT TT+Tt =1/2×⎝⎛⎭⎪⎫1-12n1/2×⎝⎛⎭⎪⎫1-12n+12n=2n-12n+1杂合子(Tt)所占比例为:TtTT+Tt=1-2n-12n+1=22n+1。
(2)应用①杂合子连续自交可以提高纯合子的纯合度也就是提高纯合子在子代中的比例。
解答此题时不要忽略问题问的是“显性纯合子比例”,纯合子共占1-1/2n,其中显性纯合子与隐性纯合子各占一半,即1/2-1/2n+1。
②杂合子、纯合子所占比例可用曲线表示如下:三、遗传概率的计算1.概率计算的方法(1)用经典公式计算概率=(某性状或遗传因子组合数/总数)×100%(2)概率计算的原则①乘法原理:相互独立事件同时出现的几率为各个独立事件几率的乘积。