2019-2020学年度第一学期江苏省如皋市磨头镇初级中学九年级数学第一次阶段测试(扫描版 无答案)
- 格式:docx
- 大小:1.07 MB
- 文档页数:6
2019-2020学年九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.抛物线y=﹣3(x﹣1)2+6的顶点坐标为()A.(1,6)B.(1,﹣6)C.(﹣1,﹣6)D.(﹣1,6)2.如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>23.如图,在⊙O中,所对的圆周角∠ACB=50°,则∠AOB的度数为()A.50°B.100°C.120°D.150°4.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm5.要将抛物线y=x2平移后得到抛物线y=x2﹣6x+21,下列平移方法正确的是()A.向右平移6个单位长度,再向下平移3个单位长度B.向右平移6个单位长度,再向上平移3个单位长度C.向左平移6个单位长度,再向下平移3个单位长度D.向左平移6个单位长度,再向上平移3个单位长度6.若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y17.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD8.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与抛物线y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=1,n=﹣2 B.m=5,n=﹣6C.m=﹣1,n=6 D.m=,n=﹣9.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:且当x=﹣时,与其对应的函数值y>0,有下列结论:①函数图象的顶点在第四象限内;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<,其中,正确结论的是()A.①②③B.①②C.①③D.②③二、填空题(本大题共8小题,113题,每小题3分,1418题,每小题3分,共29分,不需要写出解答过程,请把答案直接填写在答题纸相应位置上)11.二次函数y=﹣2x2﹣4x+5的最大值是.12.已知点A(﹣2,y1),B(2,y2)在抛物线y=﹣(x+1)2+m上,则y1y2(填“>”或“=”“<”)13.直角三角形的两条直角边分别是5和12,则它的内切圆半径为.14.圆锥的底面直径是80cm,母线长90cm,则圆锥的全面积为.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.16.如图,直线y=﹣x+6与曲线y2=(x>0)相交,若﹣x+6>,则自变量x的取值范围.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M =4a+2b+c,则M的取值范围是.18.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2=.三、解答题(本大题共8小题,共91分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.在△ABC中,AB=AC,点A在以BC为直径的半圆内,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图①中作弦EF,使EF∥BC;(2)在图②中过点A作线段BC的中垂线.20.已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3)(1)求二次函数的解析式;(2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y≤0时,x的取值范围.21.已知二次函数y=﹣x2+2bx+c的图象经过点M(1,0),顶点坐标(m,n)(1)当x<5时,y随x的增大而增大,求b的取值范围;(2)求n关于m的函数解析式;(3)求该二次函数的图象顶点最低时的解析式.22.强哥驾驶小汽车(出租)匀速地从如皋火车站送客到南京绿口机场,全程为280km,设小汽车的行驶时间为t(单位:h),行驶速度为v(单位:km/h),且全程速度限定为不超过120km/h.(1)求v关于t的函数解析式;(2)强哥上午8点驾驶小汽车从如皋火车站出发.①乘客需在当天10点48分至11点30分(含10点48分和11点30分)间到达南京绿口机场,求小汽车行驶速度v的范围;②强哥能否在当天10点前到达绿口机场?说明理由.23.如图,已知∠MON,点A在射线OM上.根据下列方法画图.①以O为圆心,OA长为半径画圆,交ON于点B,交射线OM的反向延长线于点C,连接BC;②以OA为边,在∠MON的内部,画∠AOP=∠OCB;③连接AB,交OP于点E;④过点A作⊙O的切线,交OP于点F.(1)依题意补全图形;(2)求证∠MOP=∠PON;(3)若∠MON=60°,OF=10,求AE的长.24.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为元/千克.25.如图,AB是⊙O的切线,切点为B,OA交⊙O于点C,过点C的切线交AB于点D.若∠BAO=30°,CD=2.(1)求⊙O的半径;(2)若点P在上运动,设点P到直线BC的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围.26.把一个函数图象上每个点的纵坐标变为原来的倒数(原函数图象上纵坐标为0的点除外)横坐标不变,可以得到另一个函数的图象,我们称这个过程为倒数变换.例如:如图1,将y=x的图象经过倒数变换后可得到y=的图象.特别地,因为y=x 图象上纵坐标为0的点是原点,所以该点不作变换,因此y=的图象上也没有纵坐标为0的点.(1)请在图2中画出y=﹣x﹣1的图象和它经过倒数变换后的图象;(2)观察上述图象,结合学过的关于函数图象和性质的知识.①猜想:倒数变换得到的图象和原函数的图象之间可能有怎样的联系?写出两条即可.②说理:请简要解释你其中一个猜想;(3)设图2中的图象的交点为A,B,若点C的坐标为(﹣1,m),△ABC的面积为6,求m的值.。
2019-2020学年度第一学期第一次质量检测九年级数学(时间:120分钟 总分:150分)一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 2.二次函数y =2x 2-8x +1的最小值是( )A. 7B. -7C. 9D. -9 3.抛物线25321y 2-+-=x x 的对称轴是直线( ) A. x =3 B. x =-3 C. x =6 D. x =25- 4.将抛物线322+-=x x y 向下平移1个单位长度,再向左平移2个单位长度后,得到抛物线的解析式为 ( )A.1)1(2++=x y B .1)1(2+-=x y C .1)3(2+-=x y D .3)1(2++=x y 5.已知点A (1,y 1),B (2,y 2)在抛物线y =-(x +1)2+2上,则下列结论正确的是( )A .y 2>y 1>2B .2>y 2>y 1C .y 1>y 2>2D . 2>y 1>y 26.已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是 ( ) A .有最大值-1,有最小值-2 B .有最大值0,有最小值-1 C .有最大值7,有最小值-1D .有最大值7,有最小值-27.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +cA.6<x <6.17 B .6.17<x <6.18 C .6.18<x <6.19 D .6.19<x <6.208.无论k为何实数,二次函数y=x2-(3-k)x+k的图象总是过定点() A.(-1,0)B.(1,0)C.(1,4)D.(-1,4)9.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是() A.c<1 B.c<C.c<﹣2 D.c<﹣310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:(1)abc>0;(2)9a+3b+c=0;(3)b2﹣4ac<8a;(4)5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)11.一个二次函数的解析式的二次项系数为1,一次项系数为0,这个二次函数的图象与y 轴的交点坐标是(0,1),这个二次函数的解析式是▲ .12.若二次函数y=ax2+bx的图象开口向下,则a▲ 0(填“=”或“>”或“<”).13.已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线▲ .14.已知二次函数y=x2+bx+4顶点在x轴上,则b=▲ .15.已知二次函数y=ax2+bx-3自变量x的部分取值和对应的函数值y如下表:则在实数范围内能使得y-5<0成立的x的取值范围是▲ .16.在南通市体育中考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为▲ 米.17.已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为▲ .18.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1),若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是▲.三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).求该抛物线的函数表达式.20.(本小题满分8分)在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B 的左侧)(1)求点A,B的坐标;(2)写出y≥0时x的取值范围.21.(本小题满分8分)如图在同一直角坐标系中,二次函数的图象与两坐标轴分别交于点A(﹣1,0)、点B(3,0)和点C(0,﹣3),一次函数的图象与抛物线交于B,C两点(1)求二次函数的表达式;(2)当x取什么值时,一次函数的函数值大于二次函数的函数值?(第21题)22.(本小题满分8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标.(第22题)23.(本小题满分8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,且与x轴有两个交点.(1)求k的值;(2)若点P在抛物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.24.(本小题满分10分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c (a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.25.(本小题满分10分)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?26.(本小题满分12分)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:其中,m=▲ ;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有▲ 个交点,所以对应的(第27题)方程x2﹣2|x|=0有▲ 个实数根;②方程x2﹣2|x|=2有▲ 个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是▲ .如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.(第28题)。
2019—2020学年度第一学期第一次质量检测九年级数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.抛物线22(3)4y x =-+的顶点坐标是( ) A.(3, 4)B.(3,4)-C.(3,4)-D.(2,4)2.二次函数2281y x x =-+的最小值是( ) A.7B.-7C.9D.-93.抛物线215322y x x =-+-的对称轴是直线( ) A.3x =B.3x =-C.6x =D.52x =-4.将抛物线223y x x =-+向下平移1个单位长度,再向左平移2个单位长度后,得到抛物线的解析式为( ) A.2(1)1y x =++B.2(1)1y x =-+C.2(3)1y x =-+D.2(1)3y x =++5.已知点()11,A y ,()22,B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( ) A.212y y >>B.212y y >>C.122y y >>D.122y y >>6.已知二次函数242y x x =-+,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ) A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1D.有最大值7,有最小值-27.下表是二次函数2y ax bx c =++的自变量x 的值与函数y 的对应值,判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解的范围是( )A.6 6.17x <<B.6.17 6.18x <<C.6.18 6.19x <<D.6.19 6.20x <<8.无论k 为何实数,二次函数2(3)y x k x k =--+的图象总是过定点( )A.(1,0)-B.(1,0)C.(1,4)D.(1,4)-9.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数22y x x c =++有两个相异的不动点1x 、2x ,且121x x <<,则c 的取值范围是( )A.1c <B.14c <C.2c <-D.3c <-10.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,现给出下列结论: (1)0abc >;(2)930a b c ++=;(3)248b ac a -<;(4)50a b c ++>. 其中正确结论的个数是( )A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.一个二次函数的解析式的二次项系数为1,一次项系数为0,这个二次函数的图象与y 轴的交点坐标是(0,1),这个二次函数的解析式是________.12.若二次函数2y ax bx =+的图象开口向下,则a ________0(填“=”或“>”或“<”).13.已知抛物线2y ax bx c =++与x 轴的公共点是(4,0)-,(2,0),则这条抛物线的对称轴是直线________. 14.已知二次函数24y x bx =++顶点在x 轴上,则b =________.15.已知二次函数23y ax bx =+-自变量x 的部分取值和对应的函数值y 如下表:x… -2 -1 0 1 2 3 … y…5-3-4-3…则在实数范围内能使得50y -<成立的x 的取值范围是________.16.在南通市体育中考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为______米. 17.已知实数x ,y 满足2330x x y ++-=,则x y +的最大值为________.18.在平面直角坐标系内,已知点(1,0)A -,点(1,1)B ,若抛物线21y ax x =-+(0a ≠)与线段AB 有两个不同的交点,则a 的取值范围是________三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知抛物线212y x bx c =-++经过点(1,0),30,2⎛⎫⎪⎝⎭.求该抛物线的函数表达式. 20.在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧) (1)求点A ,B 的坐标; (2)写出0y ≥时x 的取值范围.21.如图在同一直角坐标系中,二次函数的图象与两坐标轴分别交于点(1,0)A -、点(3,0)B 和点(0,3)C -,一次函数的图象与抛物线交于B ,C 两点(1)求二次函数的表达式;(2)当x 取什么值时,一次函数的函数值大于二次函数的函数值?22.如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,2OA =,6OC =,连接AC 和BC .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当ACD ∆的周长最小时,求点D 的坐标.23.已知k 是常数,抛物线()2263y x k k x k =++-+的对称轴是y 轴,且与x 轴有两个交点. (1)求k 的值;(2)若点P 在抛物线()2263y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标. 24.在平面直角坐标系中,直线2y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线2y ax bx c =++(0a <)经过点A 、B.(1)求a 、b 满足的关系式及c 的值.(2)当0x <时,若2y ax bx c =++(0a <)的函数值随x 的增大而增大,求a 的取值范围.25.2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调査表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?26.若二次函数2y ax bx c =++(0a ≠)图象的顶点在一次函数y kx t =+(0k ≠)的图象上,则称2y ax bx c =++(0a ≠)为y kx t =+(0k ≠)的伴随函数,如:21y x =+是1y x =+的伴随函数.(1)若24y x =-是y x p =-+的伴随函数,求直线y x p =-+与两坐标轴围成的三角形的面积; (2)若函数3y mx =-(0m ≠)的伴随函数22y x x n =++与x 轴两个交点间的距离为4,求m ,n 的值.27.某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下,请补充完整. (1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m =______;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质; (4)进一步探究函数图象发现;①函数图象与x 轴有______个交点,所以对应的方程22||0x x -=有______个实数根; ②方程22||2x x -=有______个实数根;③关于x 的方程22||x x a -=有4个实数根时,a 的取值范围是______.28.如图,抛物线2y ax bx c =++(0a ≠)的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上A 、M 两点之间的部分(不包含A 、M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,M ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.。
2019年江苏省南通市如皋市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. (3分)张老师手机上显示,某地“海拔-45米”,它表示此地()A.高于海平面45米B.低于海平面5米C.低于海平面-45米D.低于海平面45米2. (3分)2019年南通市政府工作报告中指出:“推进教育优质均衡发展,增加学前教育学位8190个、义务教育学位10530个和普通高中招生计划4440个,情境教育入围中国质 量奖提名奖.”将10530用科学记数法表示为( )A. 0.1053X10B. 1.053X10C. 1.053X10D. 1.053X1035544. (3分)如图,点。
在八ABC 边AB 的延长线上,DE//BC.若ZA=35° , ZC=24° ,5. (3分)如图,在平面直角坐标系中,点A 的坐标为(3, 4),那么sina 的值是(3. (3分)如图,该几何体的左视图是()yD - 3D.ly=-l 6. (3分)方程组/X-y=3 的解为()(3x-8y=14A Jx=T b . S x=lC.仔-2ly=2 ly=-2 ly=l7. (3分)已知xi, X2是关于x 的方程x 2 - mx- 3=0的两个根,下面结论一定正确的是( )A. xi+x2>0B. x\^xiC. xi・x2>0D. xi<0, x2<08. (3分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x0)之间的关系如图所示.根据图象所提供的信息分析,下列说法正确的是( )A. 甲队开挖到30m 时,用了 2/zB. 乙队在0WxW6的时段,y 与x 之间的关系式y —5x+20C. 当两队所挖长度之差为5m 时,x 为3和5D. x 为4时,甲、乙两队所挖的河渠长度相等9. (3分)定义:在平面直角坐标系中,圆心坐标和半径均为整数的圆称为“整圆”.如图, 直线/: - J.x+12与x 轴、y 轴分别交于A, B 两点,点?在*轴上,OP 与/相切,4当P 在线段OA (点P 与点。
九年级数学试卷201912(卷面分值:150分 答卷时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的的四个选项中,恰有一项是符合题目要求的)1.下列图形中,是中心对称图形的是( ▲ )A .B .C .D .2.某商品原价189元,经连续两次降价后售价为156元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ▲ )A .156)1(1892=-xB .189)1(1562=-xC.156)21(189=-x D .189)21(156=-x3.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是( ▲ )A .y =2(x -3)2+2B .y =2(x +3)2-2C .y =2(x +3)2+2D .y =2(x -3)2-2 4.如图,将△ABC 绕点A 逆时针旋转100°,得到△ADE .若点D 在线段BC 的延长线上,则B ∠的大小为( ▲ ) A .30° B .40° C .50° D .60°5.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为( ▲ ) A .70°B .110°C .140°D .70°或110°6.如图,反比例函数k y x=的图象经过点A (4,1),当1y <时,x 的取值范围是( ▲ )A .0x <或4x >B .04x <<C .4x <D .4x >7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同, 小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中 白色球的数目很可能是( ▲ )A.6B.16C.18D.248.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( ▲ )A .20°B .40°C .50°D .80°9.如图,⊙O 的直径为20cm ,弦AB 为16cm ,P 是弦AB 上一点,若OP 的长为整数,则满足条件的点P 有( ▲ )A .5个B .4个C .10个D .9个(第9题)10.如图①,在正方形ABCD 中,点P 从点D 出发,沿着D →A 方向匀速运动,到达点A 后停止运动.点Q 从点D 出发,沿着D →C →B →A 的方向匀速运动,到达点A 后停止运动.已知点P 的运动速度为a ,图②表示P 、Q 两点同时出发x 秒后,△APQ 的面积y 与x 的函数关系,则点Q 的运动速度可能是( ▲ ) A .13aB .12a C .2a D .3a 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程)11.一元二次方程x 2+3x +1=0的两根分别为x 1,x 2,则x 1+x 2+x 1x 2= ▲ . 12.半径为2的圆中,60°的圆心角所对的弧的弧长为 ▲ . 13.二次函数y =x 2-2x +2的图象的顶点坐标为 ▲ .14.如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为 ▲ .15.如图,AB 是⊙O 的直径,P A ,PC 分别与⊙O 相切于点A ,点C ,若∠P =60°,P A =,则AB 的长为 ▲ . 16.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线的比值,叫做这个正n 边形的“特征值”,记为a n ,那么a 6= ▲ .17. 如图,过点C (3,4)的直线yA ,∠)(0>=x xky 过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为 ▲ .18. 定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如B (3,0)、C (-1,3)都是“整点”.抛物线y =ax 2-2ax +a +2 (a <0)与x 轴交于M 、N 两点,若该抛物线在M 、N 两点之间的部分与线段MN 所围成的区域(包括边界)恰有5个“整点”,则a 的取值范围是 ▲ .三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.(10分)解方程:(1)x 2-2x -4=0; (2)(x -2)2-x +2=0(第10题)①②(第20题)20.(9分)已知二次函数的图象如图所示.(1)求这个二次函数的表达式;(3分)(2)将该二次函数图象向上平移 ▲ 个单位长度后恰好过点(-2,0);(3分)(3)观察图象,当-2<x <1时,y 的取值范围为: ▲ (3分)21. (8分)⊙O 为△ABC 的外接圆,请仅用无刻度的直尺........,根据下列条件分别在图1,图2中画出一条弦.,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,已知AC =BC ;(4分)(2)如图2,已知直线l 与⊙O 相切与点P ,且l ∥B C .(4分)22. (10分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.l图2图1A A23. (8分)如图,函数ky x=(0x <)与y ax b =+的图象交于点A (-1,n )和点B (-2,1). (1)求k ,a ,b 的值;(4分) (2)直线x m =与ky x=(0x <)的图象交于点P ,与1y x =-+的图象交于点Q ,当90PAQ ∠>︒时,直接写出m 的取值范围.(4分)24. (9分)某超市销售一种饮料,每瓶进价为9元.当每瓶售价为10元时,日均销售量为560瓶,经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶.(1)当每瓶售价为11元时,日均销售量为 ▲ 瓶;(2分) (2)当每瓶售价为多少元时,所得日均总利润为1200元;(3分)(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少(4分)25.(9分)如图,直线P A 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠P AE ,过C 作CD 丄P A ,垂足为D . (1)求证CD 为⊙O 的切线;(4分)(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.(5分)26.(11分)如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF ⊥DE 交BC 于点F ,连接DF .已知AB = 4cm ,AD = 2cm ,设A ,E 两点间的距离为x cm ,△DEF 面积为y cm 2. 小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x 的取值范围是 ▲ ;(2分)(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如下表:(2分)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3分)(4)结合画出的函数图象,解决问题:当△DEF 面积最大时,AE 的长度为cm .(4分)27. (11分)在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(3分)(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y轴交于点C ,求BC -AC 的值;(4分)(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.(4分)DC BAEF28.(11分)定义:函数图象上任意一点P(x,y),y-x称为该点的“坐标差”,函数图象上所有点的“坐标差”的最大值称为函数的“特征值”【感悟】根据你的阅读理解回答下列问题:(1)点P(2,1)的“坐标差”为▲.(直接写出答案)(3分)(2)求一次函数y=2x+1(-2≤x≤3)的“特征值”;(4分)【应用】(3)二次函数y=-x2+bx+c(bc≠0)交x轴于点A,交y轴于点B,点A与点B的“坐标差”相等,若此二次函数的“特征值”为-1,当m≤x≤m+3时,此函数的最大值为-2m,求m的值.(4分)九年级数学答案11、 -2 .12、32π.13、 (1,1). 14、 1 . 15、2 16、23 17、4. 18、-2≤x<-1 三解答题19、(1)x 1=51+ x 2=51— (2)x 1=2 x 2=3(每题5分共10分) 20、(1) 设y =a (x +h )2-k .(a ≠0)∵图像经过顶点(-1,-4)和点(1,0), ∴y =a (x +1)2-4. 将(1,0)代入可得a =1, ∴y =(x +1)2-4. (3分)(2)3. (3分) (3)-4≤y <0.(3分) 21、如图即为所求(每题4分共8分)22.根据题意画出树状图:由树状图可以看出,所有可能出现的结果共有6种,这些结果出现的可能性相等.其中1白1黄的有3种.所以2163)11(==黄白P .(10分)画对树形图或列表正确给6分 23. (1)∵ 函数k y x =(0x <)的图象经过点B (-2, 1), ∴ 12k=-,得2k =-.∵ 函数ky x=(0x <)的图象还经过点A (-1,n ), ∴ 221n -==-,点A 的坐标为(-1,2). ∵ 函数yax b =+的图象经过点A 和点B ,∴ 2,2 1.a b a b -+=⎧⎨-+=⎩解得1,3.a b =⎧⎨=⎩ (4分)(2)20m -<<且1m ≠-. (4分)图2图1AA24.(1)480. (2分)(2)设每瓶售价增加x 元. (1+x )(560-80x )=1200. 解得:x 1=2, x 2=4.答:当每瓶售价为12或14元时,所得日均总利润为1200元. (3分) (3)设每瓶售价增加x 元,日均总利润为y 元.y =(1+x )(560-80x )=-80x 2+480x +560 =-80(x -3)2+1280.当x =3时,y 有最大值1280.答:当每瓶售价为13元时,所得日均总利润最大为1280元.(4分)25.(1)连接OC ,证∠DAC =∠CAO =∠ACO ,∴PA ∥CO ,又∵CD ⊥PA ,∴CO ⊥CD ,∴CD 为⊙O 的切线(4分)(2)过O 作OF ⊥AB ,垂足为F ,∴四边形OCDF 为矩形.∵DC +DA =6,设AD =x ,则OF =CD=6-x ,AF =5-x ,在Rt △AOF 中,有AF 2+OF 2=OA 2,即(5-x)2+(6-x)2=25,解得x 1=2,x 2=9,由AD <DF 知0<x <5,故x =2,从而AD =2,AF =5-2=3,由垂径定理得AB =2AF =6 (5分)26.(1)04x ≤<;.……2分(2)3.8,4.0; ……2分 (3)如图 ……3分(4)0或2. ……4分27. 解:(1)1,242 3.bb c ⎧=⎪⎨⎪-++=⎩ ……1分解得2,3.b c =⎧⎨=⎩. ……2分∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得,BM= AM.∴BC-AC= BM+MC-AC= AM+MC-AC= AC+CM+MC-AC=2 CM=2. ……4分 其他方法相应给分.(3)点Q的坐标为(12-)或(12-).……4分答对一个给2分28.(1) 、-1……3分(2)、y -x =2x +1-x =x +1,当-2≤x ≤3时,y 的最大值为4,即函数的特征值为4.(4分)(3)、由题意知B(0,C) ,所以A (-C,0)代入抛物线的b+c=1,再根据函数特征值为-1,所以ab ac 442-=-1化简的()032=-b 得b=3,进一步得c=-2,所以函数关系式为232-+-=x x y (2分)再根据题意求到217581+-=或m .(满分4分)。
——教学资料参考参考范本——2019-2020学年度九年级数学上学期第一次阶段性联考试题苏科版______年______月______日____________________部门(试卷总分150分 测试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.) 1.在平面直角坐标系内,点P(,2)关于原点的对称点Q 的坐标为( ▲ )3-A .(2,-3)B .(3,2)C .(3,-2)D .(-3,-2)2.如图,已知∠ACB 是⊙O 的圆周角,∠ACB=50°,则圆心角∠AOB 是 ( ▲ )A .40°B .50°C .80°D .100°3.对于二次函数的图象,下列说法正确的是( ▲ )()21122y x =-+- A .开口向上 B .对称轴是 C .顶点坐标是(1,2) D .与x 轴有两个交点1x =-4.如图所示,在正方形网格中,图②是由图①经过旋转变换得到的,其旋转中心是点( ▲ )A .A 点B .B 点C .C 点D .无法确定5.如图,在△ABC 中,∠CAB =75°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( ▲ )A .30°B .35°C .40°D .50°第2题图 第4题图 第5题图6.三角形两边长分别为3和6,第三边是方程的根,则三角形的周长为A.13B.15C.18D.13或187.要将抛物线平移后得到抛物线,下列平移方法正确的是( ▲ )A 向左平移1个单位,再向上平移2个单位B 向左平移1个单位,再向下平移2个单位C 向右平移1个单位,再向上平移2个单位D 向右平移1个单位,再向下平移2个单位8.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
2019-2020年九年级数学第一次摸底试题答案一、选择题(每题3分,共30分)二、填空题(每题3分,共15分)三、解答题(本大题8个小题,共75分)16.(8分)解:原式= = ……………4分当a=0时,原式==217. (1)m=70,n=0.2 ……………2分(2)如图……………4分(3)80≤x<90 ……………6分(4) 3000×0.25=750(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有750人.……………9分18.解(1)证明:连接DO,∵AC为直径,∴∠ADC=90°,∴∠CDB=90°∵E为BC边的上中点,∴CE=EB=DE,∴∠CDE=∠ECD,∵OC=OD,∴∠ODC=∠OCD, ……………3分∴∠CDE+∠ODC=∠ECD+∠OCD.即∠ODE=∠ACB=90°,∵D为圆O上的点,∴DE是圆O的切线. ……………5分(2)①3 ②45°……………9分20.解(1)设购买A 种树苗每棵需要x 元,B 种树苗每颗y 元,由题意得,解得,答: 购买A 种树苗每棵需要100元,B 种树苗每颗50元 …………3分(2) 设购买A 种树苗m 棵,则B 种树苗(100-m)颗,由题意得, 解得故有四种购买方案:①购买A 种树苗50颗,B 种树苗50颗;②购买A 种树苗51颗,B 种树苗49颗;③购买A 种树苗52颗,B 种树苗48颗;④购买A 种树苗53颗,B 种树苗47颗;………6分(3)设种植工钱为W,由题意得:W=30m+20(100-m)=10m+xx,∵10>0,∴W 随着m 的增大而增大,∴当m=50时,W 最小,最小值是2500元,所以购买A 种树苗50颗,B 种树苗50颗时所付的种植工钱最少,最少工钱是2500元.21. 解:(2)抛物线如图所示;(3)x= - 4, -1或1;(4) - 4<x <-1或x >1.22.解(1)BE=AF;(2)无变化.如图2,在Rt △ABC 中,∵AB=AC, ∴∠ABC=∠ACB=45°,∴sin ∠ABC=.在正方形CDEF 中,∵∠FEC=∠FED=45°,∠EFC=90°,∴sin ∠FEC==.∴.………….9分∵∠FCE=∠ACB=45°,∴∠FCE-∠ACE=∠ACB-∠ACE,即∠FCA=∠ECB.∴△ACF∽△BCE,∴==, 即BE=AF;∴线段BE与AF的数量关系无变化.(3)-1或+123.解(1)∵A,B两点在直线y=-x-4上,且横坐标分别为-1,-4,∴A(-1,-3),B(-4,0) ……………1分∵抛物线过原点,∴c=0.将A(-1,-3),B(-4,0)代入抛物线解析式可得,解得∴抛物线解析式为y=x2+4x. ………………2分(2)△ABC为等腰三角形,可分三种情况:①AB=AC时,此时点C在y轴上,设C(0,y), ……………3分则AB==3,∴AC=3,即AC==3,解得y1=-3-,y2=-3+,∴C(O, -3-)或C(0, -3+); ………………4分②AB=BC时,此时点C在x轴上,设C(x,0) ………5分则有AB==3,∴BC=3,即BC=|x+4|=3,解得x1=-4+3,x2=-4-3,∴C(-4+3,0)或C(-4-3,0) ……………6分③CB=CA时,此时点C在线段AB的垂直平分线与坐标轴的交点处,设AB的垂直平分线的解析式为y=x+d,由题可得线段AB的中点坐标为(-,-),将(-,-)代入y=x+d可得d=1,即AB的垂直平分线解析式为y=x+1.∴C(-1,0)或C(0,1) ………………8分(3)过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,∵PE∥OA,GE∥AD,∴∠OAD=∠PEG,∠PQE=∠ODA=90°,∴△PQE∽△ODA,∴即EQ=3PQ,∵直线AB的解析式为y=-x-4,∴∠ABO=45°=∠PFQ,∴PQ=FQ,∴EF=4PQ ……………9分∵S△BGF=3S△EFP,∴GF2=34PQ2∴GF=2PQ.∴…………11分。
第1页,总29页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………江苏省如皋初级中学2019届九年级上学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 圆心角为120°,弧长为12π的扇形半径为( ) A . 6 B . 9 C . 18 D . 362. 如图,⊙O 的弦AB=16,OM⊙AB 于M ,且OM=6,则⊙O 的半径等于( )A . 8B . 6C . 10D . 203. 若反比例函数的图象在每一象限内, y 随x 的增大而增大,则m 的取值范围是( )A . m<-4B . m<0C . m>-4D . m>04. (5分)抛物线的顶点坐标是( )A . (﹣1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (1,2)5. 如图,A 、B 、C 三点在⊙O 上,且⊙ACB =40°,则⊙AOB 等于( )答案第2页,总29页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .6. 已知点M (-2,6)在双曲线 上,则下列各点一定在该双曲线上的是( )A . (2, 6)B . (-6,-2 )C . (6,2)D . (2,-6)7. 如图是二次函数的部分图象,由图象可知不等式的解集是( )A .B .C .且D . x <-1或x >58. 如图,二次函数 的最大值为3,一元二次方程有实数根,则 的取值范围是( )A . m≥3B . m≥-3C . m≤3D . m≤-39. 如图,一段抛物线:y=﹣x (x ﹣2)(0≤x≤2)记为C 1 , 它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2 , 交x 轴于A 2;将C 2绕A 2旋转180°得到C 3 , 交x 轴于A 3;…如此进行下去,直至得到C 2018 , 若点P (4035,m )在第2018段抛物线C 2018上,则m 的值是( )第3页,总29页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 1B . -1C . 0D . 403510. 如图,⊙O 是以原点为圆心,为半径的圆,点 是直线上的一点,过点 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A . 3B . 4C .D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共8题)1. 如图,AB 是半圆的直径,点C 、D 是半圆上两点,⊙ADC =144°,则⊙ABC =2. 已知抛物线与 轴有且只有一个公共点,则.3. 已知圆锥的底面直径为6cm ,母线长为10cm ,则此圆锥的侧面积为 cm 2 .4. 校运动会小明参加铅球比赛,若某次投掷,铅球飞行的高度y (米)与水平距离x (米)之间的函数关答案第4页,总29页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………系式为,那么小明这次投掷的成绩是 米.5. 如图,已知P 、Q 分别是⊙O 的内接正六边形ABCDEF 的边AB 、BC 上的点,AP=BQ ,则⊙POQ 的度数为 °.6. 如图,点P 在y 轴正半轴上运动,点C 在x 轴上运动,过点P 且平行于x 轴的直线分别交函数 和于A 、B 两点,则⊙ABC 的面积等于 .7. 如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .若图中阴影部分的面积是 ,OA=2,则OC 的长为 .8. 如图,过点C (2,1)分别作x 轴、y 轴的平行线,交直线y=﹣x+4于B 、A 两点,若二次函数y=ax 2+bx+c 的图象经过坐标原点O ,且顶点在矩形ADBC 内(包括边上),则a 的取值范围是 .第5页,总29页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分二、综合题(共10题)9. 如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,完成下列问题:(1)在图中标出圆心D ,则圆心D 点的坐标为 ;(2)连接AD 、CD ,则⊙ADC 的度数为 ;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.10. 如图,抛物线与直线y=x+3分别交于x 轴和y 轴上同一点,交点分别是点A 和点C ,且抛物线的对称轴为x=﹣2.(1)求出抛物线与x 轴的两个交点A 、B 的坐标.(2)求出该抛物线的解析式.11. 已知A(n ,-2),B(1,4)是一次函数y =kx +b 的图象和反比例函数 y =的图象的两个交点,直线AB 与y 轴交于点C .答案第6页,总29页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求反比例函数和一次函数的关系式;(2)求⊙AOC 的面积;(3)结合图象直接写出不等式kx +b<的解集.12. 如图,在□ABCD 中,AD=6,AB=10,⊙A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE .(1)求弧DE 的长;(2)求阴影部分的面积.13. 如图,已知直线l 与⊙O 相离,OA⊙l 于点A ,交⊙O 于点P ,点B 是⊙O 上一点,AB 是⊙O 的切线,连接BP 并延长,交直线l 于点C .第7页,总29页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证AB =AC ;(2)若PC =,OA =15,求⊙O 的半径的长.14. 如图,在平面直角坐标系中,已知四边形ABCD 为菱形,且A (0,3)、B (﹣4,0).(1)求经过点C 的反比例函数的解析式;(2)设P 是(1)中所求函数图象上一点,以P 、O 、A 顶点的三角形的面积与⊙COD 的面积相等.求点P 的坐标. 15. 如图,在平面直角坐标系xOy 中,点O 为坐标原点,正方形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 的坐标为(4,4),反比例函数 的图象经过线段BC 的中点D ,交正方形OABC 的另一边AB 于点E .(1)求k 的值;(2)如图①,若点P 是x 轴上的动点,连接PE ,PD ,DE ,当⊙DEP 的周长最短时,求点P 的坐标;答案第8页,总29页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)如图②,若点Q (x ,y )在该反比例函数图象上运动(不与D 重合),过点Q 作QM⊙y 轴,垂足为M ,作QN⊙BC 所在直线,垂足为N ,记四边形CMQN 的面积为S ,求S 关于x 的函数关系式,并写出x 的取值范围.16. 某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第销售量p (件) P=50—x销售单价q (元/件)当1≤x≤20时,q=30+ x ; 当21≤x≤40时,q=20+(1)求该网店第x 天获得的利润y 关于x 的函数关系式;(2)这40天中该网店第几天获得的利润最大?最大利润是多少?17. 如图,点P 是反比例函数 上第一象限上一个动点,点A 、点B 为坐标轴上的点,A (0,k ),B (k ,0).已知⊙OAB 的面积为 .(1)求k 的值;(2)连接PA 、PB 、AB ,设⊙PAB 的面积为S ,点P 的横坐标为t .请直接写出S 与t 的函数关系式;(3)阅读下面的材料回答问题:当a >0时,第9页,总29页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………⊙ ≥0,⊙ ≥2,即 ≥2由此可知:当 =0时,即a=1时, 取得最小值2.问题:请你根据上述材料探索(2)中⊙PAB 的面积S 有没有最小值?若有,请直接写出S 的最小值;若没有,说明理由.18. 在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0, ). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则 的值为 ;答案第10页,总29页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)如图2,已知点M (6,0),N (0,8).P ( , )是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标 的取值范围;(3)如图3,已知点D (1,1).E ( , )是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.参数答案1.【答案】:【解释】:2.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………3.【答案】:【解释】: 4.【答案】: 【解释】: 5.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:8.【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: 9.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………10.【答案】:【解释】:【答案】:【解释】:【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】: 【解释】: 【答案】: 【解释】: 【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:(1)【答案】:(2)【答案】:(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】: 【解释】: (1)【答案】: (2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………【解释】:(1)【答案】:(2)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:(3)【答案】: 【解释】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:【解释】: (1)【答案】: (2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………。
C B A2019-2020学年九上数学期末模拟试卷含答案一、选择题(本题共8道小题,每小题4分,共32分)在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上.1.如图,在Rt △ABC 中,∠C =90°,BC =3,AC=2, 则tanB 的值是A .23 B .32 CD第1题 第2题2.如图,⊙O 的弦AB =8,OE ⊥AB 于点E ,且OE =3,则⊙O 的半径是AB . 2C . 10D . 5 3.对于反比例函数2y x= ,下列说法正确的是 A .图象经过点(2,-1) B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字大于4的概率是A .21B .31C .32 D .61 5.在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222+=x yB .222-=x yC .2)2(2+=x yD .2)2(2-=x y6.如图,在△ABC 中,DE ∥BC ,AD=2,AB=6,AE=3,则CE 的长为A .9B .6C .3D .4第6题 第7题7.如图,若AD 是⊙O 的直径,AB 是⊙O 的弦,∠DAB =50°,点C 在圆上,则∠ACB 的度数是A .100°B .50°C .40°D .20°8.如图,动点P 从点A 出发,沿线段AB 运动至点B .点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致是B AC ED CC B AA B C D二、填空题(本题共4道小题,每小题4分,共16分)9.如图,是河堤的横断面,堤高BC =5米,迎水坡AB 的坡比1BC 与水平宽度AC 之比),则AC 的长是 米.10.已知抛物线2y ax bx c =++(a >0)过O (0,0)、A (2,0)、B (3-,1y )、C (4,2y )四点,则1y2y (填“>”、“<”或“=”).11.如图,有一边长为4的等边三角形纸片,要从中剪出三个面积相等的扇形,那么剪下的其中一个..扇形ADE (阴影部分)的面积为 ;若用剪下的一个扇形围成一个圆锥,该圆锥的底面圆的半径r 是 .第9题 第11题 第12题12.如图,⊙A 与x 轴交于B (2,0)、C (4,0)两点,OA=3,点P 是y 轴上的一个动点,PD 切⊙O 于点D ,则PD 的最小值是 .三、解答题(本题共8道小题,每小题5分,共40分) 13.计算:030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+. 14.已知:函数5413-+=-x mxy m 是二次函数. (1)求m 的值;(2)写出这个二次函数图象的对称轴: ,顶点坐标: ;(3)求图象与x 轴的交点坐标. 15.如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,∠EBC=45°,BE=6,CD=63,求∠DCB 的度数.16.如图,一次函数3y x =+的图象与x 轴、y 轴分别交于点A 、点B ,与反比例函数()04>=x x y 的图象交于点C ,CD ⊥x 轴于点D ,形OBCD的E D CBA 第8题面积.17.如图,在Rt △ABC 中,︒=∠90C ,点O 在BC 上,CD 为⊙O 的直径,⊙O 切AB 于E ,若178==AB AC ,,求⊙O 的半径.18.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,记下编号.将两次编号作为数字求和.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两次所取球的编号之和是偶数的概率.19.如图,河两岸a ,b 互相平行,C ,D 是河岸a 上间隔40米的两根电线杆,某人在河岸b 上的A 处,测得∠DAE=45°,然后沿河岸走了30米到达B 处,测得∠CBE=60°,求河的宽度(结果精确到1米,7.13,4.12≈≈ ).20.某超市按每袋20元的价格购进某种干果.销售过程中发现,每月销售量y (袋)与销售单价x (元)之间的关系可近似地看作一次函数:10500y x =-+(2050x <<).(1)当x=45元时,y= 袋;当y=200袋时,x= 元;(2)设这种干果每月获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?BθA A 'C B B '30︒B 'A 'C B A 四、解答题(本题共3道小题,每小题6分,共18分)21.如图,抛物线与x 轴交于A(1,0),B (3-,0)两点,与y 轴交于点C(0,3).(1)求此抛物线的解析式;(2)在x 轴上找一点D ,使得以点A 、C 、D 为顶点的三角形是直角三角形,求点D 的坐标.22.如图,在三角形ABC 中,以AB 为直径作⊙O ,交AC 于点E ,OD ⊥AC 于D ,∠AOD=∠C .(1)求证:BC 为⊙O 的切线;(2)若32cos 12==C AE ,,求OD 的长.23.如图1,在△ABC 中,∠ACB=90°,AC=3,BC=4,将△ABC 绕顶点C 顺时针旋转30°,得到△A′B′C .联结A′A 、B ′B ,设△ACA ′和△BC B′的面积分别为S △ACA ′ 和S △BC B′.(1)直接写出S △ACA ′ ︰S △BC B′ 的值 ;(2)如图2,当旋转角为θ(0°<θ<180°)时,S △ACA ′ 与S △BC B′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含θ的代数式表示).图1 图2五、解答题(本题共2道小题,每小题7分,共14分)24.已知函数232+-=x mx y (m 是常数).(1)求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点;(2)若一次函数1+=x y 的图象与该函数的图象恰好只有一个交点,求m 的值 及这个交点的坐标.25.如图,矩形'''O BC A 是矩形ABCO 绕点B 顺时针旋转得到的.其中点C O ,'在x 轴负半轴上,线段OA在y 轴正半轴上,B 点的坐标为()3,1-.(1)如果二次函数()02≠++=a c bx ax y 的图象经过'O O 、两点且图象顶点M 的纵坐标为1-.求这个二次函数的解析式;(2)求边''A O 所在直线的解析式;(3)在(1)中求出的二次函数图象上是否存在点P ,使得D CO MPO S S ''3∆∆=,若存 在,请求出点P 的坐标,若不存在,请说明理由.2019-2020学年九上数学期末模拟试卷含答案1. 下列计算正确的是( )A .7)7(2-=- ;B .5)5(2= ;C .1266=+ ;D . 725=+.2. 方程240x -=的解是( ) A .1222x x ==-, ; B .2x =- ;C .2,221-==x x ;D .2x =.3. 如图,在△ABC 中,∠C=90o ,AC=3,BC=4,则si nB 的值是( )A .43 ;B .34;C .53 ;D .54. 4. 一个袋子中装有4只白球和3只红球,这些球除颜色外其余均相同,搅匀后, 从袋子中随机摸出一个球是红球的概率是 ( )A .31;B .41; C .73; D . 74 5.用配方法解方程0342=--x x ,下列配方结果正确的是( )A.19)4(2=-x ;B.19)4(2=+x ;C.7)2(2=+x ;D.7)2(2=-x .6. 若两个相似三角形的面积之比为14,则它们的相似比为 ( )A. 116 ;B. 14 ;C. 15 ;D. 12.7. 二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ).A .-1<x <3 ;B .x <-1 ;C .x >3 ;D .x <-1或x >3.二、填空题(每小题4分,共40分)8. 当x 时,二次根式1-x 有意义.9. 计算:=⨯28 .10. 如果23=b a ,那么=+b b a . 第3题EABCDαA (第17题)1l3l 2l 4l11. 已知2=x 是方程02=-+n x x 的根,则=n ___________.12. 已知梯形上底长为 4,下底长为8,则该梯形的中位线长为 . 13. 某种商品原价是200元,经两次降价后的价格是121元,设平均每次降价的百分率 为x ,可列方程为 .14. 有4条线段,长度分别为2cm ,3cm ,4cm ,6cm ,从中任取3条,能构成三角形的概率是 . 15. 如图,D 、E 分别在△ABC 的边AB 、AC 上,要使△AED ∽△ABC ,应添加条件是 ;(只写出一种即可).16. 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠FCD 的度数为 。
2019-2020学年九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.抛物线y=﹣3(x﹣1)2+6的顶点坐标为()A.(1,6)B.(1,﹣6)C.(﹣1,﹣6)D.(﹣1,6)2.如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>23.如图,在⊙O中,所对的圆周角∠ACB=50°,则∠AOB的度数为()A.50°B.100°C.120°D.150°4.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm5.要将抛物线y=x2平移后得到抛物线y=x2﹣6x+21,下列平移方法正确的是()A.向右平移6个单位长度,再向下平移3个单位长度B.向右平移6个单位长度,再向上平移3个单位长度C.向左平移6个单位长度,再向下平移3个单位长度D.向左平移6个单位长度,再向上平移3个单位长度6.若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y17.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD8.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与抛物线y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=1,n=﹣2 B.m=5,n=﹣6C.m=﹣1,n=6 D .m=,n=﹣9.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 1 2 …y=ax2+bx+c…t m﹣2 ﹣2 n…且当x=﹣时,与其对应的函数值y>0,有下列结论:①函数图象的顶点在第四象限内;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<,其中,正确结论的是()A.①②③B.①②C.①③D.②③二、填空题(本大题共8小题,113题,每小题3分,1418题,每小题3分,共29分,不需要写出解答过程,请把答案直接填写在答题纸相应位置上)11.二次函数y=﹣2x2﹣4x+5的最大值是.12.已知点A(﹣2,y1),B(2,y2)在抛物线y=﹣(x+1)2+m上,则y1y2(填“>”或“=”“<”)13.直角三角形的两条直角边分别是5和12,则它的内切圆半径为.14.圆锥的底面直径是80cm,母线长90cm,则圆锥的全面积为.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.16.如图,直线y=﹣x+6与曲线y2=(x>0)相交,若﹣x+6>,则自变量x的取值范围.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M =4a+2b+c,则M的取值范围是.18.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2=.三、解答题(本大题共8小题,共91分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.在△ABC中,AB=AC,点A在以BC为直径的半圆内,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图①中作弦EF,使EF∥BC;(2)在图②中过点A作线段BC的中垂线.20.已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3)(1)求二次函数的解析式;(2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y≤0时,x的取值范围.21.已知二次函数y=﹣x2+2bx+c的图象经过点M(1,0),顶点坐标(m,n)(1)当x<5时,y随x的增大而增大,求b的取值范围;(2)求n关于m的函数解析式;(3)求该二次函数的图象顶点最低时的解析式.22.强哥驾驶小汽车(出租)匀速地从如皋火车站送客到南京绿口机场,全程为280km,设小汽车的行驶时间为t (单位:h),行驶速度为v(单位:km/h),且全程速度限定为不超过120km/h.(1)求v关于t的函数解析式;(2)强哥上午8点驾驶小汽车从如皋火车站出发.①乘客需在当天10点48分至11点30分(含10点48分和11点30分)间到达南京绿口机场,求小汽车行驶速度v的范围;②强哥能否在当天10点前到达绿口机场?说明理由.23.如图,已知∠MON,点A在射线OM上.根据下列方法画图.①以O为圆心,OA长为半径画圆,交ON于点B,交射线OM的反向延长线于点C,连接BC;②以OA为边,在∠MON的内部,画∠AOP=∠OCB;③连接AB,交OP于点E;④过点A作⊙O的切线,交OP于点F.(1)依题意补全图形;(2)求证∠MOP=∠PON;(3)若∠MON=60°,OF=10,求AE的长.24.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)2 4 (10)市场需求量q(百千克)12 10 (4)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为元/千克.25.如图,AB是⊙O的切线,切点为B,OA交⊙O于点C,过点C的切线交AB于点D.若∠BAO=30°,CD=2.(1)求⊙O的半径;(2)若点P在上运动,设点P到直线BC的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围.26.把一个函数图象上每个点的纵坐标变为原来的倒数(原函数图象上纵坐标为0的点除外)横坐标不变,可以得到另一个函数的图象,我们称这个过程为倒数变换.例如:如图1,将y=x的图象经过倒数变换后可得到y=的图象.特别地,因为y=x 图象上纵坐标为0的点是原点,所以该点不作变换,因此y=的图象上也没有纵坐标为0的点.(1)请在图2中画出y=﹣x﹣1的图象和它经过倒数变换后的图象;(2)观察上述图象,结合学过的关于函数图象和性质的知识.①猜想:倒数变换得到的图象和原函数的图象之间可能有怎样的联系?写出两条即可.②说理:请简要解释你其中一个猜想;(3)设图2中的图象的交点为A,B,若点C的坐标为(﹣1,m),△ABC的面积为6,求m的值.参考答案与试题解析一.选择题(共10小题)1.抛物线y=﹣3(x﹣1)2+6的顶点坐标为()A.(1,6)B.(1,﹣6)C.(﹣1,﹣6)D.(﹣1,6)【分析】根据y=a(x﹣h)2+k的顶点坐标是(h,k)可得答案.【解答】解:抛物线y=﹣3(x﹣1)2+6的顶点坐标为(1,6),故选:A.2.如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>2【分析】反比例函数y=图象在一、三象限,可得k>0.【解答】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a﹣2>0,∴a>2.故选:D.3.如图,在⊙O中,所对的圆周角∠ACB=50°,则∠AOB的度数为()A.50°B.100°C.120°D.150°【分析】根据圆周角定理解决问题即可.【解答】解:∵∠AOB=2∠ACB,∠ACB=50°,∴∠AOB=100°,故选:B.4.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm【分析】连接OA,先根据垂径定理求出AC的长,再由勾股定理求出OC的长即可.【解答】解:连接OA,∵弦AB=6cm,OC⊥AB于点C,∴AC=AB=3cm.∵OA=5cm,∴OC===4cm.故选:C.5.要将抛物线y=x2平移后得到抛物线y=x2﹣6x+21,下列平移方法正确的是()A.向右平移6个单位长度,再向下平移3个单位长度B.向右平移6个单位长度,再向上平移3个单位长度C.向左平移6个单位长度,再向下平移3个单位长度D.向左平移6个单位长度,再向上平移3个单位长度【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(6,3),由此确定平移规律.【解答】解:y=x2﹣6x+21=(x﹣6)2+3,该抛物线的顶点坐标是(6,3),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2向右平移6个单位长度,再向上平移3个单位长度.故选:B.6.若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.7.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O 于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD【分析】先根据切线长定理得到PA=PB,∠APD=∠BPD;再根据等腰三角形的性质得OP ⊥AB,根据菱形的性质,只有当AD∥PB,BD∥PA时,AB平分PD,由此可判断D不一定成立.【解答】解:∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立.故选:D.8.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与抛物线y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=1,n=﹣2 B.m=5,n=﹣6C.m=﹣1,n=6 D.m=,n=﹣【分析】根据关于y轴对称,a,c不变,b变为相反数列出方程组,解方程组即可求得.【解答】解:∵抛物线y=x2+(2m﹣1)x+2m﹣4与抛物线y=x2﹣(3m+n)x+n关于y 轴对称,∴,解之得,故选:A.9.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC 的度数等于()A.55°B.60°C.65°D.70°【分析】连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠ACB、∠CAB,计算即可.【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵=,∴∠CAB=∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 1 2 …y=…t m ﹣2 ﹣2 n…ax2+bx+c且当x=﹣时,与其对应的函数值y>0,有下列结论:①函数图象的顶点在第四象限内;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<,其中,正确结论的是()A.①②③B.①②C.①③D.②③【分析】①根据表格中对应值可知对称轴的值和抛物线与y轴的交点,即可判断;②根据二次函数的对称性即可判断;③根据抛物线的对称轴确定a与b的关系式,再根据已知条件求出a的取值范围即可判断.【解答】解:①根据图表可知:二次函数y=ax2+bx+c的图象过点(0,﹣2),(1,﹣2),∴对称轴为直线x==,c=﹣2,∴a>0,b<0,∴函数图象的顶点在第四象限内;①正确;②根据二次函数的对称性可知:(﹣2,t)关于对称轴x=的对称点为(3,t),即﹣2和3是关于x的方程ax2+bx+c=t的两个根,∴②正确;③∵对称轴为直线x=,∴﹣=,∴b=﹣a,∵当x=﹣时,与其对应的函数值y>0,∴a﹣b﹣2>0,即a+﹣2>0,∴a>.∵对称轴为直线x=,二次函数y=ax2+bx+c的图象过点(﹣1,m)(2,n),∴m=n,当x=﹣1时,m=a﹣b+c=a+a﹣2=2a﹣2,∴m+n=4a﹣4,∵a>.∴4a﹣4,∴③错误.故选:B.二.填空题(共8小题)11.二次函数y=﹣2x2﹣4x+5的最大值是7 .【分析】直接利用配方法得出二次函数的顶点式进而得出答案.【解答】解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.12.已知点A(﹣2,y1),B(2,y2)在抛物线y=﹣(x+1)2+m上,则y1>y2(填“>”或“=”“<”)【分析】根据二次函数图象上点的坐标特征把点A、B的横坐标代入解析式求出y1、y2,比较大小得到答案.【解答】解:点A(﹣2,y1),B(2,y2)在抛物线y=﹣(x+1)2+m上,y1=﹣(﹣2+1)2+m=﹣1+m,y2=﹣(2+1)2+m=﹣9+m,∴y1>y2,故答案为:>.13.直角三角形的两条直角边分别是5和12,则它的内切圆半径为 2 .【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.14.圆锥的底面直径是80cm,母线长90cm,则圆锥的全面积为5200πcm2.【分析】利用圆锥的侧面积=圆锥母线×π×圆锥底面圆的半径直接求出侧面积,然后求得底面积,二者的和即为全面积.【解答】解:∵圆锥的底面直径是80cm,∴底面圆的半径为40cm,∴圆锥的底面积为402π=1600π,圆锥的侧面积=π×40×90=3600πcm2.∴圆锥的全面积为1600π+3600π=5200πcm2.故答案为:5200πcm2.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=π﹣3 .【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=π,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=π﹣3,故答案为:π﹣3.16.如图,直线y=﹣x+6与曲线y2=(x>0)相交,若﹣x+6>,则自变量x的取值范围2<x<4 .【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当2<x<4时,﹣x+6>.故答案为2<x<4.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M =4a+2b+c,则M的取值范围是﹣6<M<6 .【分析】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a >﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2=6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;18.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2=8 .【分析】根据反比例函数k的几何意义可知:△AOP的面积为k1,△BOP的面积为k2,由题意可知△AOB的面积为k1﹣2.【解答】解:根据反比例函数k的几何意义可知:△AOP的面积为k1,△BOP的面积为k2,∴△AOB的面积为k1﹣2,∴k1﹣2=4,∴k1﹣k2=8,故答案为8.三.解答题(共8小题)19.在△ABC中,AB=AC,点A在以BC为直径的半圆内,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图①中作弦EF,使EF∥BC;(2)在图②中过点A作线段BC的中垂线.【分析】(1)延长BA交半圆于F,延长CA交半圆于E,连接EF,线段EF即为所求.(2)延长BA交半圆于F,延长CA交半圆于E,作直线BE,直线CF交于点G,作直线AG,直线AG即为所求.【解答】解:(1)如图①中,线段EF即为所求.(2)如图②中,直线AG即为所求.20.已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3)(1)求二次函数的解析式;(2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y≤0时,x的取值范围.【分析】(1)根据二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3),可以求得该函数的解析式;(2)根据(1)中求得的函数解析式可以得到该函数经过的几个点,从而可以画出该函数的图象;(3)根据(2)中画出的函数图象,可以写出当y≤0时,x的取值范围.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3),∴,得,即该函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3),该函数图象如右图所示;(3)由图象可得,当y≤0时,x的取值范围x≤﹣1或x≥3.21.已知二次函数y=﹣x2+2bx+c的图象经过点M(1,0),顶点坐标(m,n)(1)当x<5时,y随x的增大而增大,求b的取值范围;(2)求n关于m的函数解析式;(3)求该二次函数的图象顶点最低时的解析式.【分析】(1)根据二次函数的性质即可求得;(2)根据顶点方程公式以及图象上点的坐标特征即可求得;(3)由(2)求得的解析式配方成顶点式即可求得最低时的顶点坐标,利用顶点式求得即可.【解答】解:(1)由二次函数y=﹣x2+2bx+c可知开口向下,对称轴为直线x=b,∵当x<5时,y随x的增大而增大,∴b≥5;(2)∵二次函数y=﹣x2+2bx+c的图象经过点M(1,0),∴﹣1+2b+c=0,∴c=1﹣2b,∵m=b,n==c+b2=1﹣2b+b2,∴n=m2﹣2m+1;(3)∴n=(m﹣1)2,∴顶点有最低点(1,0),∵a=﹣1,∴二次函数的解析式为y=﹣(x﹣1)2=﹣x2+2x﹣1.22.强哥驾驶小汽车(出租)匀速地从如皋火车站送客到南京绿口机场,全程为280km,设小汽车的行驶时间为t(单位:h),行驶速度为v(单位:km/h),且全程速度限定为不超过120km/h.(1)求v关于t的函数解析式;(2)强哥上午8点驾驶小汽车从如皋火车站出发.①乘客需在当天10点48分至11点30分(含10点48分和11点30分)间到达南京绿口机场,求小汽车行驶速度v的范围;②强哥能否在当天10点前到达绿口机场?说明理由.【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①点至10点48分时间长为小时,8点至11点30分时间长为3.5小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至10点时间长为2小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解答】解:(1)∵vt=280,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(t≥).(2)①8点至10点48分时间长为小时,8点至11点30分时间长为3.5小时将t=3.5代入v=得v=80;将t=代入v=得v=100,∴小汽车行驶速度v的范围为:80≤v≤100;②强哥不能在当天10点前到达绿口机场.理由如下:8点至10点前时间长为2小时,将t=2代入v=得v=140>120千米/小时,超速了.故强哥不能在当天10点前到达绿口机场.23.如图,已知∠MON,点A在射线OM上.根据下列方法画图.①以O为圆心,OA长为半径画圆,交ON于点B,交射线OM的反向延长线于点C,连接BC;②以OA为边,在∠MON的内部,画∠AOP=∠OCB;③连接AB,交OP于点E;④过点A作⊙O的切线,交OP于点F.(1)依题意补全图形;(2)求证∠MOP=∠PON;(3)若∠MON=60°,OF=10,求AE的长.【分析】(1)根据题意画出图形即可;(2)根据圆周角定理解答即可;(3)根据切线的性质和含30°的直角三角形的性质解答.【解答】解:(1)如图所示:(2)∵∠MON=2∠OCB,∵∠AOP=∠OCB,∴∠BOP=∠OCB=∠AOP,即∠MOP=∠PON;(3)∵∠MON=60°,∴∠AOP=30°,∵FA是⊙O的切线,∴FA⊥OA,∵OF=10,∴OA=5,∵OA=OB,∴△OAB是等边三角形,∵∠MOP=∠PON,∴OE⊥AB,∴AE=.24.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/2 4 (10)千克)12 10 (4)市场需求量q(百千克)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为 5 元/千克.【分析】(1)根据表格数据,可设q与x的函数关系式为:q=kx+b,利用待定系数法即可求(2)①根据题意,当每天的半成品食材能全部售出时,有p≤q,②根据销售利润=销售量×(售价﹣进价),列出厂家每天获得的利润y(百元)与销售价格x的函数关系式(3)根据(2)中的条件分情况讨论即可【解答】解:(1)由表格的数据,设q与x的函数关系式为:q=kx+b根据表格的数据得,解得故q与x的函数关系式为:q=﹣x+14,其中2≤x≤10(2)①当每天的半成品食材能全部售出时,有p≤q即x+8≤﹣x+14,解得x≤4又2≤x≤10,所以此时2≤x≤4②由①可知,当2≤x≤4时,y=(x﹣2)p=(x﹣2)(x+8)=x2+7x﹣16当4<x≤10时,y=(x﹣2)q﹣2(p﹣q)=(x﹣2)(﹣x+14)﹣2[x+8﹣(﹣x+14)]=﹣x2+13x﹣16即有y=(3)当2≤x≤4时,y=x2+7x﹣16的对称轴为x===﹣7∴当2≤x≤4时,除x的增大而增大∴x=4时有最大值,y==20当4<x≤10时y=﹣x2+13x﹣16=﹣(x﹣)2+,∵﹣1<0,>4∴x=时取最大值即此时y有最大利润要使每天的利润不低于24百元,则当2≤x≤4时,显然不符合故y=﹣(x﹣)2+≥24,解得x≤5故当x=5时,能保证不低于24百元故答案为:,525.如图,AB是⊙O的切线,切点为B,OA交⊙O于点C,过点C的切线交AB于点D.若∠BAO=30°,CD=2.(1)求⊙O的半径;(2)若点P在上运动,设点P到直线BC的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围.【分析】(1)连结OB,根据切线长定理和切线的性质得到DB=DC=2,∠ABO=∠ACD=90°,则AD=2BD=4,AB=AD+BD=6,在Rt△AOB中,根据含30度的直角三角形三边的关系可计算出OB=AB=2;(2)根据扇形面积公式S=求出扇形AOB的面积,得到答案.【解答】解:(1)连结OB,如图,∵AB、CD是⊙O的切线,∴DB=DC=2,OB⊥AB,CD⊥OA,∴∠ABO=∠ACD=90°,∵∠BAO=30°,∴AD=2CD=2BD,∴AD=4,AB=AD+BD=6,∴OB=AB=2,即⊙O的半径为2;(2)∵∠BAO=30°,∴∠BOC=60°,∵点P到直线BC的距离为x,∴△PBC的面积为×2×x=x,弓形BC的面积=扇形COB的面积﹣△COB的面积==2,∴y=x+2(0≤x≤2+3).26.把一个函数图象上每个点的纵坐标变为原来的倒数(原函数图象上纵坐标为0的点除外)横坐标不变,可以得到另一个函数的图象,我们称这个过程为倒数变换.例如:如图1,将y=x的图象经过倒数变换后可得到y=的图象.特别地,因为y=x 图象上纵坐标为0的点是原点,所以该点不作变换,因此y=的图象上也没有纵坐标为0的点.(1)请在图2中画出y=﹣x﹣1的图象和它经过倒数变换后的图象;(2)观察上述图象,结合学过的关于函数图象和性质的知识.①猜想:倒数变换得到的图象和原函数的图象之间可能有怎样的联系?写出两条即可.②说理:请简要解释你其中一个猜想;(3)设图2中的图象的交点为A,B,若点C的坐标为(﹣1,m),△ABC的面积为6,求m的值.【分析】(1)画出y=的图象;(2)猜想一:倒数变换得到的图象和原函数的图象之间如果存在交点,则其纵坐标为1或﹣1;猜想二:倒数变换得到的图象和原函数的图象的对称性相同,比如原函数是轴对称图形,则倒数变换的图象也是轴对称图象;(3)求得A、B的坐标,然后根据三角形面积公式得到S△ABC=•|m|×2=6,解得即可.【解答】解:(1)在平面直角坐标系中画出y=﹣x﹣1的图象和它经过倒数变换后的图象如图:图中去掉(﹣1,0)的点;(2)①猜想一:倒数变换得到的图象和原函数的图象之间如果存在交点,则其纵坐标为1或﹣1;猜想二:倒数变换得到的图象和原函数的图象的对称性相同,比如原函数是轴对称图形,则倒数变换的图象也是轴对称图象;②猜想一:因为只有1和﹣1的倒数是其本身,所以如果原函数存在一个点的纵坐标为1或﹣1,那么倒数变换得到的图象上必然也存在这样对应的纵坐标为1或﹣1,即两个函数图象的交点.(3)解得或,∴A(﹣2,1),B(0,﹣1),∵C(﹣1,m),∴S△ABC=•|m|×2=6,解得|m|=6,∴m=±6.。
2019-2020年初三第⼀次阶段性测试数学试卷2019-2020年初三第⼀次阶段性测试数学试卷⼀、填空题:(本⼤题每题2分,共20分,把答案填写在题中横线上) 1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a ⽆意义;22--x x有意义的条件是_____________. 3、已知⼀个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;⽅差是____________.4、某校九年级上学期期末统⼀考试后,甲、⼄两班的数学成绩(单位:分)的统计情况如下表所⽰:从各统计指标(平均分、中位数、众数、⽅差)综合来看,你认为______班的成绩较好。
5、若关于x 的⽅程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对⾓线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正⽅形.7、已知点C 为线段AB 的黄⾦分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的⼀点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对⾓线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则∠BOE=_______°.第8题图第9题图第10题图10、如图,折叠直⾓梯形纸⽚的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长㎝.⼆、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有⼀个是正确的,把正确答案的代号填在题后【】内,每⼩题2分,共18分) 11、下列各式中与327x --是同类⼆次根式的是【】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下⾯是李刚同学在⼀次测验中解答的填空题,其中答对的是【】. A 、若x 2=4,则x =2B 、⽅程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的⼀个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的⽅程06)(22=+--x k x x ⽆实根,则k 可取的最⼩整数为【】. A 、5- B 、4- C 、3- D 、2-15、甲、⼄两班举⾏电脑汉字输⼊速度⽐赛,参赛学⽣每分钟输⼊汉字的个数经统计计算后填⼊下表:某同学根据上表分析得出如下结论:(1)甲、⼄两班学⽣成绩的平均⽔平相同;(2)⼄班优秀的⼈数多于甲班优秀的⼈数(每分钟输⼊汉字数≥150个为优秀);(3)甲班成绩⽐⼄班成绩波动⼤。
江苏省如皋市白蒲镇初级中学2019-2020学年中考数学模拟试卷一、选择题1.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是( )A.35°B.30°C.25°D.55°2.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×10103.如图,A 、B 、C 、D 是⊙O 上的四个点,弧AB=弧BC,58AOB ∠=︒,则BDC ∠的度数是( )A .58°B .42°C .32°D .29°4.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABEADE SS ∆= C .若AB=4,则BE =D .sin CBE ∠=5.下列各式运算中,正确的是( )A .a 3+a 2=a 5B 3=C .a 3•a 4=a 12D .2236()(0)a a a=≠6.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b2﹣4ac=0;③a>2;④ax2+bx+c=﹣2的根为x1=x2=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y2)为函数图象上的两点,则y1>y2.其中正确的个数是()A.2 B.3 C.4 D.57.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%8.如图,反比例函数y1=1x与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,则函数y=ax2+bx﹣1x+c的图象与x轴交点的个数是()A.0 B.1 C.2 D.39.数据2060000000科学记数法表示为()A.206×107B.20.6×108C.2.06×108D.2.06×10910.如图,直线a∥b,直线c分别与a,b相交,∠1=120°,则∠2的度数为()A.60°B.120°C.50°D.70°11.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )A.12B.34C.45D.3512.如图,已知正方形ABCD的边长为1,将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.下列结论中正确的有()①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.A.1个B.2个C.3个D.4个二、填空题13.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2;④当a+b=ab时,方程有一根为1.则正确结论的序号是_____.(填上你认为正确结论的所有序号)14.已知正方形ABCD的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3…,D10都在同一直线上,则正方形A2C2C3D3的边长是___,正方形A n∁n C n+1D n+1的边长是___.15.已知∠A是锐角,且tanA=3,则∠A=_____.16.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为_____.17.如图,正方形ABCD的顶点A、D分别在x轴、y轴上,∠ADO=30°,OA=2,反比例函y=kx经过CD的中点M,那么k=_____.18.在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(2)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到表中的一组统计数据:三、解答题19.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.20.阅读下面材料:在数学课上,老师给同学们布置了一道尺规作图题:小丽的作法如下:已知:如图,正比例函数和反比例函数的图象分别交于MN两点,要求:在y轴上求作点P,使得∠MPN为直角老师说:“小丽的作法正确.”如图,以点O为圆心,以OM长为半径作⊙O,⊙O与y轴交于点P1和P2两点,则P1,P2即为所求.请回答:小丽这样作图的依据是_____.21.先化简:22212x xx x-+++(1﹣32x+)÷1x,然后在0,tan45°,sin30°中选取一个合适的x的值代入求值.22.为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A到点B,从点B到点C是两段不同坡度的坡路,CM是一段水平路段,CM与水平地面AN的距离为12米.已知山坡路AB的路面长10米,坡角BAN=15°,山坡路BC与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD,降低后BD与CM相交于点D,点D,A,B在同一条直线上,即∠DAN=15°.为确定施工点D的位置,求整个山坡路AD的长和CD的长度(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)23.为了解学生参加户外活动的情况,某中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(I).被抽查的学生有_____人,抽查的学生中每天户外活动时间是1.5小时的有_____人;(II).求被抽查的学生的每天户外活动时间的众数、中位数和平均数;(III).该校共有1200名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?24.地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)25.如图,直线y=2x﹣8分别交x轴、y轴于点A、点B,抛物线y=ax2+bx(a≠0)经过点A,且顶点Q在直线AB上.(1)求a,b的值.(2)点P是第四象限内抛物线上的点,连结OP、AP、BP,设点P的横坐标为t,△OAP的面积为s1,△OBP的面积为s2,记s=s1+s2,试求s的最值.【参考答案】***一、选择题13.①②④.14.3,1232nn--.15.30°16.1718.3 三、解答题19.(1)200;(2)详见解析;(3)2 3【解析】【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【详解】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率=812=23.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.20.半圆或直径所对的圆周角是直角.【解析】【分析】根据半圆(或直径)所对的圆周角是直角可知,以MN为直径作圆即可.【详解】解:连接P1M,P1N,P2M,P2N因为M、N关于原点O对称,以点O为圆心以OM为半径的⊙O过点N所以MN是⊙O的直径因为点P1、P2都在⊙O上,半圆或直径所对的圆周角是直角,所以∠MP1N,∠MP2N都是直角.故答案为:半圆或直径所对的圆周角是直角.【点睛】本题考查考查反比例函数与一次函数的交点,圆的有关性质等知识,解题的关键是熟练应用所学知识解决问题,属于基础题.21.321(2)x xx x-++;x=tan45°时,原式=0.【解析】【分析】根据分式的运算法则即可求出答案【详解】解:原式=221(2)x xx x-+++12xx-+÷1x=221(2)x xx x-+++2(1)(2)x xx x-+=321 (2)x xx x-++,由分式有意义的条件可知:x不能取0,当x=tan45°,∴x=1,∴原式=121 13 -+⨯=0.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.修整后山坡路AD的长约为46.2米,CD的长约为18.8米.【解析】【分析】过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,根据矩形的性质得到BE=GH,EG=BH,CD=GF,CG=DF,求得CH=DF-GH,解直角三角形即可得到结论.【详解】过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,则四边形CGFD和四边形BEGH是矩形,∴BE=GH,EG=BH,CD=GF,CG=DF,∴CH=DF﹣GH,由题意得,DF=12,AB=10,在Rt△ABE中,BE=AB•sin15°=10×0.26=2.6,在Rt△ADF中,DF=AB•sin15°,AD=12÷0.26=46.2,∴CH=DF﹣BE=9.4,在Rt△CBH中,CH=BC•sin30°,BC=CH÷0.5=18.8,∵CD∥AN,∴∠CDB=∠BAN=15°,∵∠CBH =30°, ∴∠DBC =15°, ∴∠CDB =∠CBD , ∴CD =CB =18.8(米),答:修整后山坡路AD 的长约为46.2米,CD 的长约为18.8米. 【点睛】本题考查了作图-应用与设计作图,解直角三角形的应用,正确的作出辅助线是解题的关键. 23.(Ⅰ)50,12;(Ⅱ)众数是1;中位数是1;平均数是1.18;(Ⅲ)480人. 【解析】 【分析】(Ⅰ)根据频数÷所占百分比=样本容量可求出被抽查的学生的总数,用总数乘以每天户外活动时间是1.5小时的学生所占百分比即可得答案;(II )根据平均数、众数和中位数的定义求解即可;(III )先求出每天户外活动时间超过1小时的学生所占百分比,用1200乘以这个百分比即可得答案. 【详解】(Ⅰ)10÷20%=50(名), 50×24%=12(名) 故答案为:50,12(Ⅱ)∵这组数据中,1出现了20次,出现次数最多, ∴这组数据的众数为1,∵将这组数据从小到大排列,其中处于中间的两个数都是1, 有1112+= ∴中位数为1.0.510120 1.5122850x ⨯+⨯+⨯+⨯==1.18∴这50名学生每天户外运动时间的平均数为1.18.(Ⅲ)128120050+⨯ =480∴估计该校每天户外活动时间超过1小时的学生约为480人.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键. 24.小亮说的对,CE 为2.6m . 【解析】 【分析】先根据CE ⊥AE,判断出CE 为高,再根据解直角三角形的知识解答. 【详解】解:在△ABD 中,∠ABD =90°,∠BAD =18°,BA=10m, ∵tan ∠BAD =,∴BD =10×tan18°,∴CD =BD ﹣BC =10×tan18°﹣0.5≈2.7(m ), 在△ABD 中,∠CDE =90°﹣∠BAD =72°, ∵CE ⊥ED,∴sin ∠CDE =,∴CE =sin ∠CDE×CD=sin72°×2.7≈2.6(m ), ∵2.6m <2.7m,且CE ⊥AE, ∴小亮说的对.答:小亮说的对,CE 为2.6m . 【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.25.(1)14a b =⎧⎨=-⎩;(2)当t =3时,s 取得最大值,最大值为18.【解析】 【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,由二次函数的对称性可得出抛物线的对称轴为直线x =2,利于一次函数图象上点的坐标特征可求出抛物线的顶点Q 的坐标,由点A ,P 的坐标,利用待定系数法即可求出a ,b 的值;(2)利用二次函数图象上点的坐标特征可得出点P 的坐标,利用三角形的面积公式可找出s 1,s 2,进而可得出s 关于t 的函数关系式,再利用二次函数的性质即可解决最值问题. 【详解】解:(1)∵直线y =2x ﹣8分别交x 轴、y 轴于点A 、点B , ∴点A 的坐标为(4,0),点B 的坐标为(0,﹣8). ∵抛物线y =ax 2+bx (a≠0)经过点A ,点O , ∴抛物线的对称轴为直线x =2. 当x =2时,y =2x ﹣8=﹣4, ∴抛物线顶点Q 的坐标为(2,﹣4).将A (4,0),Q (2,﹣4)代入y =ax 2+bx ,得:1640424a b a b +=⎧⎨+=-⎩,解得:14a b =⎧⎨=-⎩. (2)由(1)得:抛物线解析式为y =x 2﹣4x , ∵点P 的横坐标为t ,∴点P 的坐标为(t ,t 2﹣4t ), ∴s 1=12×4×(4t ﹣t 2)=8t ﹣2t 2,s 2=12×8×t=4t , ∴s =s 1+s 2=﹣2t 2+12t =﹣2(t ﹣3)2+18. ∵﹣2<0,且0<t <4,∴当t =3时,s 取得最大值,最大值为18.【点睛】本題考查了二次函数的性质、待定系数法求二次函数解析式、一次的数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次数解析式;(2)利用三角形的面积公式,找出s关于t的数关系式.。
2019—2020学年度第一学期九年级第一次联考数学试题(考试时间:90分钟)命题学校:大湖学校初中数学科组班级姓名座号评分一、选择题(每小题3分,共30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将一元二次方程x2﹣2x﹣2=0配方后所得的方程是()A.(x﹣2)2=2B.(x﹣1)2=2C.(x﹣1)2=3D.(x﹣2)2=3 3.抛物线y=(x﹣1)2+3的对称轴是()A.直线x=1B.直线x=3C.直线x=﹣1D.直线x=﹣3 4.圆心在原点O,半径为5的⊙O,点P(4,﹣3)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定5.方程x2﹣4x﹣m2=0根的情况是()A.一定有两不等实数根B.一定有两实数根C.一定有两相等实数根D.一定无实数根6.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增长率是x,则可以列方程()A.500(1+2x)=720 B.500(1+x)2=720C.500(1+x2)=720D.720(1+x)2=5007.下列图形中,旋转60°后可以和原图形重合的是()A.正六边形B.正方形C.正五边形D.正三角形8.如图,在⊙O中,直径AB⊥弦CD于点M,AB=10,BM=2,则CD的长为()A.4B.6C.10D.89.下列命题是正确的有()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.过同一平面内的任意三点有且仅有一个圆C .三角形的内心到三角形各顶点的距离都相等D .半径相等的两个半圆是等弧10.平面直角坐标系中,已知点P 0(1,0),将点P 0绕原点O 按逆时针方向旋转30°得到P 1,延长OP 1到P 2,使OP 2=2OP 1;再将P 2绕点O 按逆时针方向旋转30°得P 3,然后延长OP 3到P 4,使OP 4=2OP 3;…;如此下去,则点P 2004的坐标为( )A .(﹣22004,0)B .(﹣21002,0)C .(0,21002)D .(21002,0)二、填空题(每题4分,共28分)11.方程x 2﹣16=0的解为 .12.抛物线y =2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为 .13.已知点P 1(a ,﹣2)和P 2(3,b )关于原点对称,则(a +b )2016的值为 .14.若方程x 2+x ﹣2009=0的两根为a 、b ,则a 2+2a+b= .15.如15题图,将Rt △ABC (其中∠B =32°,∠C =90°)绕点A 顺时针方向旋转到△AB 1C 1的位置,使得点C 、B 、C 1在同一条直线上,那么旋转角等于 °.第15题图 第16题图 第17题图16.如16题图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE= .17.如17题图,二次函数y =ax 2+bx +c (b ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA =3 ②a +b +c <0 ③ac >0 ④当y >0时,﹣1<x <3,其中正确的结论的有三、解答题:(每小题6分,共18分)18. 计算: 103128()23π-+-+-19.解方程:(x ﹣5)2=2(x ﹣5)20.如图,△ABC的顶点坐标分别为A(﹣2,5),B(﹣4,1),和C(﹣1,3).(1)作出△ABC关于原点对称轴的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标.(2)作出将△ABC绕着点B顺时针旋转90°的△A2B2C2.四、解答题(每小题8分,共24分)21.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1和x2.(1)求实数k的取值范围.(2)若(x1+1)(x2+1)=2,试求k的值.22.如图,在△ABD中,AD=BD,将△ABD绕点A逆时针旋转得到△ACE,使点C落在直线BD上.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.23.如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.五、解答题(每小题10分,共20分)24.有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).(1)设x天后每千克蟹市场价为P元,写出P关于x的函数关系式;(2)如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润?最大利润是多少?25.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.2019—2020学年度第一学期九年级第一次联考数学试题答案一、1-5 BCABA 6-10 BADDB二、11. x1=4,x2=-4 12.3+y13. 1=x(22-)114.2008 15. 122 16. 68°17. ①④三、18. 019.解:(x﹣5)2=2(x﹣5),(x﹣5)2﹣2(x﹣5)=0,(x﹣5)(x﹣5﹣2)=0,(x﹣5)(x﹣7)=0,x﹣5=0或x﹣7=0,解得:x1=5,x2=7.20.解:(1)如图,△A1B1C1即为所求.A1(2,﹣5),B1(4,﹣1),C1(1,﹣3).(2)如图,△A2B2C2即为所求.四、21.解:(1)∵关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根,∴△=[﹣2(k﹣1)]2﹣4×1×k2≥0,∴k≤,∴实数k的取值范围为k≤.(2)∵方程x2﹣2(k﹣1)x+k2=0的两根为x1和x2,∴x1+x2=2(k﹣1),x1x2=k2.∵(x1+1)(x2+1)=2,即x1x2+(x1+x2)+1=2,∴k2+2(k﹣1)+1=2,解得:k1=﹣3,k2=1.∵k≤,∴k=﹣3.22.证明:(1)由旋转性质得∠BAD=∠CAE,AB=AC,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.23.解:(1)直线BD与⊙O相切.理由如下:如图,连接OD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.所以直线BD与⊙O相切.(2)连接CD,∠COD=∠OAD+∠ODA=30°+30°=60°,又OC=OD∴△OCD是等边三角形,即:OC=OD=CD=5=OA,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.五、24.解:(1)由题意知:p=30+x;(2)由题意知:活蟹的销售额为(1000﹣10x)(30+x)元,死蟹的销售额为200x元,∴Q=(1000﹣10x)(30+x)+200x=﹣10x2+900x+30000;(3)设总利润为L=Q﹣30000﹣400x=﹣10x2+500x,=﹣10(x2﹣50x)=﹣10(x2﹣50x+252﹣252)=﹣10(x﹣25)2+6250.当x=25时,总利润最大,最大利润为6250元.25.解:(1)∵y=3x+3,∴当x=0时,y=3,当y=0时,x=﹣1,∴A(﹣1,0),B(0,3).(2)设抛物线的解析式为y=ax2+bx+c,由题意,得,解得∴抛物线的解析式为:y=﹣x2+2x+3(3)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4∴抛物线的对称轴为x=1,设Q(1,a),(1)当AQ=BQ时,如图,由勾股定理可得BQ==,AQ==得=,解得a=1,∴Q(1,1);(2)如图:当AB是腰时,Q是对称轴与x轴交点时,AB=BQ,∴=解得:a=0或6,当Q点的坐标为(1,6)时,其在直线AB上,A、B和Q三点共线,舍去,则此时Q的坐标是(1,0);(3)当AQ=AB时,如图:=,解得a=±,则Q的坐标是(1,)和(1,﹣).综上所述:Q(1,1),(1,0),(1,),(1,﹣).2019—2020学年度第一学期九年级第一次联考数学试题答题卡(考试时间:90分钟)评分:一、选择题(每小题3分,共30分在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.)二、填空题(本大题7小题,每小题4分,共28分)11. ;12.; 13.;14.;15. ; 16. ; 17.三、解答题(本大题3小题,每小题6分,共18分)班级姓名座号18.计算:031-38-|21-|2)(π+++. 19.解方程:(x﹣5)2=2(x﹣5)20.(1)四、解答题(本大题3小题,每小题8分,共24分)21.(1)(2)22.(1)(2)23.(1)(2)五、解答题(本大题2小题,每小题10分,共20分)24.(1)(2)(3)11。
2019-2020年九年级数学第一次质量监测试题苏科版一.选择题(每题4分,共32分)1.一元二次方程x2﹣8x﹣1=0配方后可变形为()2.已知⊙O的半径为5㎝,P到圆心O的距离为6㎝,则点P在⊙O()A. 外部B. 内部C. 上D. 不能确定3.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()4.方程x2﹣2x+3=0的根的情况是()5.今年来某县加大了对教育经费的投入,xx年投入2500万元,xx年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()6.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若7.下列命题正确的个数是()(1)直径是圆中最大的弦。
(2)长度相等的两条弧一定是等弧。
(3)半径相等的两个圆是等圆。
(4)面积相等的两个圆是等圆。
(5)同一条弦所对的两条弧一定是等弧。
( )8.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=() A.14 B.15 C.16 D.17第6题图第8题图二.填空题(每题4分,共40分)9.方程x2+x=0的解是.10.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.11.在实数范围内定义一种运算“#”,其规则为a#b=a2﹣b,根据这个规则,方程(x﹣1)#9=0的解为.12.如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x、y都是整数,则这样的点共有个.13.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.14.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是.第12题图第13题图第14题图15.如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD 的最大值为.16.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB 与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.17.某施工工地安放了一个圆柱形饮水桶的木制支架某施工工地安放了一个圆柱形饮水桶的木制支架(如图1所示),若不计第15题图第16题图木条的厚度,其俯视图如图2所示.已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是cm.18.观察下列关于自然数的等式: 32﹣4×12=5 ① 52﹣4×22=9 ② 72﹣4×32=13 ③…根据上述规律请你猜想的第n 个等式为 (用含n 的式子表示). 三.解答题19.解方程:(每题4分,共8分)(1)2x 2﹣4x ﹣1=0(配方法) (2)(x+1)2=6x+6.20.(本题6分)先化简,再求值:,其中m 是方程2x 2+4x ﹣1=0的根.21、(6)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,OD ⊥CB 于点E,交BC 于点D . (1)请写出三个不同类型的正确结论; (2)连接CD ,∠ABC=200,求∠CDE 的度数.22.(本题8分)已知□ABCD 的两边AB 、AD 的长是关于x 的方程x 2-mx +-=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长? (2)若AB 的长为2,那么□ABCD 的周长是多少?23.(本题8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多?24.(本题10分)如图,已知△ABC 内接于⊙O,且AB=AC ,直径AD 交BC 于点E ,F 是OE 上的一点,使CF∥BD. (1)求证:BE=CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC=8,AD=10,求CD 的长.实验班完成2.(本题4分)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),3.(本题4分)圆心角为120°的扇形的半径为3,则这个扇形的面积为(结果保留π).4.(本题4分)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)5.(本题12分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)6.(本题12分)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.xx 学年度第一学期第一次月考九年级数学答题纸一.选择题(共10小题,每小题4分,共40分)二.填空题(共8小题,每空4分,共32分)9. 10. 11. 12. 13.14. 15. 16. 17. 18. 三.解答题19.(每题4分,共8分)(1)2x 2﹣4x ﹣1=0(配方法) (2)(x+1)2=6x+6. 20.(本题6分)21、(6) (1) (2)22.(本题8分) (1)(2)23.(本题8分)(1)(2)24.(本题10分)(1)(2)(3)实验班完成1.() 2.()3.(结果保留π)4.cm2.(结果保留π)5.(本题12分)(1)(2)①②6.(本题12分)(1);(2)(3)参考答案(仅供参考)1-8:CACCBDBC9-18:0,-1;16;4,-2;12;(35-2x)(20-x)=600;;50;30;(2n+1)2-4n2=4n+1。
如皋市2019届九年级第一次模拟考试数学试题一、选择题1.张老师手机上显示,某地“海拔﹣45米”,它表示此地()A. 高于海平面45米B. 低于海平面5米C. 低于海平面﹣45米D. 低于海平面45米【答案】D【解析】【分析】负数则表示低于海平面,可直接得出.【详解】解:海拔﹣45米表示低于海平面45米.故选:D.【点睛】本题考查正负数的意义,要理解正数与负数是表示意义相反的量.2.2019年南通市政府工作报告中指出:“推进教育优质均衡发展,增加学前教育学位8190个、义务教育学位10530个和普通高中招生计划4440个,情境教育入围中国质量奖提名奖.”将10530用科学记数法表示为()A. 0.1053×105B. 1.053×105C. 1.053×104D. 1.053×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10530=1.053×104,故选:C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,该几何体的左视图是()A. B.C. D.【答案】A【解析】【分析】根据左视图是从物体左面看所得到的图形即可解答.【详解】解:根据左视图的概念可知,从物体的左面看得到的视图是A,故选:A.【点睛】本题考查了简单几何体的左视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()A. 24°B. 59°C. 60°D. 69°【答案】B【解析】【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.【详解】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又∵DE∥BC,∴∠D=∠DBC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键. 5.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A. B. D.【答案】C【解析】【分析】作AB⊥x轴交x轴于点B,由点A的坐标求出相应线段的长度,利用公式求出.【详解】作AB⊥x轴交x轴于点B,∵A(3,4),∴AB=4,BO=3,∴AO,∴故选C.【点睛】要求一个角的三角函数值,如果图中没有现成的直角三角形,我们一般通过构造垂线将要求的角放入直角三角形中求解.6.A.B.D. 【答案】D【解析】 分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D .点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.7.已知x 1,x 2是关于x 的方程x 2﹣mx ﹣3=0的两个根,下面结论一定正确的是( )A. x 1+x 2>0B. x 1≠x 2C. x 1•x 2>0D. x 1<0,x 2<0【答案】B【解析】【分析】根据方程的系数结合根的判别式,可得出△=m 2+4>0,进而可得出x 1≠x 2,此题得解.【详解】解:∵△=(﹣m )2﹣4×1×(﹣3)=m 2+4>0,∴方程x 2﹣mx ﹣3=0有两个不相等的实数根, ∴x 1≠x 2.故选:B .【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图所示.根据图象所提供的信息分析,下列说法正确的是( )A. 甲队开挖到30m 时,用了2hB. 乙队在0≤x≤6的时段,y与x之间的关系式y=5x+20C. 当两队所挖长度之差为5m时,x为3和5D. x为4时,甲、乙两队所挖的河渠长度相等【答案】D【解析】【分析】图意是:甲、乙都是工作了6小时;甲用了6小时挖河渠的长度是60m,乙前2个小时挖河渠30m,后4个小时挖河渠20m,乙一共挖了50m.【详解】解:A、根据图示知,乙队开挖到30m时,用了2h,甲队开挖到30m时,用的时间是大于2h.故本选项错误;B、根据图示知,乙队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系是分段函数:在0~2h时,y 与x之间的关系式y=15x.故本选项错误;C、由图示知,甲队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系为:y=10x(0≤x≤6),乙队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系为:当0≤x≤2时,当两队所挖长度之差为5m时得:15x﹣10x=5,解得:x=1;当2<x≤6时,当两队所挖长度之差为5m时得:|10x﹣(5x+20)|=5,解得:x=3或5;∴当两队所挖长度之差为5m时,x为1,3和5;故本选项错误;D、甲队4h完成的工作量是:10×4=40(m),乙队4h完成的工作量是:30+2×5=40(m),∵40=40,∴当x=4时,甲、乙两队所挖河渠长度相同.故本选项正确;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.9.定义:在平面直角坐标系中,圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y+12与x 轴、y轴分别交于A,B两点,点P在x轴上,⊙P与l相切,当P在线段OA(点P与点O,A不重台)上运动时,使得⊙P成为整圆的点P个数是()A. 3个B. 5个C. 7个D. 9个【答案】A【解析】【分析】根据直线的解析式求得OB和OA,根据勾股定理得到AB,根据切线的性质求得PM⊥AB,求得PM A,然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.【详解】解:∵直线l:y+12与x轴、y轴分别交于A、B,∴A(16,0),B(0,12),∴OB=12,OA=16,∴AB20,∴sin∠BAO∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM A,设P(x,0),∴P A=16﹣x,∴⊙P的半径PM A,∵x为整数,PM为整数,∴x可以取3,8,13,3个数,∴使得⊙P成为整圆的点P个数是3.故选:A.【点睛】本题考查了切线的性质,含30°角的直角三角形的性质等,熟练掌握性质定理是解题的关键.10.如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为()A. 5 2 C. 6【答案】B【解析】【分析】作CB关于DA的对称点C'B',以AB中的O为圆心作半圆O,连C′O分别交DA及半圆O于P、F.将PC+PF 转化为C′F找到最小值.【详解】解:如图:取点C关于直线DA的对称点C′.以AB中点O为圆心,OA为半径画半圆.连接OC′交DA于点P,交半圆O于点F,连AF.连BF并延长交DA于点E.由以上作图可知,AF⊥EB于F.PC+PF=PC'′+EF=C'F由两点之间线段最短可知,此时PC+PF最小.∵C'B'=4,OB′=6∴C'O∴C'F∴PC+PF故选:B.【点睛】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.二、填空题11.买单价3元的圆珠笔m支,应付______元.【答案】3m【解析】【分析】根据单价×数量=总价列代数式即可.【详解】解:买单价3元的圆珠笔m支,应付3m元.故答案为:3m.【点睛】本题考查了列代数式表示实际问题,解题的关键是掌握单价×数量=总价.12.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是_____.【答案】众数【解析】分析:鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.详解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故答案为:众数.点睛:本题主要考查了学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用,比较简单.13.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为_____.【答案】-12【解析】试题分析:首先利用因式分解将代数式进行化简,然后利用整体代入的思想进行求解.试题解析:原式=ab∵a+b=2,ab=-3,∴原式=-3×考点:因式分解、整体思想求解14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N;再分别以M,N的长为半径画弧,两弧交于点G;作射线AG交BC于点D,若CD=2,BD=2.5,P为AB上一动点,则PD的最小值为_____.【答案】2【解析】【分析】利用基本作图得到AD平分∠BAC,根据角平分线的性质得到点D到AB的距离等于DC=2,然后根据垂线段最短求解.【详解】解:由作法得AD平分∠BAC,∴点D到AB的距离等于DC=2,∴PD的最小值为2.故答案为2.【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了角平分线的性质和垂线段最短.15.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm .【答案】2.【解析】试题解析:设圆锥的底面圆半径为r ,根据题意得r=2,即圆锥的底面圆半径为2cm .考点:圆锥的计算.16.如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端A .B 的距离,飞机在距海平面垂直高度为100米的点C 处测得端点A 的俯角为60°,然后沿着平行于AB 的方向水平飞行了500米,在点D 测得端点B 的俯角为45°,求岛屿两端A .B 的距离(结果精确到0.1米,参考数据:)【答案】解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,∵AB ∥CD ,∴∠AEF=∠EFB=∠ABF=90°。