基体校正和基本参数法-理学用户第八届学术报告会
- 格式:ppt
- 大小:836.00 KB
- 文档页数:43
术语表吸收边 (1)准确度 (1)老化 (1)分析晶体 (2)分析类型 (2)APC (2)表观浓度 (2)分析方法 (3)分析方法包 (3)应用模板 (3)人工多层晶体 (3)衰减器 (3)背景函数 (4)背景比率法 (4)平衡组分 (5)偏差修正 (5)Bragg 公式 (5)厚样品 (5)校正曲线系数 (6)检查分析 (6)化合物 (6)视野光栏 (6)微分曲线 (7)微分测量 (7)漂移校正 (7)双靶 (8)激发条件 (8)EZ 扫描 (8)固定角度分析 (8)定时分析 (8)流程条 (9)熔剂 (9)FP定量法 (9)全范围定性分析 (10)谱峰的函数分解 (10)玻璃熔片 (11)粒度效应 (11)高次线 (11)识别分析 (12)杂质校正 (12)积分测量 (12)强度积分测量 (12)内标校正 (13)手工输入数据 (13)基体校正 (13)测量光路气氛 (14)矿物效应 (14)净强度 (15)重叠校正 (15)PC (F-PC) (15)PC 芯线清洁 (15)谱峰分解 (15)谱峰搜索 (16)PHA (16)预抽真空 (17)PR 气体 (18)初级束滤光片 (18)定性分析 (18)定量分析 (19)再现性 (19)分辨率 (20)样品膜校正 (20)样品 ID (20)样品ID表 (20)样品模式 (21)样品旋转 (21)SC (21)散射线 (22)真空保护 (22)灵敏度库 (22)灵敏度库分区 (23)灵敏度库样品 (23)准直器 (23)平滑 (23)光谱仪灵敏度系数 (24)SQX 分析 (24)SQX 重叠校正 (24)标准谱形 (24)标准谱分解法 (24)理论基体校正系数 (25)薄膜样品 (25)管电压和管电流 (26)2θ角度 (26)2θ扫描 (26)单位 (26)通用标准样品 (27)X射线强度 (27)X-R 控制 (27)吸收边吸收边是指激发样品中的元素、产生荧光X 射线所需的最小能量。
复合材料中基体和增强体的作用复合材料是由至少两种不同材料组成的材料,主要包括基体和增强体。
基体是复合材料的主体组成部分,起到支撑和固定增强体的作用。
增强体则是基体中的强化组分,负责提高复合材料的力学性能。
基体是复合材料的主要组成部分,起到支撑和固定增强体的作用。
基体通常是一种具有良好的柔韧性和强度的材料,如树脂、金属、陶瓷等。
基体的选择需要考虑复合材料的使用环境、应力要求以及成本等因素。
基体的性能决定了复合材料的整体性能,如强度、刚度、耐磨性等。
增强体是复合材料中起到强化作用的组分,通常是纤维、颗粒或片层状的材料。
增强体可以提高复合材料的强度、刚度和耐用性。
常见的增强体包括碳纤维、玻璃纤维、芳纶纤维等。
增强体的选择取决于对复合材料所需的特定性能,如高强度、高刚度或高温耐受性。
基体和增强体的相互作用是复合材料性能的关键因素。
增强体的存在增加了复合材料的强度和刚度,同时还可以提高材料的耐腐蚀性和耐磨性。
基体则提供支撑和固定增强体的功能,防止其从基体中脱离。
1.机械锁定作用:基体和增强体之间的力学锁定作用是通过增强体与基体之间的相互作用力和摩擦力来实现的。
增强体的形状和分布对锁定效果起到重要作用。
2.能量转化作用:增强体能吸收和分散外部载荷作用时的能量,通过增强体和基体之间的相互作用将能量转移到基体中,从而提高了复合材料的韧性和抗冲击性能。
3.功率传递作用:增强体通过相互作用将应力传递到基体中,增加了复合材料的整体强度和刚度。
增强体的刚度和强度越高,功率传递效果越好。
4.界面作用:基体和增强体的界面对于复合材料的性能起着重要作用。
界面的结构和性质影响着基体和增强体之间的相互作用,如界面的粘着强度和亲和性。
5.互补效应:基体和增强体的不同性质和结构相互补充,共同提高了复合材料的综合性能。
增强体可以弥补基体的缺陷,提高复合材料的强度和刚度,而基体可以提供增强体所不具备的柔韧性。
综上所述,基体和增强体在复合材料中具有不可替代的作用。
全国博士后管委会办公室关于统一博士后研究报告书写格式的通知博管办[1995]3号各博士后流动站设站单位:为加强对博士后研究人员科研工作的管理,有利于博士后研究报告的收藏中心编制了《博士后研究报告编写规则》(见附件),并决定从1995年4月起,统一博士后研究报告格式,对博士后研究报告进行集中收藏。
现将博士后研究人员期满出站提交博士后研究报告的有关问题通知如下:一、博士后研究人员期满出站,要对其研究工作做认真总结,严格遵照《博士后研究报告编写规则》撰写博士后研究报告,并印刷装订成册。
研究报告应真实客观地反映其研究工作的进展、结果等情况。
二、各设站单位应加强对博士后研究人员科研工作的监督和管理,对期满出站的博士后研究人员提交的《博士后研究报告》进行严格审核和评议,并作为其在站期间科研工作考评、出站评定专业技术职务任职资格和聘任专业技术职务的重要依据之一。
三、各单位在为博士后研究人员办理出站手续时,除按原规定(参阅博管办[1993]12号文件)向全国博士后管委会办公室报送必要的材料外,还需提交两份《博士后研究报告》(报送博士后工作管理体制改革试点省市管理部门的应提交三份,由省市管理部门转交全国博士后管委会办公室两份)。
全国博士后管委会办公室将集中送北京图书馆收藏。
一九九五年二月二十日博士后研究报告编写规则北京图书馆学位学术论文收藏中心全国博士后管委会办公室一九九四年九月Students’ School report card of affiliatedmiddle school to WuHan UniversityName Jing shuo Grade Grade Two class Five博士后研究报告编写规则研究报告是描述一项科学技术研究的结果或进展;或一项技术研制试验和评价的结果;或是论述某项科学技术问题的现代和发展的文件。
研究报告是为了呈送科学技术工作主管机构或科学基金会等组织或主持研究的人等。
动态流变仪测聚合物复合材料中填料与基体间的相互作用2011011743 分1 黄浩同组实验者:刘念实验日期:2014-3-26一、实验目的1. 知道旋转流变仪的基本功能以及适用范围。
2.了解旋转流变仪的基本结构、工作原理。
3.掌握采用旋转流变仪测量聚合物的动态粘度的方法。
4. 掌握采用旋转流变仪测量聚合物与纳米片层测量微观相互作用的方法。
二、实验仪器Anton Paar Physica 301 旋转流变仪、空气压缩机、循环泵槽、不同比例的淀粉填充PBS 复合材料、铜铲、铜刷三、实验原理聚合物受外力作用时,会发生流动与变形,产生内应力。
流变学所研究的就是流动、变形与应力间的关系。
旋转流变仪是现代流变仪中的重要组成部分,它们依靠旋转运动来产生简单剪切流动,可以用来快速确定材料的粘性、弹性等各方面的流变性能。
旋转流变仪一般是通过一对夹具的相对运动来产生流动的。
引入流动的方法有两种:一种是驱动一个夹具,测量产生的力矩,这种方法最早是由Couette在1888年提出的,也称为应变控制型,即控制施加的应变,测量产生的应力;另一种是施加一定的力矩,测量产生的旋转速度,它是由Searle于1912年提出的,也称为应力控制型,即控制实际的应力,测量产生的应变。
实际用于粘度等流变性能测量的几何结构有同轴圆筒(Couette)、锥板和平行板等。
选择流变仪的测试模式一般可以分为稳态测试、瞬态测试和动态测试,区分它们的标准是应变或应力施加的方式。
本实验着重介绍动态测试模式,动态测试主要指对流体施加振荡的应变或应力,测量流体相应的应力或应变。
动态测试中,可以使用在被测材料共振频率下的自由振荡,或者采用在固定频率下的正弦振荡。
这两种方式都可用来测量粘度和模量,不同的是在固定频率下的正弦振荡测试在得到材料性能频率依赖性的同时,还可得到其性能的应变或应力依赖性。
在动态测试中,流变仪可以控制振动频率、振动幅度、测试温度和测试时间。
1。
做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团?X射线照射到物质上将产生散射。
晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。
绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。
晶体微观结构的特征是具有周期性的长程的有序结构。
晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息.用少量固体粉末或小块样品便可得到其X射线衍射图。
XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法.XRD特别适用于晶态物质的物相分析。
晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。
因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)。
.。
等等,应用面十分普遍、广泛.目前XRD主要适用于无机物,对于有机物应用较少。
关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。
如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分?三者并无严格明晰的分界.在衍射仪获得的XRD图谱上,如果样品是较好的”晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的”最小宽度”)。
如果这些”峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。
SOLAAR原子吸收光谱仪基本操作1.SOLAAR 软件及启动1.1.概要SOLAAR 数据工作站应用于SOLAAR系列原子吸收光谱仪及其附件,用于执行原子吸收分析并产生样品分析结果。
1.2.启动软件打开光谱仪电源、计算机电源,进入WINDOWS桌面,双击WINDOWS桌面的SOLAAR图标,即出现SOLAAR-登录对话框。
用户名键入:ADMINISTRATOR,口令键入:SOLAAR。
点击确定即进入SOLAAR软件。
用户名和口令可根据用户需要进行更改,详见附录6.3.安全设置。
进入软件后,出现SOLAAR AA 系统操作界面,并会立即出现启动向导平台对话框。
启动向导平台对话框提供了包括建立一个新的方法、运行分析、运行PQ分析等等操作的逐步的向导,提示你怎样逐步的来完成每项工作。
怎样进行操作,该向导给出了详细逐步的指导说明,请按向导提示进行操作。
点击关闭,关闭启动向导平台对话框,即出现SOLAAR AA 系统操作界面,所有的编辑、操作、应用都在该操作界面下展开和完成。
SOLAAR AA 系统操作界面主菜单包括文件、编辑、浏览、校正、安全、停止、窗口和帮助等,这些菜单中仪器常用的操作都以快捷方式列出,其功能分别为:自动调零自动光路调整,自动波长选择火焰法燃烧头参数设定/自动优化火焰参数,燃气比高/低,燃烧头位置高/低空心阴极灯自动准直,灯位置左/右/前/后自动调整石墨炉自动进样器进样针清洗/毛细管清洗石墨管高温清洗/自动进样器进样针头位置调整执行分析/暂停分析/继续分析/插入单个样品分析 设置运行双分析时火焰/石墨炉自动切换GFTV 可视系统开关空心阴极灯参数设定分析方法设定启动向导平台,方法设定引导软件帮助(点击该图标后,点击软件中的其他图表及菜单,即显示该处的帮助文件)系统操作界面的下方有光谱仪状态、信号、火焰状态、结果、校正、QC协议和灰化原子化图等显示窗口,点击这些图标的往上还原钮,可显示相关内容。
目录第一章 序言 (1)第二章 分析 (4)第三章 程序的基本结构 (9)第四章 定性分析和谱线校准 (14)第五章 方法 (21)第六章 标准化 (28)第七章 校准 (34)第八章 检查协议及自动顺序分析 (42)第九章 报告、存储及导出数据 (51)第十章 自动进样器的操作 (60)第十一章 报告模板 (68)附录A:安全 (71)附录B:添加数据库 (73)第一章 序言1.1 概述TEVA是以Windows为基础,功能强大、应用灵活的ICP操作软件。
该软件易于从ICP光谱仪上获取、处理、保存和打印分析数据,既可用于IRIS Intrepid系列光谱仪,又可用于IRIS Advantage系列光谱仪。
用户手册主要介绍了软件的一些特点,并对分析方法的建立以及数据处理程序进行了详细的解释和说明。
1.2 启动程序1.2.1 启动程序a)双击Windows桌面上的TEVA图标,打开Welcome to TEVA对话框。
b)键入用户名和密码,并确认。
TEVA操作界面打开,如图1-1所示。
管理员可以设置用户以及为不同的用户设置不同的安全权限。
此功能将在附录B中进行描述。
图1-1在1.3部分对TEVA操作界面进行了详细的描述。
从该界面可以进入到:??TEVA/CID Analyst 进行数据采集。
??Publisher 产生分析报告。
??Journal 日志。
??设置等离子条件、点燃等离子体对话框。
??设置仪器的不同参数对话框。
1.2.2 TEVA操作界面的常规格式其格式与Windows界面很相似,主要包括以下几部分:??Menu Bar??Tool Bar??Workspace??Data Display Area??Status Bar1.3 TEVA操作界面1.3.1 TEVA操作界面的功能??打开TEVA/CID Analyst,用于采集/处理分析数据(见第2章)。
通过点击Workspace 工作框中的Analyst图标来完成。