2.1-2.3电路暂态的概念及换路定则
- 格式:ppt
- 大小:1.30 MB
- 文档页数:136
第三章电路的暂态分析1培训资料电路的暂态分析是电路理论中的重要内容,它研究电路在初始状态或在切换瞬间的瞬态响应。
在本章中,我们将介绍电路暂态分析的基本概念、方法和应用。
一、电路暂态分析的基本概念电路暂态分析是指在电路切换瞬间或在初始状态下,电路中各元件的电流、电压和功率的瞬态变化情况。
电路暂态分析是电路理论中的基础知识,它对于理解电路的动态行为和瞬态响应具有重要意义。
二、电路暂态分析的方法1. 瞬态响应方程瞬态响应方程是描述电路在切换瞬间或初始状态下的电流、电压和功率变化的数学方程。
通过求解瞬态响应方程,可以得到电路在瞬态过程中的电流、电压和功率的变化规律。
2. 拉普拉斯变换法拉普拉斯变换法是求解电路暂态响应的一种常用方法。
通过将电路中的元件和信号用拉普拉斯变量表示,可以将电路暂态分析转化为求解代数方程的问题,从而得到电路的瞬态响应。
3. 数值模拟方法数值模拟方法是通过计算机仿真来求解电路暂态响应的一种方法。
通过建立电路的数学模型,并利用数值计算方法进行仿真计算,可以得到电路在瞬态过程中的电流、电压和功率的变化情况。
三、电路暂态分析的应用1. 电路开关过程的分析在电路中,开关的切换过程会引起电路中电流、电压和功率的瞬态变化。
通过电路暂态分析,可以研究开关过程中电路的动态行为,为电路设计和故障诊断提供依据。
2. 电源启动过程的分析电源启动过程是指电源从初始状态到正常工作状态的过程。
在电源启动过程中,电路中的电流、电压和功率会发生瞬态变化。
通过电路暂态分析,可以研究电源启动过程中电路的瞬态响应,为电源设计和调试提供参考。
3. 电路故障诊断在电路中,故障会引起电路中的电流、电压和功率的异常变化。
通过电路暂态分析,可以分析故障引起的瞬态响应,从而判断故障的位置和原因,为电路的修复和维护提供指导。
总结:电路暂态分析是电路理论中的重要内容,它研究电路在初始状态或在切换瞬间的瞬态响应。
电路暂态分析的方法包括瞬态响应方程、拉普拉斯变换法和数值模拟方法。
电路的暂态分析电路的暂态分析是对电路从一个稳定状态变化到另一个稳定状态时中间经受的过渡状态的分析。
电路中产生暂态过程的缘由是由于电路的接通、断开、短路、电路参数转变等——即换路时,储能元件的能量不能跃变而产生的。
(1)换路定则与电压、电流初始值的确定换路定则用来确定暂态过程中电压、电流的初始值,其理论依据是能量不能跃变。
在换路瞬间储能元件的能量不能跃变,即电感元件的储能不能跃变电容元件的储能不能跃变否则将使功率达到无穷大设t=0为换路瞬间,而以t=0–表示换路前的终了瞬间,t=0+表示换路后的初始瞬间。
则换路定则用公式表示为:电压与电流初始值的确定* 作出t=0–的等效电路,在此电路中,求出和。
* 由换路定则得到和。
* 作出t=0+的等效电路换路前,若储能元件没有储能,则在t=0+的等效电路中,可将电容短路,而将电感元件开路;若储能元件储有能量,则在t=0+的等效电路中,电容可用电压为的抱负电压源代替,电感元件则可用电流为的抱负电流源代替。
*在t=0+的等效电路中,求出待求电压和电流的初始值。
(2)RC电路的响应在t=0时将开关S合到1的位置依据KVL,t≥0 时电路的微分方程为设换路前电容元件已有储能,即,解上述微分方程,得t=RC单位是秒,所以称它为RC电路的时间常数。
这种由外加激励和初始储能共同作用引起的响应,称为RC 电路的全响应。
若换路前电容元件没有储能,即,则初始储能为零,由外加电源产生的响应,称为RC电路的零状态响应。
uC随时间变化曲线时间常数t=RC,当t=t时,uC= 63.2%UuC由初始值零按指数规律向稳态值增长,电路中其他各量要详细分析才能确定。
若在t=0 时将开关S由1合到2的位置,如下图。
这时电路中外加激励为零,电路的响应由电容的初始储能引起的,故常称为RC 电路的零输入响应。
电容两端的电压uC由初始值U0向稳态值零衰减,这是电容的放电过程,其随时间变化表达式为在零输入响应电路中各电量均由初始值按指数规律向稳态值零衰减。
暂态和换路定则 - 电工基础
一、暂态
1、暂态的定义、产生的缘由
电路的工作状态包括:稳态和暂态。
稳态:指电路中的电压和电流在给定的条件下已达到某一稳态值(对沟通来讲是其幅值达到稳定),如第一、二章所述的电路。
暂态:指电路在过渡过程中的工作状态。
(1)概念:
过渡过程:从一个稳定状态过渡到另一个稳定状态的中间过程称为过渡过程,亦称其为暂态过程。
(2)过渡过程产生的缘由
①内因:系统中的能量不能发生跃变。
电路中的电场能和磁场能不能发生跃变是电路产生过渡过程的根本缘由。
②外因或条件:换路。
即开关接通、断开,电路的参数变化,电源电压变化等等是电路产生过渡过程的外部条件。
2、争辩电路暂态的目的
①生疏和把握其规律,在生产上充分利用暂态过程的特性:如利用电路的暂态过程产生特定波形的电信号,如锯齿波,三角波,尖脉冲波等,应用于电子线路。
②同时预防它所产生的危害:如防止电路产生过电压或过电流损坏用电设备,如电感线圈中的暂态过程产生过电压使开关产生电弧或击穿线圈绝缘;电容电路过渡过程产生过电流使电流表损坏等等。
二、换路定则
电源(开关)的接通与断开或电路结构、参数的发生突变统称为换路。
t=0换路时刻(瞬间)t=0_换路前终了瞬间,一般看作稳态 u(0-),i(0-)t=0+换路后初始瞬间,变化开头时刻 u(0+),i(0+) 电感任意时刻存储的磁场能
―i:任意时刻流过电感的电流。
电容任意时刻存储的电场能
―u:任意时刻电容两端的电压。
依据能量不能跃变,在电路中有:
(a) 电感中的电流不能跃变:
(b) 电容两端的电压不能跃变:
换路定则:。
第三章 电路的暂态分析含有电感或电容储能元件的电路,在换路时会出现暂态过程。
本章研究了暂态过程中电压与电流的变化规律。
主要内容:1.暂态过程的基本概念。
2.换路定则:在换路瞬间,电容电流和电感电压为有限值的情况下,电容电压 和电感电流在换路前后的瞬间保持不变。
3.RC 电路的零输入响应、零状态响应和全响应。
4.RL 电路的零输入响应、零状态响应和全响应。
5.一阶线性电路暂态分析的三要素法:一阶线性电路在直流激励下的全响应零、 输入响应和零状态响应都可以用三要素法τte f f f t f -+∞-+∞=)]()0([)()(来求出。
6.暂态过程的应用:对于RC 串联电路,当输入矩形脉冲,若适当的选择参数 和输出,可构成微分电路或积分电路。
[练习与思考]解答3-1-1什么是稳态?什么是暂态?解:当电路的结构、元件参数及激励一定时,电路的工作状态也就一定,且电流和电压为某一稳定的值,此时电路所处的工作状态就称为稳定状态,简称为稳态。
在含有储能元件的电路中,当电路的发生换路时,由于储能元件储的能量的变化,电路将从原来的稳定状态经历一定时间变换到新的稳定状态,这一变换过程称为过渡过程,电路的过渡过程通常是很短的,所以又称暂态过程。
3-1-2什么是暂态过程?产生暂态过程的原因是什么?解:含有储能元件的电路从一个稳态转变到另一个稳态的所需的中间过程称为电路的暂态过程(过渡过程)。
暂态过程产生的内因是电路中含有储能元件,外因是电路发生换路。
3-2-1 初始值和稳态值分别是暂态过程的什么时刻的值?解:初始值是暂态过程的+=0t 时刻的值,稳态值是暂态过程的∞=t 时刻的值。
3-2-2 如何求暂态过程的初始值?解:求暂态过程初始值的步骤为:⑴首先画出换路前-=0t 的等效电路,求出-=0t 时刻电容电压)0(-C u 和电感电流)0(-L i 的值。
对直流电路,如果换路前电路处于稳态,则电容相当于开路,电感相当于短路。
电路稳态与暂态电路稳态和暂态是电路分析中的两个重要概念。
稳态是指电路的行为在时间上不随时间变化而保持恒定的状态,而暂态是指电路在经历突变或初始条件改变后的短暂过程。
本文将介绍电路稳态和暂态的概念、特征和分析方法。
一、电路稳态在电路分析中,稳态是指电路中各个元件的电流和电压值处于恒定状态的情况。
在稳态下,电路中的电流和电压不随时间变化,可以用恒定的数值表示。
稳态的存在是由电路的周期性和对称性决定的。
1.1 稳态的特征稳态的特征包括以下几点:1.1.1 电压和电流值不随时间变化。
在稳态下,电路中各个元件的电流和电压保持不变,可以用恒定的数值表示。
1.1.2 稳态是电路在长时间运行后的状态。
当电路达到稳态时,其运行时间足够长,各个元件的电流和电压稳定在恒定值上。
1.1.3 稳态通常与周期性和对称性有关。
在周期性和对称性电路中,稳态是周期性变化的电流和电压值在一个周期内的平均值。
1.2 稳态的分析方法为了分析电路的稳态特性,可以采用以下方法:1.2.1 直流分析法。
直流分析法适用于直流电路,通过应用基尔霍夫定律和欧姆定律,可以求解电路中各个元件的电流和电压值。
1.2.2 复数分析法。
复数分析法适用于交流电路,将电路中的电流和电压表示为复数形式,利用复数的代数运算和欧姆定律,可以求解电路的稳态特性。
1.2.3 相量分析法。
相量分析法是一种图解分析方法,通过绘制电流和电压的相量图,可以直观地分析电路的稳态特性。
二、电路暂态电路暂态是指电路在经历突变或初始条件改变后的短暂过程。
在暂态过程中,电路的电流和电压会发生瞬时变化,然后逐渐趋于稳定态。
2.1 暂态的特征暂态的特征包括以下几点:2.1.1 电路响应有限时间内的短暂过程。
在暂态过程中,电路的电流和电压会发生瞬时变化,但随着时间的推移会逐渐趋于稳态。
2.1.2 暂态过程具有动态性。
在暂态过程中,电路的电流和电压会随时间的变化而变化,可以通过微分方程进行描述。