数据结构15--最小生成树
- 格式:ppt
- 大小:350.50 KB
- 文档页数:26
生成树类型
生成树是计算机科学中的一种基本数据结构,用于解决与图相关的许多问题。
生成树可以分为以下几类:
1. 最小生成树:在一个加权无向连通图中找到一棵包含所有顶点的树,并且总权值最小。
2. 最大生成树:在一个加权无向连通图中找到一棵包含所有顶点的树,并且总权值最大。
3. 最近公共祖先树:在一棵树中找到两个节点的最近公共祖先,并建立一棵包含这两个节点以及它们的所有祖先节点的子树。
4. Huffman编码树:用于数据压缩,建立一棵二叉树,由该树的叶子节点表示待压缩的数据,通过该树的路径表示压缩后的数据。
5. B-树:用于数据库和文件系统中,能够存储大量数据且支持高效的查找、插入、删除等操作的平衡树。
生成树是计算机科学中非常重要的一种数据结构,具有广泛的应用。
数据结构最小生成树克鲁斯卡尔算法代码以下是克鲁斯卡尔算法的实现代码:```python# 定义边的类class Edge:def __init__(self, src, dest, weight):self.src = srcself.dest = destself.weight = weight# 定义图的类class Graph:def __init__(self, vertices):self.V = verticesself.edges = []def add_edge(self, src, dest, weight):edge = Edge(src, dest, weight)self.edges.append(edge)# 查找顶点的根节点def find(self, parent, i):if parent[i] == i:return ireturn self.find(parent, parent[i])# 合并两个集合def union(self, parent, rank, x, y):xroot = self.find(parent, x)yroot = self.find(parent, y)if rank[xroot] < rank[yroot]:parent[xroot] = yrootelif rank[xroot] > rank[yroot]:parent[yroot] = xrootelse:parent[yroot] = xrootrank[xroot] += 1# 使用克鲁斯卡尔算法计算最小生成树def kruskal(self):result = []i = 0e = 0 # 已选择的边的数量# 按权重对边进行排序self.edges = sorted(self.edges, key=lambda x:x.weight)parent = []rank = []# 初始化每个顶点的父节点和秩for node in range(self.V):parent.append(node)rank.append(0)while e < self.V - 1:# 选择权重最小的边edge = self.edges[i]i += 1x = self.find(parent, edge.src)y = self.find(parent, edge.dest) # 判断是否形成环路if x != y:e += 1result.append(edge)self.union(parent, rank, x, y) return result# 测试代码g = Graph(4)g.add_edge(0, 1, 10)g.add_edge(0, 2, 6)g.add_edge(0, 3, 5)g.add_edge(1, 3, 15)g.add_edge(2, 3, 4)result = g.kruskal()for edge in result:print(f"{edge.src} -- {edge.dest} == {edge.weight}")```这段代码实现了克鲁斯卡尔算法,其中`Graph`类表示图,`Edge`类表示边。
最小生成树的算法王洁引言:求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。
下面将介绍几种最小生成树的算法。
一,用“破圈法”求全部最小生成树的算法1 理论根据1.1 约化原则给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ⊆ E ,使生成树所有边权最小,此生成树称为最小生成树.(1) 基本回路将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。
基本回路是由 T 中的树枝和一条连枝构成的回路.(2) 基本割集设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。
基本割集是集合中的元素只有一条是树枝,其他的为连枝.(3) 等长变换设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ∉ H,当且仅当'e ∈()cf e ,也就是说e ∈()S e ,则'T =T ⊕{e, 'e }也是一棵生成树。
当()e ω='()e ω时,这棵生成树叫做等长变换。
克鲁斯卡尔算法求最小生成树的最短路径克鲁斯卡尔算法的核心思想是从图的边集中选取边来构建最小生成树,首先将图中的所有边按照权重进行排序。
然后依次取最小权重的边,如果这条边的加入不会形成环路,则将它加入最小生成树的边集中。
重复这个过程,直到最小生成树中的边数等于顶点数减一,或者所有的边都已经考虑过。
假设有一个包含n个顶点的带权无向图G=(V,E),其中,V表示顶点的集合,E表示边的集合。
假设我们要求解G的最小生成树。
1.初始化边集E'为空集,集合S={v},v是图中任意一个顶点。
2.对所有的边进行排序,按照边的权重从小到大排列。
3.从排序后的边集中依次选取边e,如果边e的两个顶点都不在集合S中,则将边e加入集合S,并加入边集E'中。
4.重复步骤3,直到E'中的边数等于n-1在克鲁斯卡尔算法中,需要使用并查集来判断选定的边e是否会形成环路。
并查集是一种数据结构,用于维护元素的等价关系。
它有两个主要操作,即查找和合并。
使用并查集的步骤如下:1.初始化并查集,使得每个元素都是一个单独的集合。
2.对每一条边e=(u,v),如果u和v在同一个集合中,则说明加入这条边会形成环路;否则,将这两个集合合并。
3.重复步骤2,直到所有的边都考虑过。
接下来,我们通过一个具体的例子来说明克鲁斯卡尔算法的具体过程。
假设有以下的带权无向图G=(V,E),其中,V={A,B,C,D,E,F,G},E为边的集合,每条边的权重如下:AE:5AB:7AG:8BF:7BC:9CD:5CG:9DE:15DF:6EG:11EF:8FG:9按照权重对边进行排序:CD:5AE:5DF:6AB:7BF:7EF:8AG:8CG:9BC:9FG:9DE:15EG:11从最小的边开始选取,首先选取CD:5,加入到最小生成树的边集中。
最小生成树的边集:{"CD:5"}接下来选取AE:5,加入到最小生成树的边集中。
一、单选题1、设有5个结点的无向图,该图至少应有_________条边才能确保是一个连通图。
A.7B.8C.6D.5正确答案:A2、设图G=(V,VR),其中: V={A,B,C,D,G},VR={(A,C),(A,D),( B,C),(B,D) ,(G,C),(B,G)},则对应的图形为_________。
A.B.C.D.正确答案:C3、设某有向图中有n个顶点,则该有向图对应的邻接表中有_________个表头结点。
A.n-1B.n+2C.nD.n+1正确答案:C4、在一个无向图中所有顶点的度数之和等于所有边数的_________倍。
A.1B.2C.3D.1/2正确答案:B5、一个无向连通图的生成树是该连通图的_____。
A.极小连通子图B.强连通子图C.连通子图D.极大连通子图正确答案:A6、设某无向图中有n个顶点,则该无向图邻接矩阵的大小是_________。
A.n(n+1)/2B.(n-1)2C. n2D. (n+1)2正确答案:C7、设有n个顶点e条边的无向图,采用邻接矩阵作为物理结构,则删除与某顶点Vi 关联的所有边算法的时间复杂度为_________。
A.O(n2)B.O(n+e)C.O(n*e)正确答案:D8、设有n个顶点e条弧的有向图,采用邻接表作为物理结构,则求某顶点Vi度的算法的时间复杂度为_________。
A.O(n)B.O(n*e)C.O(n+e)D.O(n2)正确答案:C9、设无向图G=(V,E)和G'=(V',E'),如果G'是G的生成树,则下列说法中错误的是_____。
A.G'是G的连通分量B.G'是G的一个无环子图C.G'是G的极小连通子图且V=V'D.G'是G的子图正确答案:A10、设G是一个非连通的无向图,共有10条边,则该图至少有_____个顶点。
A.7B.6C.5D.8正确答案:B11、 n个顶点的有向图为强连通图时,至少含有________。
数据结构(山东联盟-青岛大学)知到章节测试答案智慧树2023年最新第一章测试1.在Data_Structure=(D,R)中,D是()的有限集合。
参考答案:数据元素2.计算机所处理的数据一般具有某种关系,这是指()。
参考答案:数据元素与数据元素之间存在的某种关系3.算法的时间复杂度与()有关。
参考答案:问题规模4.以下关于数据结构的说法正确的是()。
参考答案:数据结构的逻辑结构独立于其存储结构5.某算法的时间复杂度是O(n2),表明该算法()。
参考答案:执行时间与n^2成正比6.从逻辑上可将数据结构分为()。
参考答案:线性结构和非线性结构7.数据的逻辑结构是指各数据元素之间的逻辑关系,是用户按使用需要建立的。
参考答案:对8.数据的物理结构是指数据结构在计算机内的实际存储形式。
参考答案:对9.每种数据结构都具备三种基本运算:插入、删除和查找。
参考答案:错10.算法的时间效率和空间效率往往相互冲突,有时很难两全其美。
参考答案:对第二章测试1.线性表是一个()。
参考答案:数据元素的有限序列,元素不可以是线性表2.以下关于线性表的说法中正确的是()。
参考答案:除第一个元素和最后一个元素外,其他每个元素有且仅有一个直接前趋元素和一个直接后继元素3.以下关于线性表的说法中正确的是()。
参考答案:每个元素最多有一个直接前趋和一个直接后继4.如果线性表中的表元素既没有直接前趋,也没有直接后继,则该线性表中应有()个表元素。
参考答案:15.在线性表中的每一个表元素都是数据对象,它们是不可再分的()。
参考答案:数据元素6.顺序表是线性表的()表示。
参考答案:顺序存储7.以下关于顺序表的说法中正确的是()。
参考答案:顺序表和一维数组一样,都可以按下标随机(或直接)访问,顺序表还可以从某一指定元素开始,向前或向后逐个元素顺序访问8.顺序表的优点是()。
参考答案:存储密度(存储利用率)高9.以下关于单链表的叙述中错误的是()。
数据结构之最⼩⽣成树Prim算法普⾥姆算法介绍 普⾥姆(Prim)算法,是⽤来求加权连通图的最⼩⽣成树算法 基本思想:对于图G⽽⾔,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U⽤于存放G的最⼩⽣成树中的顶点,T存放G的最⼩⽣成树中的边。
从所有uЄU,vЄ(V-U) (V-U表⽰出去U的所有顶点)的边中选取权值最⼩的边(u, v),将顶点v加⼊集合U中,将边(u, v)加⼊集合T中,如此不断重复,直到U=V为⽌,最⼩⽣成树构造完毕,这时集合T中包含了最⼩⽣成树中的所有边。
代码实现1. 思想逻辑 (1)以⽆向图的某个顶点(A)出发,计算所有点到该点的权重值,若⽆连接取最⼤权重值#define INF (~(0x1<<31)) (2)找到与该顶点最⼩权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或⼩于当前权重值的不更新,因为1是⼀当找到最⼩权重值的顶点时,将权重值设为了0,2是会出现⽆连接的情况。
(3)将上述过程⼀次循环,并得到最⼩⽣成树。
2. Prim算法// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < m_nVexNum; i++){weights[i] = GetWeight(nStart, i);}for (i = 0; i < m_nVexNum; i ++){if (nStart == i){continue;}int min = INF;int nMinWeightIndex = 0;for (int k = 0; k < m_nVexNum; k ++){if (weights[k]!= 0 && weights[k] < min){min = weights[k];nMinWeightIndex = k;}}// 找到下⼀个最⼩权重值索引cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;// 以找到的顶点更新其他点到该点的权重值weights[nMinWeightIndex]=0;int nNewWeight = 0;for (int ii = 0; ii < m_nVexNum; ii++){nNewWeight = GetWeight(nMinWeightIndex, ii);// 该位置需要特别注意if (0 != weights[ii] && weights[ii] > nNewWeight){weights[ii] = nNewWeight;}}for (i = 1; i < nIndex; i ++){int min = INF;int nVexsIndex = GetVIndex(cPrims[i]);for (int kk = 0; kk < i; kk ++){int nNextVexsIndex = GetVIndex(cPrims[kk]);int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);if (nWeight < min){min = nWeight;}}nSum += min;}// 打印最⼩⽣成树cout << "PRIM(" << m_mVexs[nStart].data <<")=" << nSum << ": ";for (i = 0; i < nIndex; i++)cout << cPrims[i] << "";cout << endl;}3. 全部实现#include "stdio.h"#include <iostream>using namespace std;#define MAX 100#define INF (~(0x1<<31)) // 最⼤值(即0X7FFFFFFF)class EData{public:EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){} char nStart;char nEnd;int nWeight;};// 边struct ENode{int nVindex; // 该边所指的顶点的位置int nWeight; // 边的权重ENode *pNext; // 指向下⼀个边的指针};struct VNode{char data; // 顶点信息ENode *pFirstEdge; // 指向第⼀条依附该顶点的边};// ⽆向邻接表class listUDG{public:listUDG(){};listUDG(char *vexs, int vlen, EData **pEData, int elen){m_nVexNum = vlen;m_nEdgNum = elen;// 初始化"邻接表"的顶点for (int i = 0; i < vlen; i ++){m_mVexs[i].data = vexs[i];m_mVexs[i].pFirstEdge = NULL;}char c1,c2;int p1,p2;ENode *node1, *node2;// 初始化"邻接表"的边for (int j = 0; j < elen; j ++){// 读取边的起始顶点和结束顶点p1 = GetVIndex(c1);p2 = GetVIndex(c2);node1 = new ENode();node1->nVindex = p2;node1->nWeight = pEData[j]->nWeight;if (m_mVexs[p1].pFirstEdge == NULL){m_mVexs[p1].pFirstEdge = node1;}else{LinkLast(m_mVexs[p1].pFirstEdge, node1);}node2 = new ENode();node2->nVindex = p1;node2->nWeight = pEData[j]->nWeight;if (m_mVexs[p2].pFirstEdge == NULL){m_mVexs[p2].pFirstEdge = node2;}else{LinkLast(m_mVexs[p2].pFirstEdge, node2);}}}~listUDG(){ENode *pENode = NULL;ENode *pTemp = NULL;for (int i = 0; i < m_nVexNum; i ++){pENode = m_mVexs[i].pFirstEdge;if (pENode != NULL){pTemp = pENode;pENode = pENode->pNext;delete pTemp;}delete pENode;}}void PrintUDG(){ENode *pTempNode = NULL;cout << "邻接⽆向表:" << endl;for (int i = 0; i < m_nVexNum; i ++){cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->"; pTempNode = m_mVexs[i].pFirstEdge;while (pTempNode){cout <<pTempNode->nVindex << "->";pTempNode = pTempNode->pNext;}cout << endl;}}// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。