高等结构动力学读书笔记
- 格式:docx
- 大小:26.59 KB
- 文档页数:5
结构动力学学习总结通过对本课程的学习,感受颇深。
我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。
我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。
二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。
如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。
但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。
如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。
荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。
在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。
另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。
结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。
高等结构动力学学习心得体会1.这门课程独特的授课方式随着科学技术的进步,结构动力学越来越广泛地应用于建筑结构工程中的防震抗震,海洋平台设计,桥梁结构的抗震设计、桥梁结构故障诊断及桥梁结构健康状态监测等工程技术领域。
而工程界对结构系统进行动力分析的要求日益提高,我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是结构工程专业人员的基本任务,由于工程实际中大部分问题与动载荷有关,因此高等结构动力学无疑是一门十分重要的学科。
其实高等结构动力学对我们来说并不陌生,总的来说它是结构力学的基础上来研究动载荷的作用效果,并且与我们在大四时期所接触机械振动这门课程很相似。
它研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的一门课程。
若不结合工程实例,是很难理解这门课程的理论知识的,在大四时我学完机械振动这门课程后仍旧理解的不甚透彻。
针对这一现象老师开设的让同学们上台讲课这一环节无疑让我们受益匪浅,一方面来说对于上台讲课的同学,他们在积极准备的同时必然会去详细了解结构动力学在这一工程领域的应用,无形中促使了他们去学习这门课程,而对于台下听的同学,也这让我们对这门课程的工程应用有了更广泛和更深刻的理解,不再仅限于学习理论知识,这对深刻,学习这门课程也有很大的帮助。
老师的这种授课方式是极好的,讲主动权掌握在同学自己手中,无疑是让我们学会如何自主的学习,当各位同学讲述完自己准备的东西之后还开设了讨论环节,可以提出你自己不懂的问题,做进一步讨论,进一步加深对这一块知识的理解,除此以外你还可以提出自己的见解或者讲课同学的不足之处,大家互帮互助,共同进步。
2.对于这门课程的学习收获这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算等问题。
结构理论书籍读后感最近读了本结构理论的书,读完那感觉就像是在迷宫里绕了一大圈,最后居然找到了宝藏一样。
这本书刚开始看的时候,那些概念就像一群调皮的小精灵,在我眼前跳来跳去,就是不让我抓住它们的核心。
什么结构的稳定性啦,各种力的相互作用啦,感觉像是进入了一个充满神秘符号和复杂规则的异世界。
不过呢,随着慢慢深入阅读,就像是逐渐学会了和这些小精灵对话的魔法一样。
我开始理解结构理论就像是搭建积木的超级指南。
你看,现实生活中的每一个建筑、每一座桥梁,就像精心搭建的巨型积木作品。
这些结构之所以能稳稳地立在那儿,可都是结构理论在背后默默发挥着大作用。
就拿桥梁来说吧,以前我只看到它横跨在江河之上,觉得特别神奇。
读了这本书才知道,那里面涉及到的力学结构简直就像一场精确无比的交响乐。
桥墩、桥身、拉索,它们各自承担着不同的“角色任务”,有负责抗压的,有负责抗拉的,就像乐队里不同的乐器,组合在一起才能奏响安全稳固的乐章。
书里讲到结构的类型时,我感觉像是在看一场超级变变变的表演。
从简单的框架结构到复杂的拱形结构、悬索结构,每一种结构都像是有着独特技能的超级英雄。
框架结构就像一个规规矩矩的小卫士,方方正正地坚守着自己的地盘;拱形结构呢,就像一个大力士,把压力巧妙地分散到两边;悬索结构则像是个优雅的舞者,凭借着拉索的拉力在空中轻盈地展现着它的稳定性。
而且啊,结构理论还让我对生活中的一些小事情有了新的看法。
比如我们平时坐的椅子,你可别小看它,它也是结构理论的小小“杰作”。
四条腿的分布、椅面的支撑方式,都是为了让我们能稳稳地坐在上面,不会突然散架。
这就好比结构理论是个无处不在的幕后导演,指挥着我们身边各种各样的物体如何“站好岗”。
但是呢,这本书也不是那么好读的。
有时候那些复杂的公式和详细的计算,就像一个个难以攻克的小怪兽。
我得费好大的劲儿,像个勇士一样,拿着我的笔和纸当作武器,去和它们战斗。
有时候打了败仗,得重新读好几遍,琢磨半天才能搞懂。
高等结构动力学大作业
摘要:
一、高等结构动力学的概念和意义
二、高等结构动力学的主要研究内容
三、高等结构动力学的应用领域
四、高等结构动力学的发展趋势
正文:
一、高等结构动力学的概念和意义
高等结构动力学是研究结构在动力载荷作用下的响应和稳定性的学科,它主要关注结构在振动、冲击、地震等外部激励下的反应。
高等结构动力学在现代工程技术中具有重要意义,因为它可以帮助我们设计和分析各种结构,以确保它们在地震、风、水等自然灾害或人为冲击下能保持稳定和安全。
二、高等结构动力学的主要研究内容
高等结构动力学主要研究以下几个方面的内容:
1.结构动力学的基本理论:包括结构的自由振动、强迫振动和随机振动等。
2.结构动力学的数值计算方法:包括常用的有限元法、有限体积法和有限差分法等。
3.结构动力学的建模和识别:包括结构的建模、参数识别和模型更新等。
4.结构动力学的分析和设计:包括结构的动力响应分析、稳定性分析和抗震设计等。
三、高等结构动力学的应用领域
高等结构动力学在许多工程领域都有广泛的应用,包括:
1.建筑结构:包括高层建筑、桥梁、隧道和机场等。
2.机械结构:包括汽车、飞机、火车和船舶等。
3.航空航天结构:包括火箭、卫星和空间站等。
4.核电站结构:包括核反应堆、冷却塔和燃料棒等。
四、高等结构动力学的发展趋势
随着计算机技术的发展,高等结构动力学的数值计算方法越来越精确,可以更准确地模拟结构的动力响应。
同时,随着大数据和人工智能技术的发展,结构动力学的建模和识别也将更加智能化和自动化。
结构动力学课程总结与进展综述首先谈一下我对高等结构动力学课程的认识。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算。
我们是航空院校,当然我们所修的高等结构动力学主要针对的是飞行器结构。
这门课程很难,我通过课程和考试学到了不少东西,当然,也有很多东西不懂,我的研究方向是动力学结构优化设计,其中我对于目前的灵敏度分析研究比较感兴趣,这门课程是我以后学习的基础。
二十世纪中叶,计算机科学发展迅速,有限元方法得到长足进步,使得力学,特别是结构力学的研究方向发生了重大变化,研究范围也得以拓宽。
长期处于被动状态的结构分析,转化到主动的结构优化设计,早期的结构优化设计,考虑的是静强度问题。
但实践指出,许多工程结构,例如飞行器,其重大事故大多与动强度有关。
同理,在航天、土木、桥梁等具有结构设计业务的工作部门,运用结构动力学优化设计技术,必将带来巨大的经济效益。
20世纪60年代,动力学设计也称动态设计(dynamic design)开始兴起,但真正的发展则在八、九十年代,现正处于方兴未艾之际。
“动态设计”一词常易引起误解,逐被“动力学设计”所取代。
进入90年代以来,结构动力学优化设计的研究呈现出加速发展的态势,在许多方面取得了令人耳目一新的成果。
尽管如此,它的理论和方法尚有待系统和完善,其软件开发和应用与工程实际还存在着较大的距离,迄今尚存在着许多未能很好解决甚至尚未涉足的问题。
读书笔记——读《结构动力学》1.1 结构动力学计算的目的和特点结构动力学主要研究在动荷载作用下结构的位移和内力(以后统称为动力反应)的计算原理和计算方法。
结构动力分析要解决的问题有:地震作用下建筑结构、桥梁、大坝的振动;风荷载作用下大型桥梁、高层结构的震动;机器转动产生的不平衡力引起的大型机器基础的振动;车辆运行中由于路面不平顺引起的车辆振动及车辆引起的路面振动;爆炸荷载作用下防护工事的冲击动力反应等等,量大而面广。
结构动力破坏的特点是突发性、毁灭性、波及面大等。
结构动力分析的目的是确定动力荷载作用下的结构内力和变形;通过动力分析确定结构动力特性等。
结构动力学研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和方法的一门理论和技术学科。
该学科的目的在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
结构动力计算的特点为:a.动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间。
b.与静力问题相比,由于动力反应中结构的位移随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要影响。
结构动力学和静力学的本质区别为是否考虑惯性力的影响。
结构产生动力反应的内因(本质因素)是惯性力。
惯性力的出现使分析工作变得复杂,而对惯性力的了解和有效处理又可使复杂的动力问题分析得以简化。
在结构动力反应分析中,有时可通过对惯性力的假设而使动力计算大为简化,如在框架结构地震反应分析中常采用的层模型。
惯性力的产生是由结构的质量引起的,对结构中质量位置及其运动的描述是结构动力分析中的关键,这导致了结构动力学和结构静力学中对结构体系自由度定义的不同。
动力自由度(数目):动力分析中为确定体系任一时刻全部质量的几何位置所需要的独立参数的数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
1.2 载荷确定载荷有三个因素,即大小、方向和作用点。
如果这些因素随时间缓慢变化,则在求解结构的响应时,可把载荷作为静载荷处理以简化计算。
结构动力学学习总结通过对本课程的学习,感受颇深。
我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。
我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。
二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。
如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。
但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。
如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。
荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。
在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。
另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。
结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。
《高等结构动力学》读书札记一、章节概览在我研读《高等结构动力学》我对各个章节的内容进行了深入的剖析和理解,现将各章节的主要内容概述如下:第一章:绪论。
本章介绍了结构动力学的定义、发展历程和研究现状,以及它在土木工程领域的重要性和应用价值。
通过对结构动力学的基本概念的理解,为后续的深入研究奠定了基础。
第二章:结构动力学的基本原理。
主要讲述了结构动力学的基本原理,包括结构的动力特性、运动方程的建立以及动力荷载的识别和分析等。
本章对理解后续复杂结构的动力响应分析提供了基础。
第三章:振动理论与模态分析。
介绍了结构振动的分类和特征,以及模态分析的基本原理和方法。
模态分析是研究结构动力特性的重要手段,对后续研究具有重要的指导意义。
第四章:结构动力响应分析。
主要讲述了结构在动力荷载作用下的响应分析,包括强迫振动、自振、非线性振动等内容。
这些内容为分析复杂结构在各种外部荷载作用下的性能提供了重要的理论依据。
第五章:地震作用下的结构动力响应分析。
本章重点介绍了地震作用下结构的振动特性和响应分析,包括地震波的特性、地震作用下的结构响应分析方法和抗震设计的基本原理等。
第六章:风荷载作用下的结构动力响应分析。
主要介绍了风荷载的特性,以及风荷载作用下结构的振动特性和响应分析方法。
对理解和研究风力作用下的建筑结构性能提供了重要的理论依据。
在接下来的学习中,我将深入研究每一章节的内容,通过案例分析、理论推导和数值计算等方法,深入理解并掌握结构动力学的核心知识,以期将其应用于实际工程中,解决实际问题。
二、详细札记本章主要介绍了结构动力学的背景、研究内容及重要性。
结构动力学是研究结构在动态荷载作用下的响应和性能的科学。
它涉及到结构的振动、波动、稳定性以及能量传递等问题。
在实际工程中,结构动力学对于防灾减灾、桥梁设计、建筑抗震等领域具有广泛的应用价值。
本章详细阐述了结构动力学的基础理论,包括结构振动的基本原理、动力学方程的建立以及求解方法。
高等结构动力学大作业【原创版】目录1.高等结构动力学的概念和意义2.高等结构动力学的研究方法和应用3.高等结构动力学的大作业要求和内容4.高等结构动力学大作业的完成方法和技巧5.高等结构动力学大作业的实际应用案例正文一、高等结构动力学的概念和意义高等结构动力学,作为力学的一个分支,主要研究结构在动力载荷作用下的响应和稳定性。
其研究的核心目标是为了提高结构的安全性、可靠性和经济性,从而在工程设计中发挥重要作用。
高等结构动力学具有很强的理论性和实践性,对于工程技术人员来说,掌握高等结构动力学的基本理论和方法具有重要意义。
二、高等结构动力学的研究方法和应用高等结构动力学主要采用数学建模、数值分析和实验研究等方法进行研究。
数学建模是将实际问题抽象为数学模型,以便于进行理论分析;数值分析是通过计算机模拟和计算,求解数学模型,得到结构在动力载荷作用下的响应;实验研究是通过实验设备和仪器,对结构进行实际测试,以验证理论分析和数值计算的结果。
高等结构动力学的应用领域非常广泛,包括建筑结构、机械结构、航空航天结构、桥梁结构等。
在实际工程中,通过应用高等结构动力学的理论和方法,可以有效地指导工程设计和施工,提高工程质量和安全性。
三、高等结构动力学的大作业要求和内容高等结构动力学的大作业通常要求学生具备一定的理论基础和实践能力,能够独立完成结构动力学的分析和计算。
大作业的内容主要包括以下几个方面:1.对给定的结构进行数学建模和动力学分析;2.采用数值分析方法,求解结构的动力响应;3.对结构进行稳定性分析和疲劳寿命预测;4.根据计算结果,对结构进行优化设计,以提高其性能。
四、高等结构动力学大作业的完成方法和技巧1.熟悉课程教材,掌握高等结构动力学的基本理论和方法;2.根据题目要求,选择合适的数学建模方法和数值分析方法;3.认真分析题目,确定计算模型的边界条件和初始条件;4.采用适当的计算机软件或编程语言进行数值计算;5.分析计算结果,编写完整的计算报告。
结构动力学目录第一章:绪论第二章:运动方程的建立方法2.1、直接动力平衡法2.2、虚功原理2.3、Hamilton原理2.4、Lagrauge方程第三章:单自由度(SDOF)体系的振动理论(Single Degree of Freedom)3.1、自由振动:即固有振动3.2、谐振荷载响应3.3、对周期性荷载的响应3.4、对冲击荷载的响应3.5、对一般动荷载的响应3.6、非线性结构的响应3.7、状态空间法在动力学中的应用简介第四章:多自由度体系的振动理论(MDOF)4.1、自由振动4.2、动力响应的分析4.3、实用振动分析4.4、非线性结构的分析4.5、多支座扰动问题简介4.6、复模态理论简介第五章:连续弹性体系的振动理论5.1、梁、板的无阻尼自由震动5.2、梁、板的动力响应的分析5.3、波传播的分析第六章:结构随机振动理论6.1、随机过程简介6.2、谱分析理论基础6.3、地震动模型6.4、经典结构随机振动理论简介6.5、虚拟激励法第一章绪论第一节:结构动力学的研究内容和目的研究范畴:研究结构、动荷载、结构反应三者之间关系的学科,即研究动荷载作用下结构或构件内力和变形规律。
主要目的:介绍任何给定模型的结构在承受任意动荷载时所产生的应力和挠度的分析方法。
1、动力作用与静力作用动力作用:a不能忽略。
静力作用:a=0或者a 很小,可以忽略不计。
动荷载定义:大小、方向和作用点随时间而变化的任何荷载;在其作用下。
结构上的惯性力与外荷比不可忽略的荷载。
自重、缓慢变化的荷载,其惯性力与外荷比很小,分析时仍可视作静荷载。
静荷载只与作用位置有关,而动荷载是坐标和实践的函数。
2、 动荷载的类型:↗确定性→数定分析 deterministic动荷载↘非确定性→非数定分析 non deterministic↗简谐性周期性↗ ↘非简谐性确定性荷载↘ ↗冲击荷载非周期性→突加荷载↘其他确定规律的动荷载↗风荷载非确定性荷载→地震荷载↘其他无法确定变化规律的动荷载借助于傅立叶分析,任何周期荷载引用一系列简谐分量的和来表示。
1、结构动力学结构力学的一个分支,着重研究结构对于动载荷的响应(如位移、应力等的时间历程),以便确定结构的承载能力和动力学特性,或为改善结构的性能提供依据。
结构动力学同结构静力学的主要区别在于它要考虑结构因振动而产生的惯性力(见达朗伯原理)和阻尼力,而同刚体动力学之间的主要区别在于要考虑结构因变形而产生的弹性力。
理论分析:结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。
对于绝大多数实际结构,在工程分析中主要采用数值方法。
作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。
2、结构稳定分析:结构物及其构件在荷载作用下,外力和内力必须保持平衡,稳定分析就是研究结构或构件的平衡状态是否稳定的问题。
处于平衡位置的结构或构件在外界干扰下,将偏离其平衡位置,当外界干扰除去后,仍能自动回到其初始平衡位置时,则其平衡状态是稳定的;而当外界干扰除去后,不能自动回到其初始平衡位置时,则其平衡状态是不稳定的。
当结构或构件处在不稳定平衡状态时,任何小的干扰都会使结构或构件发生很大的变形,从而丧失承载能力,这种情况称为失稳,或者称为屈曲。
分析方法:在结构稳定计算中,确定临界荷载有两种基本方法:静力法和能量法。
两种方法的共同点是:根据结构失稳时可以具有原来的和新的两种平衡形式,即从平衡的二重性出发,通过寻求结构在新的平衡形式下维持平衡的荷载来确定临界荷载。
两种方法的不同点是:静力法是应用静力平衡条件,能量法则是以能量形式表示的平衡条件。
在进行稳定问题的分析计算时,首先要以变形后的结构体系作为计算模型。
针对没有变形的结构来分析结构的平衡,不考虑变形对外力效应的影响,称为一阶分析,如结构力学中的分析计算;以变形后的结构体系作为计算模型,考虑变形对外力效应的影响,称为二阶分析;结构稳定问题的计算分析原则上都应该采用二阶分析。
宁波大学研究生期末考试答题纸(答案必须写在答题纸上)
姓名:王冠琼 _____________ 学号:1111083022 ____________ 课程名称:高等结构动力学
结构动力学和静力学的本质区别为是否考虑惯性力的影响。
结构产生动力反应的内因(本质因素)是惯性力。
惯性力的出现使分析工作变得复杂,而对惯性力的了解和有效处理又可使复杂的动力问题分析得以简化。
在结构动力反应分析中,有时可通过对惯性力的假设而使动力计算大为简化,如在框架结构地震反应分析
中常采用的层模型。
惯性力的产生是由结构的质量引起的,对结构中质量位置及其运动的描述是结构动力分析中的关键,这导致了结构动力学和结构静力学中对结构体系自由度定义的不同。
动力自由度(数目):动力分析中为确定体系任一时刻全部质量的几何位置所需要的独立参数的数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
3.结构动力问题的分类
一般可以将动力荷载分为确定性荷载和非确定性荷载。
确定性荷载的变化规律是完全确定的,无论是周期的还是非周期的,它们均可以用确定性的函数来表达。
常见的确定性荷载有:简谐荷载、周期荷载、冲击荷载和持续长时间的非周期荷载。
非确定性荷载又称为随机荷载,它随时间的变化规律是预先不可以确定的,而是一种随机过程,例如,地震荷载、风荷载和作用在船舶与海洋结构物上的波浪力等。
随机过程虽然不可以表示为时间的确定性函数,但是它们受统计规律的制约,需要用概率统计的方法来研究随机荷载作用下结构振动。
此外,有些荷载具有明显的非线性性质,例如,作用在海洋结构物上的波浪力是非线性的,非线性的荷载将激起机构系统的非线性振动。
综上所述,可以将结构的动力问题划分为:
①线性确定性振动,即结构自身是线性的并且承受线性荷载的作用;
②线性随机振动,即结构自身为线性的,荷载为随机的;
③非线性确定振动,即结构系统自身性质或者荷载为非线性的;
④非线性随机振动,即结构系统自身性质为非线性的而荷载为随机的,或者为非线性随机荷载。
4.结构系统的动力自由度及其离散
动力问题的特点之一是要考虑结构体系的惯性力,所以在确定计算简图时,必须明确系统的质量分布及其可能发生的位移,以便全面合理地确定系统的惯性力。
系统振动时,确定任一时刻全部质量位移所需要的独立的几何参变量的数目,称为结构系统的动力自由度。
要准确地描述系统的惯性力,合理地选择动力自由度是十分重要的。
一切结构系统都具有分布质量,因而都是无限自由度系统。
但是除了某些简单的结构可以作为无限自由度处理以外,大多数的工程结构作为无限自由度计算将是极其困难的。
在结构动力计算时,为了避免过于繁杂和数学上的困难,一般将结构处理为有限自由度系统,这一过程称为结构系统的离散。
以下是几种常用的离散方法:
1)集中质量法图1-1简支梁上有•三个较重的质量,其质量远大于梁结构自身的质量。
若将梁的质量也集中到这些质量块上,则转化为有若干个质量块的有限自由度系统。
对于在平面内振动的质量块,存在三个自由度即两个线位移和一个转角,相应地,每个质量块便有两个惯性力和一个惯性转矩,如果质量块的尺寸相对于梁的长度是较小的,
则可以忽略质量块的尺寸效应,即不计惯性转矩。
因而转角也就可以不作为动力自由
某些情况下梁上没有较重的质量块,,只存在分布质量m(x),也可以将其近似处理为有限自由度系统。
例如,图1-2所示的非均匀断而梁,分为三段,每段的质量分布分别为:l i段为m。
不计质量沿梁轴向的位移,可以将其处理为仅有竖向位移的两个自由度系统。
离散方法是将每段总质量的一半分别集中于各该段的两端。
离散结果是:
m( wi j 2 + 鳩£ f [). FMg =专(斤仃h + Jrt〕心)
® 1-1 ^1-2
2)广义位移法
对于梁上仅有分布质量的系统,为了提高计算精度,可以采用广义位移法。
以
图1-2中的简支梁为例,设在初始时刻梁的挠曲线为y(x,t o),将其展开为三角级数
>^j)=另纵(厲&口(1-1)
此处t为梁的长度;若给出系数a n(t o),则初始的全部质点的位置随之确定。
一般来说, 用有限个低频正弦波叠加来表达挠曲线的形状,可以具有足够的精度。
如果取前三项,即卩
)3in 节 + a3(£0)sin + «j(t u)sin —(12)
■dj(t
通过式(1-2),将无限自由度系统转化为三个自由度系统。
此处,a1(t o),a2(t o), a3(t o)是确定梁的形状即全部质点位置的三个相互独立的坐标。
3)有限单元法
与静力问题中的有限单元法一样,结构动力问题也可以采用有限单元法进行离
散。
有限单元法综合了集中质量法和广义坐标法的特点。
用有限单元法分析动力问题,是以结构结点的位移表达结构上各个点的位移状态。
首先将整体结构划分为一系列的单元,单元间以结点相连接,结点的位移便是决定结构系统中全部质点位置的独立坐标。
在采用有限单元法离散时,不在整个梁的范围内取有限个函数项的和作为全梁某时刻的挠曲线,而是在各个单元范围内假设两结点之间的挠曲线,该挠曲线称为位移函数或者插值函数,其确定了单元位移的形状,它的表达式包含若干个参数。
位移函数在单元内部保持光滑连续,并且在单元两端满足支承和变形连续条件。
根据这些条件,可以将位移函数中的参数通过
为:
6(T -V)df +「SW= 0
哈密顿原理说明:在任何时间区间t;到t:内,动能和位能的变分加上所考虑的非保守力所做的功的变分必须等于零。
这个原理的应用直接导出任何给定系统的运动方程。
这个方法和虚功原理方法的区别在于:在这个方法中,不明显使用惯性力和弹性力,而分别被动能和位能的变分项所代替。
因此,这种建立运动方程的方法的优点是,
它只和纯粹的标量即能量有关,而在虚功分析中,被用来计算功的力和位移却都是矢量。
需要指出的是,根据哈密顿原理可以导出拉格朗日第二类方程。
学习体会:
结构动力学解决力学问题的时候都是通过建模的手段,从现实问题近似得到力学模型,再到数学模型,最后用数学方法求解的。
力学问题种类很多,在看到一个题目时,首先要静下心来分析,它涉及到哪方面的知识点,比如是静力学、运动学还是动力学?接下来再看在这个物理或力学过程中有没有哪些物理量是守恒的、几何结构上是不是对称的等等,以便能简化问题, 最后是探求已知量和未知量的联系,一般都是通过微分方程,到此为止力学上的分析过程就差不多了。
另外,在求解过程中,要注意把数学方法和物理意义紧密联系在一起,还要灵活应用,就一定能掌握这门课程。
第5 页,共5页。