Fourier变换-习题课
- 格式:ppt
- 大小:659.00 KB
- 文档页数:17
《积分变换》第一章 Fourier 变换 §.1 Four ier 积设f T (t)以T 为周期,在[-? T"]满足Dirichletf T (t)=亚 + 瓦 I a ^ jbne jn® t2 n =1 L 2变换是数学的灵魂.我们经常利用变换把复杂运算转化为简单运算.例如,解析几何中的坐标变换、复变中的保角变换,四则运算中利用对数变换可将积与商转化为加与减:alg(ab ^lg ^lgb, lg -^lg ^lgb.再取反对数变换复原.b积分变换 T:A T B , T(f) = F(U a f (t)K(t,d )dt ,af(t)壬 A 象原函数,F©)- B ――象函数,K(t,a )——核.它实现了从函数类A 到函数类B 的变换.在一定条件下可逆.积分变换是应用性很强的数学工具,在数学和其它学科中均有应用.主要应用:a .求解线性微分方程(组);b 信号处理.第一类间断点;20只有有限个极值点.则在[- p£]的连续点t 处,有 f T (t)二並+ 2+瓦(a n cosn® t 十 b nn =1sin n ⑷t), 其中2一〒, 21 =T, Ia nb n %T 』巧 f T (t)cos n ⑷ tdt, 2 T /=—f T (t)sin n« tdt,T /2(n =0,1,2,3,…) (n - 1,2,3/ ) 利用Euler 公式,转化成复数形式:cos® =丄(e" + e j) 2 ,sin® -1(e W e j 、 2j (…)收敛条件, 即: 10连续或只有有限个+ a n + jb n -j n « t2V f /T —j n T.b "I j«n t二心f 心d丁-T Tf T (t )=f (t ), tq 〒 2】.1 母-母.,"I ■. t—石J 亠卩亠fC )ej e*, t 匸(-处,+处),(3).称为Fourier 积分公式.它成立的条件如下.Fourier 积分定理.若f (t)在(S +处)上满足:1。
可编辑修改精选全文完整版工程数学 积分变换(第四版 张元林 编)课后习题答案编辑者:余小龙第一章:Fourier 变换习题一解答1、证:利用Fourier 积分变换的复数形式,有⎰⎰+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)( ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=ωτωτωττπωd e d j f t j )sin )(cos (121[]⎰+∞∞-+-=ωωωωωd t j t jb a )sin (cos )()(21 由于)()(ωω-=a a , )()(ωω--=b b , 所以⎰⎰+∞∞-+∞∞-+=ωωωωωωtd b td a t f sin )(21cos )(21)(⎰⎰+∞+∞+=ωωωωωωtd b td a sin )(cos )(0。
注:本题也可以由Fourier 积分公式的三角形式得到证明。
2、解:(1)此题亦可写成⎩⎨⎧-=.0,1)(2t t f .1;1>≤t t 它是一个连续的偶函数,利用Euler 公式和分部积分法,由Fourier 积分公式的复数形式,有 ⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-⎥⎦⎤⎢⎣⎡-=ωτωττπωd e d t j 102cos )1(1ωωωττωωτωωττωωτπωd e tj 1232sin sin 2cos 2sin 1⎰∞+∞-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--==ωωωωωπωd e t j ⎰+∞∞--3)cos (sin 21=⎰+∞∞-+-ωωωωωωωπd t j t )sin (cos cos sin 23ωωωωωωπtd cos cos sin 403⎰+∞-= (2)函数)(t f 为一连续函数,用类似于(1)的方法,有⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-+∞--⎥⎦⎤⎢⎣⎡=ωττπωωττd e d e e t j j 02sin 21 ⎰⎰+∞∞-+∞+-⎥⎦⎤⎢⎣⎡=ωττπωτωd e d e t j j 0)1(2sin 21 {}()()⎰∞+∞-+∞+-⎥⎥⎦⎤⎢⎢⎣⎡++--+-=ωωττωπωτωd e j j e tj j 02)1(412cos 22sin )1(21 ⎰+∞∞-+-=ωωωπωd e j tj 252212[][]⎰∞+∞-+--+---=ωωωωωωωωωπd t j t j j j )sin (cos 2)5(2)5(2)5(1222⎰∞+∞-+---++-=ωωωωωωωωωωωπd tj t j t t 222224)5(cos 2sin )5(sin 2cos )5(1⎰∞+∞-+-+-=ωωωωωωωπd tt 432625sin 2cos )5(2(3)可以看出)(t f 为奇函数,且-1,0,1为其间断点。
1-1利用fourier 变换,由时域形式的Maxwell方程导出其频域形式解:时域形式的Maxwell方程为:∇×H(r,t)=J(r,t)+ðD(r,t)ðt∇×E(r,t)=−ðB(r,t)ðt∇∙B(r,t)=0∇∙D(r,t)=ρ(r,t) Fourier变换的定义为F(ω)=∫f(t)+∞−∞e−iωt dt 将第一个方程两边同时进行Fourier变换得:∫∇×H(r,t) +∞−∞e−iωt dt=∫[J(r,t)+∞−∞+ðD(r,t)ðt]e−iωt dt对矢量场某点先取旋度再积分等于先积分再取旋度,整理得:∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+∫ðD(r,t)ðt+∞−∞e−iωt dt由于∫ðD(r,t)ðt+∞−∞e−iωt dt=∫e−iωt+∞−∞dD(r,t)=e−iωt D(r,t)|−∞+∞+iω∫D(r,t)+∞−∞e−iωt dt由Fourier 变换的绝对可积的条件可得:e−iωt D(r,t)|−∞+∞=0故∫ðD(r,t)ðt+∞−∞e−iωt dt=iω∫D(r,t)+∞−∞e−iωt dt∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+iω∫D(r,t)+∞−∞e−iωt dt因此:∇×H(r,ω)=J(r,ω)+iωD(r,ω)同理可得∇×E(r,ω)=−iωB(r,ω)∇∙B(r,ω)=0∇∙D(r,ω)=ρ1-2:各向异性的介电常数为ε̅=ε0[720240003]当外加电场强度为 (1) E 1=e x E 0 (2) E 2=e y E 0 (3) E 3=e z E 0(4) E 4=E 0(e x +2e y ) (5) E 4=E 0(2e x +e y ) 产生的电通密度。