ABC分类法:P-Q图分析(1)
- 格式:docx
- 大小:19.70 KB
- 文档页数:4
什么是ABC分类法ABC分类法又称帕累托分析法或巴雷托分析法、柏拉图分析、主次因素分析法、ABC 分析法、ABC法则、分类管理法、重点管理法、ABC管理法、abc管理、巴雷特分析法,它是根据事物在技术或经济方面的主要特征,进行分类排队,分清重点和一般,从而有区别地确定管理方式的一种分析方法。
由于它把被分析的对象分成A、B、C三类,所以又称为ABC分析法。
ABC分类法是由意大利经济学家维尔弗雷多·帕累托首创的。
1879年,帕累托在研究个人收入的分布状态时,发现少数人的收入占全部人收入的大部分,而多数人的收入却只占一小部分,他将这一关系用图表示出来,就是著名的帕累托图。
该分析方法的核心思想是在决定一个事物的众多因素中分清主次,识别出少数的但对事物起决定作用的关键因素和多数的但对事物影响较少的次要因素。
后来,帕累托法被不断应用于管理的各个方面。
1951年,管理学家戴克(H.F.Dickie)将其应用于库存管理,命名为ABC法。
1951年~1956年,约瑟夫·朱兰将ABC法引入质量管理,用于质量问题的分析,被称为排列图。
1963年,彼得·德鲁克(P.F.Drucker)将这一方法推广到全部社会现象,使ABC法成为企业提高效益的普遍应用的管理方法。
ABC分类法应用说明ABC分类法是根据事物在技术、经济方面的主要特征,进行分类排列,从而实现区别对待区别管理的一种方法。
ABC法则是帕累托80/20法则衍生出来的一种法则。
所不同的是,80/20法则强调的是抓住关键,ABC法则强调的是分清主次,并将管理对象划分为A、B、C三类。
1951年,管理学家戴克首先将ABC法则用于库存管理。
1951年至1956年,朱兰将ABC法则运用于质量管理,并创造性地形成了另一种管理方法——排列图法。
1963年,德鲁克将这一方法推广到更为广泛的领域。
1.ABC法则与效率面对纷繁杂乱的处理对象,如果分不清主次,鸡毛蒜皮一把抓,可想而知,其效率和效益是不可能高起来的。
物流系统规划和设计实验报告院系:研究生部专业:物流工程班级:1543班学生姓名:李林伟学号:1508524089任课老师:周三元2015年11月25日物流设施规划与设计关键词:SLP ABC 从至表一,实验目的掌握几种布局的方法,了解物流设施规划与设计的含义及程序和设施系统布置设计要素与模式,掌握物流设施布置规划的分析方法与技术,学会物流设施布置方案的评价与选择。
二,实验步骤(1)原始数据采集在物流分析之前,必须搜集完备所研究的系统范围内有关的原始数据,并弄清物料的种类、性质和数量,因为物料数量与特征它决定了物料装运的程序和方法。
同时,只有将物料归类,才能使物流系统分析简化。
(2)计算物流量,对物料进行分类。
找到一个标准,将各种物料经过折算都变成标准的倍数或系数,即折算成统一量,将会使分析和计算大为简化。
这个折算成的统一量就称为当量物流量。
当量物流量是按照规定标准修正和折算的运输量。
在实际工作中物料通常按可运性的物理特征进行分类,其分类依据是外形尺寸、重量、形状、损坏可能性、状态、数量、时限等七种主要因素。
(3)绘制P-Q图,进行ABC分析。
其中P代表物料种类,Q代表物流量(当量物流量)。
根据每一种物料Pi(i=l,2…,n)其对应点Qi,即可画出由直方图表示的P-Q图对P-Q图进行ABC分类,一般A类物料占总品种数的5%-10%,物流量占70%以上;B类物料占总品种数的20%左右,物流量占20%左右;C类物料占总品种数的70%以上,其物流量仅占5%-10%左右。
上述百分比不是绝对的。
物流系统分析与设计以及管理的重点也按ABC分类进行。
这样做可以抓住重点,有利于分析与设计的进行。
必要时,可忽略C类物料。
(4)绘制工艺流程图在品种多且批量较大的情况下,将各种产品的生产工艺流程汇总在一张表上,就形成多种产品工艺过程表,在这张表上各产品工艺路线并列绘出,可以反映出各个产品的物流路径。
(5)物流连线图通常用简单几何要素图形如圆或菱形等表示工作单位,如各种车间、仓库、车站等,然后工作单位之间用线连起来就表示各条物流路线,然后再用连线多少,线的颜色、线外旁注等表示物流量、物流起止点、流向等,但也不能将此物流的特性和参数全都表达清楚,只能大体说明问题。
瓜豆原理原理概述俗语云“种瓜得瓜,种豆得豆”,数学上有“种线得线,种圆得圆”:平面内,动点Q 随着动点P 的运动而运动,我们把点P 叫做主动点,点Q 叫做从动点;当这两个动点与某个定点连 线的夹角一定,且与该定点距离之比一定时(简记为“定角、定比”),易判断两个动点与定点构成的三角形形状一定,大小可能变,此时两个动点的轨迹形状相同,瓜豆问题的本质是 旋转、相似(包含全等)变换,往往与共点旋转(手拉手)模型相结合,考查类型有: (1)确定动点轨迹;(2)求运动路程;(3)求线段最值、面积最值等.基本模型一、种直线得直线(主动点与从动点的轨迹都是直线或直线上一部分) 1.图1 图2如图1,已知l 为定直线,O 为直线外一定点,P 为直线l 上一动点,连接OP ,若Q 为直线 OP 上一点(一般在线段OP 上),且Q 点到O 点的距离与P 点到O 点的距离之比为定值k (k >0且k ≠1),即k OP OQ=,此时我们可认为Q 、P 两点与定点O 连线的夹角一定(夹角为0°),符合瓜豆原理“定角、定比”的条件,因而Q 点的运动轨迹也是直线;如图2,另取 一组对应的点P ’、Q ’,则k O PO Q P O Q O =='',因而△OQ ’Q ∽△OP ’P ,相似比为k ,可知从动点Q 在平行于l 的直线m 上运动.易判断点O 到直线m 和l 的距离之比也等于k. 2.图1 图2如图1,已知l 为定直线,O 为直线外一定点,P 为直线l 上一动点,将射线OP 绕着点O 按 确定的方向(如顺时针)旋转一个确定的角度α(0<α<180°),得到射线OM ,在射线 OM 上取一点Q ,使k OP OQ=(k 为大于0的定值),此时符合瓜豆原理“定角、定比”的条件, 因而Q 点的运动轨迹也是直线;如图2,另取一组对应的点P ’、Q ’,则Q 点的运动轨迹即 为直线QQ ’,∵∠POQ=∠P ’OQ ’=α,∴∠POP ’=∠QOQ ’,又∵k P O Q O O P O Q=='',∴△OPP ’∽△OQQ ’.特别的,当k=1时,△OPP ’≌△OQQ ’.k ≠1时,△OQQ ’可看做由 △OPP ’绕着O 点旋转并放缩(0<k <1时缩小,k >1时放大)而来.直线QQ ’可看做由直 线l 绕着点O 顺时针旋转α角而来,0<α<90°时,两直线的夹角即为α.典型例题1-1如图,在平面直角坐标系中,A (4,0),B 为y 轴正半轴上 一动点,以AB 为一边向下作等边△ABC ,连接OC ,则线段 OC 的最小值为_________.【分析】B 为主动点,C 为从动点;方法一:与从动点有关的线段最值,优先转化为与主动点有关的线段最值,将线段OA 绕着点A 顺时针旋转60°,得到线段O ’A ,构造全等三角形可实现线段的转化;方法二:两动点与定点A 连线的夹角为定值(60°),到点A的距离之比为定值1(即CA:BA=1),符合瓜豆原理“定角、定比”的特征,主动点B 的轨迹为射线,则从动点C 的轨迹也为射线,确定其轨迹后,依据“垂线段最短”求OC 得最小值.【解答】方法一:如图1,将线段OA 绕着点A 顺时针旋转60°,得到线段O ’A ;连接O ’B ,易证△AO ’B ≌△AOC ,则OC=O ’B ,即求O ’B 的最小值;由于O ’为定点,点B 在y 轴正半轴上运动,如图2,由垂线段最短,知O ’B ⊥y 轴时,O ’B 最小,连接OO ’,则 △AOO ’为等边三角形,作O ’H ⊥OA 于H ,此时O ’B=OH=21OA=2,即OC 的最小值为2.图1 图2 方法二:如图3,当点B 位于原点时,对应的点C 位于1C (2,-23)处,当点B 位于2B (0,334)时,对应的点C 位于2C (0,-334) 处,则点C 的运动轨迹为射线21C C ,当OC ’⊥21C C 时,OC ’ 最小;易证△O AB 2≌△12C AC ,∴∠12C AC =∠O AB 2=60°, 则∠C OC '2=60°,∴OC ’=223OC =2,即OC 的最小值为2.【小结】1.动点引起的最值问题,经常需要确定动点轨迹; 图3 2.两种方法中,均有两个等边三角形构成“共点旋转(手拉手)”模型,会伴随产生一组全等三角形;3.方法二中,由于从动点的轨迹为射线,因而先确定其端点,再找一组特殊位置的主动点和从动点(目的是便于计算),即可确定从动点的轨迹;4.严格来说,y 轴的正半轴不包括原点,因此C 点的轨迹不包括点1C .典型例题1-2如图,正方形 ABCD 的边长为4,动点E 从A 点出发,沿着AB 边向终点B 作无折返运动,连接DE ,以DE 为边向右上方作正 方形DEFG ,则点E 在整个运动过程中,点F 经过的路径长为______.【分析】E 为主动点,F 为从动点,依据正方形的性质,两动点与定点A 的连线夹角恒为45°,且始终有DF :DE=2,符合瓜豆原理“定角、定比”的特征,故F 点的运动轨迹为线段,由临界情况确定该线段的两个端点,结合“共点旋转(手拉手)”相似模型,运用相似比计算该线段长.【解答】如图1,连接BF 、BD 和DF ,由正方形的性质知D ED F D A DB==2,图1∠BDA=∠FDE=45°,则∠ADE=∠BDF ,∴△DAE ∽△DBF ,∴BF=2AE , 当E 点位于A 点处时,F 点位于B 点处,当E 点位于B 点处时,F 点的 位置如图2,则F 点的运动轨迹即为图2中的线段BF ,BF=2AB=42,即点F经过的路径长为42.图2【小结】1.图1中,△DAB与△DEF构成“共点旋转(手拉手)”模型,伴随产生一组相似三角形(△DAE和△DBD);2.瓜豆题型的突破口在于找到从动点、主动点和某定点之间的“定角、定比”关系.变式训练1-1如图,△ABC为等边三角形,AB=4,AD为高,E为直线AD上一动点,连接CE并以CE为边向下作等边△CEF,连接DF;则点E在运动的过程中,线段DF的最小值为_________.变式训练1-2(原创)如图,在△ABC中,∠A=105°,∠ABC=30°,AC=2,动点D从A点出发,沿着AC边向终点C作无折返运动,以BD为边向上作△BDE,使∠BDE=∠A,且∠E=45°,则点D运动的整个过程中,点E运动的路径长为________;F为直线CE上一动点,连接BF,则线段BF的最小值为_______.变式训练1-3(多种方法)如图,已知AB=12,点C在线段AB上,且AC=4,以AC为一边向上作等边△ACD,再以CD为直角边向右作Rt△DCE,使∠DCE=90°,F为斜边DE的中点,连接DF,随着CE边长的变化,BF长也在改变,则BF长的最小值为_________.二、种曲线得曲线(主动点与从动点的轨迹都是双曲线或双曲线一部分)其原理与模型一类似,不再赘述,直接看例题:典型例题2-1如图,点A 是双曲线xy 4=在第一象限上的一动点,连接AO并延长,交双曲线的另一支于点B ,以AB 为斜边作等腰Rt △ABC , 点C 落在第二象限内,随着点A 的运动,点C 的位置也在不断变化, 但始终在同一函数图像上,则该函数解析式为___________. 【分析】A 为主动点,C 为从动点;方法一:根据点C 坐标判断,连接CO 过点C 向x 轴作垂线段,构建“三垂直”模型,设点A 坐标,表示出点C 坐标,观察其坐标符合的函数解析式; 方法二:根据反比例函数k 的几何意义判断;方法三:动点A 、C 与定点O 符合瓜豆原理“定角、定比”的特征,因而点C 的轨迹是双曲线的一支,任意的点C 均可看做对应的点A 绕着点O 逆时针旋转90°而来,因而点C 的轨迹可看做由原双曲线第一象限的一支绕点O 逆时针旋转得到. 【解答】方法一:连接OC ,作CD ⊥x 轴于点D ,AE ⊥x 轴于点E ,由双曲线的对称性知OA=OB ,又∵△ABC 为等腰直角三角形,∴CO ⊥OA ,CO=OA ,则易证△COD ≌△OAE ,设A (a,a 4),则C (-a 4,a ),易判断点C 在反比例函数y=-x 4(x <0)上,故答案为:y=-x4(x <0). 方法二:辅助线同方法一,由反比例函数k 的几何意义知COD AOE S S ∆∆==2,易判断点C 在反比例函数y=-x4(x <0)上. 方法三:点C 的轨迹可看做由原双曲线第一象限的一支绕点O 逆时针旋转得到,因而新反比例函数的k 与原函数k 互为相反数,故点C 在反比例函数y=-x 4(x <0)上. 变式训练2-1如图,Rt △ABO 中,∠AOB=90°,点A 在第一象限、点B 在第四象限, 且AO :BO=1:,若点A (x 0,y 0)的坐标x 0,y 0满足y 0=,则点B (x ,y )的坐标x ,y 所满足的关系式为 .三、种圆得圆(主动点与从动点的轨迹都是圆或圆弧) 1.图1 图2如图1,已知点P 为⊙M 上一动点,O 为定点(一般在圆外),Q 为直线OP 上一点(一般在线段OP 上),若OP OQ=k (k >0且k ≠1),则主动点P 、从动点Q 与定点O 符合“定角(0°)、定比”特征,因而Q 点的轨迹也是圆,如何确定该圆的圆心和半径呢?如图2,连接MP 、MO ,作QN ∥PM ,交MO 于点N ,则△OQN ∽△OPM ,从而有MPNQO PO Q OM O N ===k,由于M 、O 为定点,k 为定值,∴N 为定点,设⊙M 半径为R ,⊙N 半径为r ,∵NQ=kMP=kR,∴NQ 长为定值,由圆的定义知,点Q 在以N 为圆心,kR 长为半径的圆上运动,即Q 点的轨迹是以N 为圆心,kR 长为半径的圆. 2.图1 图2如图1,已知点P 为⊙M 上一动点,O 为定点(一般在圆外),将射线OP 绕着点O 按确定的方向(如顺时针)旋转一个确定的角度α(0<α<180°),得到射线OT ,在射线OT 上有一点Q ,满足OP OQ=k (k 为大于0的常数),则主动点P 、从动点Q 与定点O 符合“定角、定比”的特征,因而Q 点的轨迹也是圆,如何确定该圆的圆心和半径呢?如图2,连接MP 、MO ,将射线OM 绕点O 顺时针旋转α角,得到射线OS ,在射线OS 上取一点N ,使OM ON =k,则N 为定点,易证△OQN ∽OPM ,则O PO QPM Q N=k ,∴QN=kPM=kR,则QN 为定值,由圆的定义知,点Q在以N 为圆心,kR 长为半径的圆上运动,即Q 点的轨迹是以N 为圆心,kR 长为半径的圆.特别的,当k=1时,△OQN ≌OPM ,⊙N 和⊙M 为等圆,⊙N 可看做由⊙M 绕着点O 顺时针旋转α角而来;当k ≠1时,⊙N 可看做由⊙M 绕点O 顺时针旋转α角,且半径放缩k 倍(0<k <1时缩小,k >1时放大)而来.典型例题3-1如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,点D 是以点A 为圆心4为半径的圆上一动点,连接BD ,点M 为BD 中点,线段CM 长度的最大值为________.【分析】方法一:关联三角形法,取AB 的中点E ,连接EC 、EM 和AD ,放到△CEM 中求解CM 的范围,三点共线时取最大值; 方法二:辅助圆法,从动点相关的线段优先转化为主动点相关的线段,将线段BC 加倍延长,借助中位线构造出2CM ,即求2CM 的最大值; 方法三:符合瓜豆原理基本模型,确定从动点M 的轨迹圆,进而求CM 的最大值.【解答】方法一:如图1,取AB 的中点E ,连接EC 、EM 和AD ,∵M 为BD 的中点,∴EM 为△BAD 的中位线,∴EM=21AD=2;∵∠ACB=90°,∴CE=21AB=5,CM ≤CE+EM ,即CM ≤7,当且仅当C 、E 、M 共线时(如图2),CM 取得最大值7.图1 图2方法二:如图3,延长BC 至点F ,使CF=BC ,则F 为定点,连接DF ,则CM 为△BDF 的中位线,∴FD=2CM ,当FD 最大时,CM 最大;如图4,连接FA 并延长,与⊙A 交于点D ,此时FD 最大,易知AF=AB=10,则此时FD=14,对应CM 的最大值即为7.图3 图4方法三:主动点D 、从动点M 与定点B 符合“定角(0°)、定比”特征,因而点M 的轨迹为圆;如图5,连接AD ,∵M 为BD 的中点,∴取AB 得中点E ,连接EM ,可知E 为定点且EM=21AD=2,根据圆的定义知,点M 的轨迹为以E 为圆心,2为半径的圆;如图6,∵C 为⊙E外一定点,∴连接CE 并延长,与⊙E 交于点M ,此时CM 最大,此时CM=CE+EM=7.图5 图6【小结】以上方法中,辅助线均有一举多得之妙,我们可总结出一些常见的辅助线作法: ①出现直角三角形:常作斜边的中线;②出现直角三角形:常倍长直角边,构造等腰三角形;③出现线段中点:常取另一线段的中点,构造中位线;④出现线段中点:常倍长另一线段,构造中位线.典型例题3-2(改编)如图,△ABC 中,AB=3,AC=2,以BC 为斜边作等腰Rt △BCD (与△ABC 分布在直线BC 的两侧),连接AD ,则线段AD 的最大值为___________.【分析】方法一:∵△BCD 为等腰直角三角形,∴以AB 为斜边向下作等腰直角三角形,与△BCD 构成“共点旋转(手拉手)”模型,伴随产生一组相似三角形,用“关联三角形”法求出AD 的最大值.方法二:不妨固定AB 边,则主动点C 在以A 为圆心,2为半径的一段圆弧上运动,它与从动点D 、定点B 符合“定角、定比”特征,借助模型确定D 点的轨迹圆弧,求出AD 的最大值.【解答】方法一:如图1,以AB 为斜边向下作等腰Rt △BAE ,连接DE ,则△BAE ∽△BCD ,从而易证△BAC ∽△BED ,∴21==ABBE AC DE,∴DE=2AC =2,又AE=2232=AB ,∴AD ≤AE+DE ,即AD ≤225,如图2,当且仅当A 、E 、D 三点共线时,AD 取得最大值,最大值为225.图1 图2方法二:如图3,假定AB边固定,则主动点C在半圆(不包括端点G、H)上运动,从动点D可看作由主动点C绕着点B顺时针旋转45°,且到点B的距离缩至22倍而来,则将主动圆心A按照相同的操作可得到从动圆心F,从动圆的半径缩小至主动圆半径的22(即构造△BDF∽△BCA,与构造“手拉手”模型本质相同),D点在如图所示的半圆(不包括端点I、J)上运动,A为⊙F外一定点,∴当A、F、D共线时,AD最大,最大值为AF+DF=225. 图3【小结】1.方法一与方法二实质相同,只是方法二多了确定主动点轨迹、从动点轨迹的过程;2.由图2可知,当AD取得最大值时,∠BAC=∠BDE=90°,∠BAD=∠CAD=45°,因而可以变换多种问法,如当AD取得最大值时,求∠BAD、∠BAC的大小,求BC长、BD长等;3.本题可稍稍加大难度,将“求AD得最大值”改为“求△ABD面积的最大值”(答案为4269 ,方法见视频讲解);4.许多同学误将主动点和从动点的轨迹判断为完整的圆,虽不影响结论,但不够严谨.5.共点旋转与瓜豆可谓形影相伴模型,很多题往往用两种方法均可解答;变式训练3-1如图,一次函数y=2x与反比例函数y=xk(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,连接AP,Q是AP的中点,连接OQ,已知OQ长的最大值为23,则k的值为______;BQ的最大值为________.变式训练3-2(原创)如图,在平面直角坐标系中,圆心在x轴正半轴上的⊙M交x轴的负半轴于点A(-1,0),交y轴正半轴于点B(0,3),交y轴负半轴于点C,动点P从点B出发,沿着⊙M顺时针向终点C做无折返运动,D(-2,0),在点P运动过程中,连接DP,Q为线段DP上一点且始终满足PQ=2DQ,则在整个运动过程中,点Q经过的路径长为_______;线段DQ扫过的区域面积为________.变式训练3-3(原创)如图,在平面直角坐标系中,A(2,0),B(-1,0),以OA为直径的圆上有两个动点C、D,连接BC,并以BC为直角边向逆时针方向作Rt△BCE,使∠CBE=90°,∠BEC=30°,连接CD、ED和BD,则C、D两点的位置在变化的过程中,△BCE面积的最大值与最小值之差为_______;线段DE的最小值为_________;当∠EBD最大时,线段BE和CD的数量关系是_____________.中考真题6在第二象限分支上的一个动点,连接AO并延长交另一分支于1.如图,点A是双曲线y=-x点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点Ck上运动,则k的值为()的位置也不断变化,但点C始终在双曲线y=xA.1B.2C.3D.42.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3B.C.D.43.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A 到点C的运动过程中,点E的运动路径长是.4.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.5.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿着半圆从点A运动到点B时,点M运动的路径长为.6.如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为.7.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.8.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE=CF;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.参考答案变式训练1-1 1.变式训练1-2262+;2622+.变式训练1-3 6.变式训练2-1 y=-x2.变式训练3-12532,1051452+.变式训练3-298π;27839π+. 变式训练3-343;3-3;BE=3CD. 中考真题1.B2.C3.3344.D5.π6.33π7.25 8.(1)证明:如图1,由题意知:∠EDF=90°,ED=DF ,∵四边形ABCD 是正方形,∴∠ADC=90°,AD=CD ,∴∠ADC=∠EDF , 即∠ADE+∠EDC=∠EDC+∠CDF ,∴∠ADE=∠CDF ,在△ADE 和△DCF 中, ∵,∴△ADE ≌△DCF ,∴AE=CF ;(2)如图2,过F 作OC 的垂线,交BC 的延长线于P , ∵O 是BC 的中点,且AB=BC=2,∵A ,E ,O 三点共线,∴OB=,由勾股定理得:AO=5,∵OE=2,∴AE=5﹣2=3,由(1)知△ADE ≌△DCF , ∴∠DAE=∠DCF ,CF=AE=3,∵∠BAD=∠DCP ,∴∠OAB=∠PCF , ∵∠ABO=∠P=90°,∴△ABO ∽△CPF ,∴==2,∴CP=2PF ,设PF=x ,则CP=2x ,由勾股定理得:32=x 2+(2x )2, x=或﹣(舍去),∴FP=,OP=+=,由勾股定理得:OF==,(3)方法一:如图3,由于OE=2,所以E 点可以看作是以O 为圆心,2为半径的半圆上运动,延长BA 到P 点,使得AP=OC ,连接PE ,∵AE=CF ,∠PAE=∠OCF ,∴△PAE ≌△OCF , ∴PE=OF ,当PE 最小时,为O 、E 、P 三点共线, OP===5,∴PE=OF=OP ﹣OE=5﹣2,∴OF 的最小值是5﹣2.方法二:如图4,连接OD ,将△ODE 绕点D 逆时针旋转90°得到△IDF ,连接OI 、OF , 在Rt △OCD 中,OD=22CD OC +=5,在Rt △ODI 中,OI=22ID OD +=52,∵OF ≥OI-FI ,而 FI=OE=2,∴OF ≥52-2,即OF 的最小值是5﹣2.。
ABC分类法:P-Q图分析
某企业拟新建一机械加工分厂,计划生产的零件及其当量物流量如下表所示,假定这十种零件的生产工艺具有一定的相似性。
要求完成以下内容:
绘制P——Q图;
请根据以上数据资料,对新建工厂的设施(设备)布置形式进行分析决策。
3.结合本案例,谈谈企业在设施布置时应遵循的原则。
解:1. 绘制物流种类——物流量直方图(P——Q图):
2.分析决策:
(1)按照工作流程形式分类,企业设施(设备)布置形式有四种:
工艺原则布置形式、产品原则布置形式、定位布置形式和成组技术布置形式。
各种形式的特点和适用范围如下:
工艺原则布置形式又称为机群布置或功能布置,是一种将相似设备或功能集中布置在一个地方的布置形式。
特点是运输环节多、搬运路线长、运输费用高,它适用于物流量相对较小的多品种、小批量生产方式;
产品原则布置形式又称生产线布置,是一种根据产品制造的步骤安排设备或工作过程的方式。
特点是运输距离最短,运输费用低,它适用于物流量大的少品种、大批量生产方式;
定位布置形式适用于产品体积或重量庞大的情况,如飞机厂、造船厂等;
成组技术布置形式是将不同的机器组成加工中心(或工作单元),对形状和工艺相似的零件进行加工。
它适用于中小批量生产。
(2)计算各零件的当量物流量的比率及累计百分率,进行ABC分类。
根据ABC分类法的分类原则,经过计算与分析,确定零件A、
B为A类零件,零件C、D、E为B类零件,其余的为C类零件。
(3)本案例中,A类零件虽然只有两种,但当量物流量却占到了总物流量的55.9%,属于少品种、大批量类型,宜采用产品原则布置形式;C类零件虽然有五种,但当量物流量却只占总物流量的10.7%,属于多品种、小批量类型,宜采用工艺原则布置形式;B类零件介于两者之间,宜采用成组技术布置形式。
具体来说,新建工厂的设施(设备)布置决策方案是:用于生产制造A、B两类零件的设施,宜采用产品原则布置形式;用于生产制造C、D、E三类零件的设施,宜采用成组技术布置形式;用于生产制造F、G、H、I、J五类零件的设施,宜采用工艺原则布置形式。
3,企业在设施布置时应遵循以下原则:
1)符合工艺过程的要求,尽量使生产对象流动通畅,避免工序间的往返交错,使设备投资最小,生产周期最短。
2)最有效的利用空间,使场地利用达到适当的建筑占地系数(建筑物、构筑物占地面积与场地总面积的比率),使建筑物内部设备的占有空间和单位制品的占有空间较小。
3)物料搬运费用最少,要便于物料的输入,使产品、废料等物料运输路线短捷,尽量避免运输的往返和交叉。
4)保持生产和安排的柔性,使之适应产品需求的变化、工艺和设备的更新及扩大生产能力的需求。
5)适应组织结构的合理化,使有密切关系或性质相近的作业单位
布置在一个区域并就近布置,甚至合并在同一建筑物内,以方便管理。
6)为职工提供方便、安全、舒适的作业环境,使环境合乎生理、心理要求,为提高生产效率和保证职工身心健康创造条件。