统计概率练习题
- 格式:doc
- 大小:133.50 KB
- 文档页数:7
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
初中数学概率统计练习题及参考答案初中数学概率统计练习题及参考答案:一、选择题1、某班级三年级有男生35人,女生40人。
从这些人中任选一个人,下列说法中,正确的是()A.女生的概率是 35/75B.女生的概率是 40/75C.男生的概率是 35/75D.男生的概率是 40/752、从 1、2、3、4、5 中任取一个数字,问所得数的个位数为 3 的概率是多少?A.2/5B.1/5C.1/10D.2/103、小明每次买两个鸡蛋,有80%的概率一个鸡蛋没碎,20%的概率两个鸡蛋都碎了。
问题一:小明买8个鸡蛋,不会是全部碎了吧?问题二:小明买8个鸡蛋,不需要赔偿多少个鸡蛋?A.不会全部碎,赔偿两个B.不会全部碎,赔偿四个C.不会全部碎,赔偿六个D.会全部碎二、填空题1、小明从 1、2、3、4、5 中任取一个数,他猜测所得数小于 4 的概率是 ______。
2、小港每小时按外卖订单分别有30%、25%、20%、15%、10%的概率接到0、1、2、3、4个外卖订单。
求小港接到的订单数的期望值是 ______。
3、有 15 条石子 5 个人轮流取,每次只能取 1-3 条,最后取光石子的人失败。
第一个取石子的人应该取几颗才能保证享有取胜的策略?三、解答题1、小明做课外辅导班的概率是 3/4,小华做课外辅导班的概率是1/2。
两人都不做辅导课的概率是多少?解:小明不做辅导班的概率为 1-3/4=1/4,小华不做辅导班的概率为1-1/2=1/2。
根据“都不”的概率公式:P(A且B)=P(A)×P(B),两人都不做辅导班的概率为 1/4×1/2=1/8。
2、有 10 个球,其中有 4 个黑球。
每次抽出 1 个球,观察它的颜色后再放回去。
问需要抽多少次,才可使得抽到 1 个白球的概率大于 0.5?解:这是个典型的随机事件重复试验问题,符合二项分布的模型。
假定抽到白球的次数为 X,则 P(X=i)=(6/10)^i*(4/10)^(10-i)*C(10,i)。
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
小学数学统计与概率练习题一、选择题1. 在下列选项中,哪个是正整数?A. -3B. 0C. 2D. 1/22. 以下哪个数字是一个小数?A. 1/4B. 3C. 2/3D. 73. 一个骰子投掷一次,出现奇数的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/34. 甲、乙、丙三张卡片上分别写着“A”、“B”和“C”。
从中随机抽取一张卡片,不放回后再抽取一张,求第一张卡片是“A”且第二张卡片是“B”的概率。
A. 1/6B. 1/3C. 1/2D. 2/35. 某班共有40 位学生,其中男生占60%。
如果随机选择一位学生,请问他是男生的概率是多少?A. 0.2B. 0.3C. 0.4D. 0.6二、填空题1. 一枚硬币和一枚骰子同时抛掷,求出现正面且掷出的点数小于等于 4 的概率。
答:1/42. 一袋中有红、黄、蓝三种颜色的球,红球数目是黄球数目的两倍,黄球数目是蓝球数目的三倍。
随机摸出一球,求摸出的是红球的概率。
答:2/63. 在一副标准扑克牌中,墨绿色的牌占总牌数的20%,抽取一张牌,求抽到的是墨绿色牌的概率。
答:0.24. 从 1、2、3、4、5 五个数字中随机抽取一个,求抽取的是奇数的概率。
答:3/55. 一共有 8 个人,其中 4 人会弹钢琴,4 人会弹吉他。
现在随机抽选一位来表演,求抽中的是会弹钢琴的概率。
答:1/2三、解答题1. 有一只盒子,里面装有 3 个红球和 4 个蓝球。
现在一次从盒子中摸出两个球,求摸出的两个球颜色相同的概率。
解:总共有 C(7, 2) 种可能的取法,其中摸出的两个球颜色相同的取法为 C(3, 2) + C(4, 2) = 3 + 6 = 9。
所以,摸出的两个球颜色相同的概率为 9/21,即 3/7。
2. 甲、乙两个人玩掷硬币游戏,每人掷一次。
如果正面朝上,甲将给乙 2 元;如果反面朝上,乙将给甲 3 元。
请问这个游戏对甲来说公平吗?解:甲和乙掷出正反面的概率相等,都是 1/2。
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
中职数学概率统计练习题
练一:概率计算
1. 某班级有50名学生,其中30人擅长篮球,20人擅长足球,10人既擅长篮球又擅长足球。
从该班级中随机选一个学生,请计算该学生擅长篮球或足球的概率。
练二:条件概率
2. 一家电子产品公司生产电视机和电冰箱两种产品。
该公司的统计数据显示,电视机的次品率是5%,而电冰箱的次品率是3%。
另外,该公司生产的电视机和电冰箱的比例为3:2。
从该公司中随机选一个产品,请计算该产品是电视机的概率,且是次品的条件概率。
练三:二项分布
3. 一枚硬币正面向上的概率是0.6。
现在进行5次抛硬币的实验,请计算恰好有3次正面朝上的概率。
练四:正态分布
4. 某市一所高中的学生成绩服从正态分布,其平均分为80分,标准差为10分。
请计算学生中成绩大于90分的比例。
练五:抽样与估计
5. 某公司的员工数量为1000人。
为了对该公司员工的平均年
龄进行估计,从中随机抽取了100人并统计了他们的年龄。
请计算
在95%的置信水平下,对于该公司员工平均年龄的置信区间。
练六:相关与回归
6. 一个研究人员想要了解身高和体重之间的关系。
他在200名
成年男性中测量了他们的身高(单位:厘米)和体重(单位:千克)。
请计算身高和体重之间的相关系数,并解释其意义。
概率统计高二练习题及答案一、选择题1. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5, 6},事件A={2, 4, 6},事件B={3, 4, 5},则事件A∪B的元素个数是:A. 2B. 3C. 4D. 5答案:C2. 将两个硬币抛掷,它们的结果可以分别是正面(正)、反面(反)。
S表示随机试验“抛掷两个硬币,观察正反面”,事件A表示“至少有一个正面朝上”,则事件A的对立事件是:A. 两个硬币都是反面朝上B. 两个硬币都是正面朝上C. 两个硬币正反面朝上D. 至少有一个反面朝上答案:A3. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={1, 3, 4},则事件A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:14. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={3, 4},则事件A∪B的元素个数是:A. 4B. 5C. 6D. 7答案:45. 在某次抽查中,2人中至少有1人精通英语的概率为0.8,两人都不精通英语的概率为0.1,则恰有1人精通英语的概率为:A. 0.1B. 0.2C. 0.3D. 0.4答案:C二、填空题1. 样本空间为Ω={1, 2, 3, 4, 5}的随机试验,以P表示概率函数,则P(Ω)=____。
答案:12. 设随机试验S可有n个结果,而其样本空间的元素个数为m个,则事件A发生的可能性大小为 ________。
答案:m/n3. 在某乡村学校的学生中,男生占40%,女生占60%,男生与女生都占的概率是______。
答案:04. 把两颗骰子分别投掷一次,事件A表示两颗骰子的点数和为8,则事件A发生的概率为________。
答案:5/365. 在两人赛马中,甲、乙、丙三匹马参赛,任一马获胜的概率均为1/3,则甲、乙、丙三匹马同时获胜的概率为______。
答案:0三、计算题1. 有n个袜子,有黑、白两种颜色,从中任取3只,问至少有1只黑袜子的概率是多少?答案:1 - (C(n, 3)/C(n, 3 - 0))*(C(n - 2, 3)/C(n, 3))2. 某商场推出一种新产品,调查发现客户购买此产品的概率为0.25,连续3个客户中至少有一个购买此产品的概率是多少?答案:1 - (1 - 0.25)^33. 一批零件中有5个次品,从中任取4个进行抽样,假设各个零件取得的概率相同,计算抽到至少1个次品的概率。
概率统计复习题1.一射手向目标射击3 次,i A 表示第i 次射击中击中目标这一事件)3,2,1(=i ,则3次射击 中至多2次击中目标的事件为( ): 321321321321)(;)(;)(;)(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球。
则第一次和第二次都取到黄球的概率是( );()715A ; ()49100B ; ()710C ; ()2150D3..将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.81 B. 83 C. 41 D.214、设事件A 与B 互不相容,则有( ) )()()()(B P A P B A P A = )()()(B P B A P B =)()()()(A P B P B A P C -= )()()()(AB P A P B A P D -=5.设事件A 与B 相互独立,且0)(,0)(>>B p A p ,则下列等式成立的是() A. φ=AB B. 0)|(=A B pC. )(1)(A p B p -=D. )()()(B p A p B A p =6.设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是() A. .;11,0,21)(其它<<-⎪⎩⎪⎨⎧=x x f B. .;11,0,2)(其它<<-⎩⎨⎧=x x fC .;11,0,)(其它<<-⎩⎨⎧=x x x f . D. .;11,,0)(2其它<<-⎩⎨⎧=x x x f7、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则{}2>X P 的值为( )[])2(12)(Φ-A 1)2(2)(-ΦB)2(2)(Φ-C )2(21)(Φ-B8、设随机变量X 的密度函数为⎩⎨⎧∈=其它0],0[2)(A x x x f ,则常数A=( )A 、41B 、21C 、 1D 、29. 设A 、B 是两个随机事件,且0)(=AB P ,则 ( )A 、A 和B 不相容; B 、A 和B 独立;C 、0)(0)(==B P A P 或;D 、)()(A P B A P =-10.加工一种零件需经过三道独立工序,各道工序的废品率为321,,p p p ,则加工该种零件的成品率为( ) 3211)(p p p A -)1)(1)(1)((321p p p B --- 3211)(p p p C --- 3213211)(p p p p p p D ----11.若A 与B 互为对立事件,则下式成立的是( ) A. P (AB )=P (A )P (B ) B P (A ⋃B )=ΩC. P (AB )=φD. P (A )=1-P (B )12.下列各函数中,可作为某随机变量概率密度的是( )A . ⎩⎨⎧-<<=其他,1;10,3)(2x x x fB .⎩⎨⎧<<-=其他,0;11,4)(3x x x fC . ⎩⎨⎧<<=其他,0;10,2)(x x x fD .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x f13.列函数中可作为某一随机变量X 的概率密度的是( )A.()⎩⎨⎧≤≤=其他00cos πx x x f B.()⎩⎨⎧≤≤=其他00sin 23πx x x f C.()⎩⎨⎧≤≤=其他00cos 2πx x x f D.()⎩⎨⎧≤≤-=其他0sin 22ππx x x f 14 。
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
第10章第1节一、选择题1.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法[答案] B[解析]①因为抽取销售点及地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本都比较少,适合采用简单随机抽样法.2.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A.13 B.19C.20 D.51[答案] C[解析]由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号、20号、33号、46号,从而可知选C.3.(2010·山东潍坊)某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800 B.1000C.1200 D.1500[答案] C[解析]因为a、b、c成等差数列,所以2b=a+c,∴a +b +c3=b ,∴第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1200双皮靴.4.(2010·曲阜一中)学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,若想在这n 个人中抽取50个人,则在[50,60)之间应抽取的人数为( )A .10B .15C .25D .30[答案] B[解析] 根据频率分布直方图得总人数n =301-0.01+0.024+0.036×10=100,依题意知,应采取分层抽样,再根据分层抽样的特点,则在[50,60)之间应抽取的人数为50×30100=15.5.在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( ) A .等于15 B .等于310 C .等于23D .不确定[答案] A[解析] 每一个个体被抽到的概率相等,等于20100=15.6.(2010·四川文,4)一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( ) A .12,24,15,9 B .9,12,12,7 C .8,15,12,5D .8,16,10,6[答案] D[解析] 从各层中依次抽取的人数分别是40×160800=8,40×320800=16,40×200800=10,40×120800=6. 7.(文)(2010·江西抚州一中)做了一次关于“手机垃圾短信”的调查,在A 、B 、C 、D 四个单位回收的问卷依次成等差数列,再从回收的问卷中按单位分层抽取容量为100的样本,若在B 单位抽取20份问卷,则在D 单位抽取的问卷份数是( ) A .30份 B .35份 C .40份D .65份[答案] C[解析] 由条件可设从A 、B 、C 、D 四个单位回收问卷数依次为20-d,20,20+d,20+2d ,则(20-d)+20+(20+d)+(20+2d)=100,∴d =10,∴D 单位回收问卷20+2d =40份. (理)(2010·广西南宁一中模考)从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽样方法种数为( ) A .C84C42 B .C83C43 C .2C86D .A84A42[答案] A[解析]抽样比68+4=12,∴女生抽8×12=4名,男生抽4×12=2名,∴抽取方法共有C84C42种.8.(2010·湖北理,6)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9D .24,17,9[答案] B[解析] 根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.9.(2010·茂名市调研)某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚会”跑步和爬山比赛活动,每人都参加而且只参及其中一项比赛,各年级参及比赛人数情况如下表:第一级 第二级 第三级 跑步 a b c 爬山xyz其中a b c =253,全校参及爬山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三级参及跑步的学生中应抽取 ( ) A .15人 B .30人 C .40人D .45人[答案] D[解析] 由题意,全校参及爬山人数为x +y +z =2000×14=500人,故参及跑步人数为a +b +c =2000-500=1500人,又a b c =253,∴a =300,b =750,c =450,∴高三级参及跑步的学生应抽取450×2002000=45人.10.(2010·山东日照模考)某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是( )产品类别 A B C 产品数量(件) 1300 样本容量(件)130A.900件B .800件C .90件D .80件[答案] B[解析] 设A ,C 产品数量分别为x 件、y 件,则由题意可得: ⎩⎪⎨⎪⎧x +y +1300=3000x -y ×1301300=10, ∴⎩⎪⎨⎪⎧ x +y =1700x -y =100,∴⎩⎪⎨⎪⎧x =900y =800,故选B. 二、填空题11.(文)(2010·瑞安中学)某校有学生1485人,教师132人,职工33人.为有效防控甲型H1N1流感,拟采用分层抽样的方法,从以上人员中抽取50人进行相关检测,则在学生中应抽取________人. [答案] 45[解析] 设在学生中抽取x 人,则 x 1485=501485+132+33,∴x =45.(理)(2010·山东潍坊质检)一个总体分为A ,B 两层,其个体数之比为41,用分层抽样法从总体中抽取一个容量为10的样本,已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数是________. [答案] 40[解析] 设x 、y 分别表示A ,B 两层的个体数,由题设易知B 层中应抽取的个体数为2, ∴C22Cy2=128,即2y y -1=128,解得y =8或y =-7(舍去),∵x y =41,∴x =32,x +y =40.12.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用下述抽样方法抽取一个容量为8的样本:即在第0组先随机抽取一个号码i ,则第k组抽取的号码为10k +j ,其中j =⎩⎪⎨⎪⎧i +k i +k<10i +k -10 i +k≥10,若先在0组抽取的号码为6,则所抽到的8个号码依次为__________________. [答案] 6,17,28,39,40,51,62,73[解析] 因为i =6,∴第1组抽取号码为10×1+(6+1)=17,第2组抽取号码为10×2+(6+2)=28,第3组抽取号码为10×3+(6+3)=39,第4组抽取号码为10×4+(6+4-10)=40,第5组抽取号码为10×5+(6+5-10)=51,第6组抽取号码为10×6+(6+6-10)=62,第7组抽取号码为10×7+(6+7-10)=73.13.(2010·安徽文)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是____________. [答案] 5.7%[解析] 拥有3套或3套以上住房的家庭所占比例普通家庭为50990,而高收入家庭为70100. ∴该地拥有3套或3套以上住房的家庭所占比例为99 000×50990+1 000×70100100 000=571 000=5.7%. 14.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:男 女能 178 278 不能2321 则该地区生活不能自理的老人中男性比女性约多______人. [答案] 60[解析] 由表可知所求人数为 (23-21)×15000500=60(人). 三、解答题15.(2010·山东滨州)某高级中学共有学生2000人,各年级男、女生人数如下表:高一 高二 高三 女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人? (2)已知y≥245,z≥245,求高三年级女生比男生多的概率. [解析] (1)∵x2000=0.19,∴x =380.∴高三年级学生人数为y +z =2000-(373+377+380+370)=500现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为482000×500=12(人). (2)设“高三年级女生比男生多”为事件A ,高三年级女生、男生数记为(y ,z). 由(1)知,y +z =500,且y ,z ∈N*,又已知y≥245,z≥245,所有基本事件为:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249),(252,248),(253,247),(254,246),(255,245).共11个.事件A 包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245).共5个. ∴P(A)=511.答:高三年级女生比男生多的概率为511.16.(文)(2010·泰安模拟)某校举行了“环保知识竞赛”,为了了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求a 、b 、c 的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取6人参加社区志愿者活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号 分组 频数 频率 第1组 [50,60) 5 0.05 第2组 [60,70) b 0.35 第3组 [70,80] 30 c 第4组 [80,90] 20 0.20 第5组 [90,100)10 0.10 合计a1.00[解析] (1)a =100,b =35,c =0.30由频率分布表可得成绩不低于70分的概率约为: p =0.30+0.20+0.10=0.60.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:3060×6=3人, 第4组:2060×6=2人, 第5组:1060×6=1人,所以第3、4、5组分别抽取3人,2人,1人.设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能抽法如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1), 其中第4组的2位同学B1、B2至少有一位同学是负责人的概率为915=35.(理)(2010·厦门三中阶段训练)某学校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185),得到的频率分布直方图如图所示.(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?[解析] (1)由题设可知,第3组的频率为0.06×5=0.3, 第4组的频率为0.04×5=0.2, 第5组的频率为0.02×5=0.1. (2)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10.因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为: 第3组:3060×6=3,第4组:2060×6=2, 第5组:1060×6=1,所以第3、4、5组分别抽取3人、2人、1人.(3)设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能.其中第4组的2位同学B1、B2至少有一位同学入选的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(B1,B2),(A3,B2),(B1,C1),(B2,C1)共9种可能, 所以第4组至少有一名学生被甲考官面试的概率为P =915=35.17.(文)(2010·山东邹平一中模考)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率. [解析] (1)由题意,第5组抽出的号码为22. 因为2+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为 2,7,12,17,22,27,32,37,42,47. (2)因为10名职工的平均体重为x -=110(81+70+73+76+78+79+62+65+67+59) =71所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故所求概率为P(A)=410=2 5.(理)(2010·沈阳市)从某校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),……,第八组[190.195],下图是按上述分组方法得到的频率分布直方图.(1)根据已知条件填写下列表格:组别一二三四五六七八样本数(2)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;(3)在样本中,若第二组有1名男生,其余为女生,第七组有1名女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰有一男一女的概率是多少?[解析](1)由频率分布直方图得第七组频率为:1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,∴第七组的人数为0.06×50=3.由各组频率可得以下数据:组别一二三四五六七八样本数 2 4 10 10 15 4 3 2(2)由频率分布直方图得后三组频率和为0.08+0.06+0.04=0.18,估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为800×0.18=144.统计及概率练习题11 / 11 (3)第二组中四人可记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组中三人可记为1、2、3,其中1、2为男生,3为女生,基本事件列表如下:a b c d 11a 1b 1c 1d 22a 2b 2c 2d 33a 3b 3c 3d所以基本事件有12个.实验小组中恰有一男一女的事件有1b,1c,1d,2b,2c,2d,3a ,共7个,因此实验小组中恰有一男一女的概率是712.。
高一周末培优训练 2004.3.24统计概率一、选择题1.一个班级有5个小组,每一个小组有10名学生,随机编号为1~10号,为了了解他们的学习情况,要求抽取每组的2号学生留下来进行问卷调查,这里运用的方法是() A.分层抽样法B.抽签法C.随机数法D.系统抽样法2.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查采用的抽样方法依次是() A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法3.某校有老师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n为()A.16 B.96 C.192 D.1124.某高中在校学生 2 000人,高一年级与高二年级人数相同并都比高三年级多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二年级参与跑步的学生中应抽取()A.36人 B.60人 C.24人D.30人5.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是()A.3 B.4 C.5 D.66.下列说法中正确的是()A .某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品B .气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个病人就一定能治愈D .掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.57.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A .①B .②④C .③D .①③8.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )A .0.20B .0.60C .0.80D .0.129.2010年广州亚运会体操比赛中,9位评委给某位参赛选手打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为90分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .210.(2011·山东卷)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程=x +中的为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元11.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是( )A.14B.13C.12D.2512.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之差的绝对值为2或4的概率是()A.110 B.310 C.25 D.14二、填空题13.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是________.14.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用(错位)系统抽样的方法抽取一个容量为8的样本.即规定先在第0组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即第k组中抽取个位数字为i+k(当i+k<10)或i+k-10(当i+k≥10)的号码.在i=6时,所抽到的8个号码是________.15.向三个相邻的军火库各投一枚炸弹.击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为________.16.若以连续掷两次骰子分别得到的点数m、n作为P点的坐标,则点P落在圆x2+y2=16内的概率是________.三.解答题17.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?18.(2011·福建卷)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1)若所抽取的205的恰有2件,求a,b,c的值.(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.高一数学周末培优训练题答案1.解析: 由系统抽样方法的特点可知选D. 答案: D2.解析: 主要考查三种抽样方法的区别与联系.在①中,由于不同的地区的产品销售情况差异较大,为了抽样的公平性,应采用分层抽样.在②中,总体中个体差异不大,总体中个体数量也不大,故采用简单随机抽样,故选B.答案: B3.解析: 由801 000=225,∴n 2 400=225,∴n =192.答案: C4.解析: ∵登山的占总数的25,故跑步的占总数的35,又跑步中高二年级占32+3+5=310.∴高二年级跑步的占总人数的35×310=950.由950=x200得x =36,故选A. 答案: A5.解析: x 2-5x +4=0的两根是1,4.当a =1时,a ,3,5,7的平均数是4,当a =4时,a ,3,5,7的平均数不是1. ∴a =1,b =4.则方差s 2=14×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5,故选C.6.解析: 概率是指某一事件发生可能性的大小,根据这一定义可知,只有选项D 正确.答案: D7.解析: 从1,2,…,9中任取2个数字包括一奇一偶、二奇、二偶共三种互斥事件,所以只有③中的两个事件才是对立的.答案: C解析: 令“能上车”记为事件A ,则3路或6路车有一辆路过即事件发生,故P (A )=0.20+0.60=0.80.答案: C解析: 去掉一个最高分和一个最低分后,剩下的7个分数的和为90×7=630,易知去掉的一个最低分为82分,则有效分数必然包含85、86、91、91、92和93,而另一个数应为630-85-86-91-91-92-93=92,故x 的值为2.答案: D解析: ∵x =4+2+3+54=72,y =49+26+39+544=42,又=x +必过(x ,y ),∴42=72×9.4+,∴=9.1.∴线性回归方程为=9.4x +9.1.∴当x =6时,=9.4×6+9.1=65.5(万元). 答案: B解析: 从四条线段中任取三条,基本事件有(1,3,5),(1,3,7),(1,5,7),(3,5,7),共4种,能构成三角形的只有(3,5,7)这一个基本事件,故由概率公式,得P (A )=14.答案: AA.110B.310C.25D.1412.解析: 取2个小球的不同取法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,其中标注的数字绝对值之差为2或4的有(1,3),(2,4),(3,5),(1,5),共四种,故所求的概率为410=25.答案: C13.解析: 依题意,设第2小组的频率为2x ,则有6x =1-(0.037+0.013)×5,得2x =0.25,即第2小组的频率为0.25,因此报考飞行员的学生人数是120.25=48.答案: 4814解析: 由题意得,在第1组抽取的号码的个位数字是6+1=7,故应选17;在第2组抽取的号码的个位数字是6+2=8,故应选28,此次类推,应选39,40,51,62,73.答案: 6,17,28,39,40,51,62,7315.解析: 设A 、B 、C 分别表示击中第一、二、三个军火库,易知事件A 、B 、C 彼此互斥,且P (A )=0.025,P (B )=P (C )=0.1.设D 表示军火库爆炸,则P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225. 所以军火库爆炸的概率为0.225. 答案: 0.22516.解析: 基本事件的总数为6×6=36个,记事件A ={(m ,n )落在圆x 2+y 2=16内},则A 所包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个.∴P (A )=836=29.答案: 2917.解析: (1)由已知可设每组的频率为2x ,4x ,17x ,15x ,9x ,3x . 则2x +4x +17x +15x +9x +3x =1,解得x=0.02.则第二小组的频率为0.02×4=0.08,样本容量为12÷0.08=150.(2)次数在110次以上(含110次)的频率和为17×0.02+15×0.02+9×0.02+3×0.02=0.34+0.3+0.18+0.06=0.88.则高一学生的达标率约为0.88×100%=88%.18.解析:(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=0.35-b-c=0.1.所以a=0.1,b=0.15,c=0.1.(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2).设事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为:(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.又基本事件的总数为10,故所求的概率P(A)=410=0.4.。