概率统计练习题(含解析)
- 格式:docx
- 大小:767.97 KB
- 文档页数:22
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
统计与概率经典例题(含答案及解析)1.(本题8 分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中 a 和 b 所表示的数分别为:a= .,b=.;⑵请在图中补全频数分布直方图;2000 名九年级考生数学⑶如果把成绩在70 分以上(含70 分)定为合格,那么该学区成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇 1﹣ 5 月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:( 1)某镇今年1﹣5 月新注册小型企业一共有家.请将折线统计图补充完整;( 2)该镇今年 3 月新注册的小型企业中,只有 2 家是餐饮企业,现从 3 月新注册的小型企业中随机抽取 2 家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.( 12 分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有 10 个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题 10 分)某校为了解2014 年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40 名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)12880m48( 1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角 a 的度数;(2)该校 2014 年八年级有 500 名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.( 10 分)将如图所示的版面数字分别是1, 2,3, 4 的四张扑克牌背面朝上,洗匀后放在桌面上(“ A”看做是“ 1”)。
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
概率论练习题与解析十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。
现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。
2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。
已知取出的球是白球,此球属于第二个箱子的概率为 。
解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。
由全概率公式⋅=⋅+⋅+⋅=++=12053853*********)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。
若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。
解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A Y 的概率)(B A P Y = 。
7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P Y 5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。
现已知目标被命中,则它是甲射中的概率为 。
用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A Y 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P Y所求概率为75.08.06.0)()()|(===B A P A P B A A P Y Y6、 设随机事件A ,B 及其和事件B A Y 的概率分别是0.4,0.3和0.6。
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
初三数学概率与统计练习题及答案1. 问题描述:已知一筒有12只红球、8只蓝球,从中任意取出一球,求取出红球的概率。
解析:首先计算出总共的球数,即12只红球加上8只蓝球等于20只球。
然后计算红球的数量,即12只红球。
最后,将红球的数量除以总球数,即12/20=0.6。
答案:取出红球的概率为0.6。
2. 问题描述:一只袋子中有5个红球、3个黄球和2个绿球,从中连续取出2个球,不放回,求取出红球后再取出黄球的概率。
解析:根据题意,第一次取出红球的概率为5/10,然后从剩下的球中取出黄球的概率为3/9。
因为两次抽取是连续进行的,所以需要将两次的概率相乘,即(5/10) * (3/9) = 1/6。
答案:取出红球后再取出黄球的概率为1/6。
3. 问题描述:一张桌子上有6本数学书和4本英语书,从中任意取出3本书,求其中至少有2本是数学书的概率。
解析:首先计算出总共的书的数量,即6本数学书加上4本英语书等于10本书。
然后计算出选出2本数学书和1本非数学书的情况数,即C(6, 2) * C(4, 1)。
接着计算出选出3本数学书的情况数,即C(6, 3)。
最后,将两种情况的情况数相加,并除以总的情况数,即[C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。
答案:取出至少有2本是数学书的概率为([C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。
4. 问题描述:一桶中有10个红球和10个蓝球,从中连续取出3个球,不放回,求取出的3个球颜色相同的概率。
解析:计算取出红球的情况数,即C(10, 3)。
然后计算取出蓝球的情况数,即C(10, 3)。
最后,将两种情况的情况数相加,并除以总的情况数,即[C(10, 3) + C(10, 3)] / C(20, 3)。
答案:取出3个球颜色相同的概率为([C(10, 3) + C(10, 3)] / C(20, 3)。
5. 问题描述:甲、乙、丙三人赛跑,根据过去的表现,甲获得第一的概率为0.4,乙获得第一的概率为0.3,丙获得第一的概率为0.3。
第二章习题与答案同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!!标红表示正确答案标蓝表示解析1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。
A普查B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】D统计报表2、人口普查规定标准时间是为了()。
A确定调查对象和调查单位B避免资料的重复和遗漏。
C使不同时间的资料具有可比性D便于登记资料【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】3、对一批灯泡的使用寿命进行调查,应该采用( )。
A普查 B重点调查 C典型调查D抽样调查4、分布数列反映( )。
A总体单位标志值在各组的分布状况B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】C总体单位标志值的差异情况D总体单位的差异情况5、与直方图比较,茎叶图( )。
A没有保留原始数据的信息B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。
为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。
课本P38】C更适合描述分类数据D不能很好反映数据的分布特征6、在累计次数分布中,某组的向上累计次数表明( )。
A大于该组上限的次数是多少B大于该组下限的次数是多少C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。
课本P33】D小于该组下限的次数是多少7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。
A. 200B. 250C. 500D. 300【解析:组中值=下限+组距/2=上限+组距/2】8、下列图形中最适合描述一组定量数据分布的是( )。
高中数学专题23 概率与统计真题汇编1.在1,2,3…,10中随机选出一个数a,在-1,-2,-3.…,-10中随机选出一个数b,则a2+b被3整除的概率为.【答案】【解析】若a∈{1,2,4,5,7,8,10},.若.若a∈{3,6,9},.若.∴a2+b为3的倍数的概率为.2.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为.【答案】【解析】先考虑abc+def为奇数的情况,此时abc,def一奇一偶,若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样有3!×3!=36种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72种.从而abc+def为偶数的概率为.3.袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为________.【答案】【解析】一种取法符合要求,等价于从A中取走的两张纸币的总面值a小于从B中取走的两张纸币的总面值b,从而,.故只能从A中取走两张1元纸币,相应的取法数为.又此时,即从B中取走的两张纸币不能均为1元纸币,相应有种取法.因此,所求的概率为.4.在正方体中随机取三条棱,它们两两异面的概率为______.【答案】【解析】设正方体为,共12条棱,从中任意取出三条棱的方法有种.下面考虑使三条棱两两异面的取法数.由于正方体棱共确定三个互不平行的方向(即的方向),具有相同方向的四条棱两两共面,因此,取出的三条棱必属于三个不同的方向.可先取定方向的棱,这有四种取法.不妨设取的棱为.则方向只能取棱,共两种可能.当方向取棱时,方向取棱分别只能为.综上,三条棱两两异面的取法数为8.故所求概率为.5.设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_______.【答案】【解析】每对点之间是否连边有2种可能,共有种情形.考虑其中点A、B可用折线连接的情形数.(1)有边AB:共种情形.(2)无边AB,但有边CD:此时,点A、B可用折线连接当且仅当点A与C、D中至少一点相连,且点B与C、D中至少一点相连,这样的情形数为.(3)无边AB,也无边CD:此时,AC与CB相连有种情形,AD与DB相连也有情形,但其中AC、CB、AD、DB均相连的情形被重复计了一次,故点A与B可用折线连接的情形数为.综上,情形数的总和为.故点A与B可用折线连接的概率为.6.从1,2,…,20中任取五个不同的数,其中至少有两个是相邻数的概率是______.【答案】【解析】设取自1,2, (20)若互不相邻,则.由此知从1,2,…,20中取五个互不相邻的数的选法与从1,2,…,16中取五个不同的数的选法相同,即种.于是,所求的概率为.7.某情报站有四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第一周使用种密码.那么,第七周也使用种密码的概率是______(用最简分数表示).【答案】.【解析】用表示第周用种密码本的概率.则第周末用种密码的概率为.故.8.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一人投掷.则先投掷人的获胜概率是________.【答案】【解析】同时投掷两颗骰子点数和大于6的概率为,从而,先投掷人的获胜概率为.9.某车站每天早上8:00~9:00、9:00~10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律见表1.一旅客8:20到站.则他候车时间的数学期望为______(精确到分).表1到站时刻8:10~9:10 8:30~9:30 8:50~9:50概率【答案】27【解析】旅客候车时间的分布如下表.候车时间(分)10 30 50 70 90 概率候车时间的数学期望为.1.从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为(). A.B.C.D.【答案】D【解析】从这20个数中任取三个数,可构成的数列共有个.若取出的三个数a、b、c成等差数列,则a+c=2b.故a与c的奇偶性相同,且a、c确定后,b随之而定.从而,所求概率为.选D.2.掷两次色子,用X记两次掷得点数的最大值.则下列各数中,与期望最接近的数为( ) A.4B.C.5D.【答案】B【解析】易知,,,,,,,故,与最接近.3.将1,2,3,4,5,6,7,8,9这9个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.【答案】.【解析】要使每行、每列所填数之和都是奇数,必须使每行或每列中要么只有一个奇数,要么三个全为奇数,故满足条件的填法共有种.因此所求的概率为.故答案为:4.从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________.【答案】【解析】如图,正9边形中包含中心的三角形有以下三种形状:对于(1),有3种情况;对于(2),有9种情况:对于(3);有18种情况;故所求概率为,故答案为:5.从1,2,…,10中随机抽取三个各不相同的数字,其样本方差的概率=_________.【答案】【解析】的样本方差,当且仅当是连续的正整数.故.故答案为:6.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.(1)求男生闯过四关的概率;(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.【答案】(1);(2)见解析【解析】分析:(1)利用相互独立事件的概率计算公式即可得出;(2)记女生四关都闯过为事件,则的取值可能为0,1,2,3,4,利用相互独立事件的概率公式即可得出.详解:(1)记男生四关都闯过为事件,则;(2)记女生四关都闯过为事件,则,因为,,,,所以的分布如下:.点睛:本题考查了相互独立与互斥事件的概率计算公式,随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力.7.设n为给定的大于2的整数。
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
概率统计一、单选题1.(2020·广西南宁·高三月考(文))《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310πB .320π C .3110π-D .3120π-2.(2020·云南省玉溪第一中学月考(文))袋中有完全相同的4只小球,编号为1,2,3,4,现从中取出2只小球,则取出两只球编号之和是偶数的概率为( ) A .13B .23C .15D .253.(2020·内蒙古赤峰·月考(文))从只读过《论语》的3名同学和只读过《红楼梦》的3名同学中任选2人在班内进行读后分享,则选中的2人都读过《红楼梦》的概率为( ) A .15B .310C .25D .124.(2020·四川成都·月考(文))已知x 、y 满足1x y +≤,则事件“2212x y +≤”的概率为( ) A .8π B .4π C .18π-D .14π-5.(2020·全国高三其他(文))某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元6.(2020·吉林(文))从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示: 若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为A .30B .25C .22D .207.(2020·河南许昌·高三一模(文))某企业一种商品的产量与单位成本数据如表:现根据表中所提供的数据,求得y 关于x 的线性回归方程为ˆ21yx =-,则a 值等于( ) A .4.5B .5C .5.5D .68.(2020·江西南昌二中高三其他(文))某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+则宣传费用为3万元时,对应的销售额a 为( ) A .36.5B .30C .33D .279.(2020·云南师范大学附属中学呈贡校区月考(文))设两组数据分别为129,,,x x x 和238,,,x x x ,且123489x x x x x x <<<<<,则这两组数据相比,不变的数字特征是( )A .中位数B .极差C .方差D .平均数10.(2020·榆树市第一高级中学校月考(文))某校200名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为( )A .20B .15C .10D .511.(2020·四川成都·月考(文))由于美国对华为实施禁令,华为手机的销售受到影响,现统计出今年x 月份{}()6,7,8,9,10x ∈的销售量y (单位:万台)的一组相关数据如下表若变量x ,y 具有线性相关性,x ,y 之间的线性回归方程为ˆ20yx a =-+,则预计今年11月份的销量为( )万台. A .580B .570C .560D .55012.(2020·安徽月考(文))如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为106,乙组数据的平均数为105.4,则x ,y 的值分别为( )A .5,7B .6,8C .6,9D .8,813.(2019·陕西西安·(文))设两个变量x 和y 之间具有线性相关关系,它们的相关系数为r ,y 关于x 的回归直线方程为y kx b =+,则( )A .k 与r 的符号相同B .b 与r 的符号相同C .k 与r 的符号相反D .b 与r 的符号相反14.(2020·江西省丰城中学期中(文))根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( ) A .至少有一个样本点落在回归直线ˆˆˆy bx a =+上B .若所有样本点都在回归直线ˆˆˆy bx a =+上,则变量同的相关系数为1C .对所有的解释变量i x (1,2,,300i =),ˆˆibx a +的值一定与i y 有误差D .若回归直线ˆˆˆy bx a =+的斜率ˆ0b>,则变量x 与y 正相关 15.(2020·四川高三开学考试(文))给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心(,)x y ,且至少过一个样本点;①两个变量相关性越强,则相关系数||r 就越接近1; ①将一组数据的每个数据都加一个相同的常数后,方差不变;①在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位. 其中说法正确的是( ) A .①①① B .①①①C .①①①D .①①二、解答题16.(2020·山东省实验中学高三月考)近年来,国资委,党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求y 关于x 的线性回归方程.(计算结果保留两位小数)(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆa y bx =-,()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.临界值表:17.(2020·广西南宁二中高三月考(文))某学校为培养学生的兴趣爱好,提高学生的综合素养,在高一年级开设各种形式的校本课程供学生选择(如书法讲座、诗歌鉴赏、奥赛讲座等).现统计了某班50名学生一周用在兴趣爱好方面的学习时间(单位:h)的数据,按照[0,2),[2,4),[4,6),[6,8),[8,10]分成五组,得到了如下的频率分布直方图.(1)①①①①①①①①①m①①①①①①①①①①①①①①①①①①①①①①①①①(2)①[4①6)①[6①8)①①①①①①①①①①①①①6①①①①①6①①①①2①①①①①1①①[6①8)①①①①①①18.(2020·广东华南师大附中高三月考(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F .享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率. 19.(2020·江西高三其他(文))3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求.某医疗器械厂开足马力,日夜生产防疫所需物品.质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了50个零件进行测量,根据所测量的零件质量(单位:克),得到如图的频率分布直方图:(1)根据频率分布直方图,求这50个零件质量的中位数(结果精确到0.01);70.5,72.5之外的零件中随机抽取2个,求这两个零件中恰好有1个是(2)若从这50个零件中质量位于[)72.5,73上的概率质量在[](3)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知这批零件有10000个,某采购商提出两种收购方案:A.所有零件均以50元/百克收购;71.0,72的零件以40元/个收购,其他零件以30元/个收购.B.质量位于[)请你通过计算为该厂选择收益最好的方案.20.(2020·安徽高三月考(文))2020年初,新冠肺炎疫情暴发,全国中小学生响应教育部关于“停课不停学”居家学习的号召.因此,网上教学授课在全国范内展开,为了解线上教学效果,根据学情要对线上教学方法进行调整,从而使大幅度地提高教学效率.近期某市组织高一年级全体学生参加了某项技能操作比赛,等级分为1至10分,随机调阅了A、B校60名学生的成绩,得到样本数据如下:B校样本数据统计图(1)计算两校样本数据的均值和方差,并根据所得数据进行比较;(2)从A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样的方法抽取6人,从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和不小于15的概率.一、单选题1.(2020·广西南宁·高三月考(文))《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310π B .320π C .3110π-D .3120π-【答案】D 【解析】由题意可知①直角三角向斜边长为17,由等面积,可得内切圆的半径为:815381517r ⨯==⇒++落在内切圆内的概率为2331208152r ππ⨯==⨯⨯,故落在圆外的概率为3120π- 2.(2020·云南省玉溪第一中学月考(文))袋中有完全相同的4只小球,编号为1,2,3,4,现从中取出2只小球,则取出两只球编号之和是偶数的概率为( ) A .13B .23C .15D .25【答案】A:在编号为1,2,3,4的小球中任取2只小球,则有{}1,2,{}1,3,{}1,4,{}2,3,{}2,4,{}3,4,共6种取法,则取出的2只球编号之和是偶数的有{}1,3,{}2,4,共2种取法, 即取出的2只球编号之和是偶数的概率为2163=, 故选:A3.(2020·内蒙古赤峰·月考(文))从只读过《论语》的3名同学和只读过《红楼梦》的3名同学中任选2人在班内进行读后分享,则选中的2人都读过《红楼梦》的概率为( ) A .15B .310C .25D .12【答案】A将只读过《论语》的3名同学分别记为x ,y ,z ,只读过《红楼梦》的3名同学分别记为a ,b ,c . 设“选中的2人都读过《红楼梦》”为事件A ,则从6名同学中任选2人的所有可能情况有(),x y ,(),x z ,(),x a ,(),x b ,(),x c ,(),y z ,(),y a ,(),y b ,(),y c ,(),z a ,(),z b ,(),z c ,(),a b ,(),a c ,(),b c 共15种,其中事件A 包含的可能情况有(),a b ,(),a c ,(),b c 共3种,故()31155P A ==. 故选:A.4.(2020·四川成都·月考(文))已知x 、y 满足1x y +≤,则事件“2212x y +≤”的概率为( ) A .8π B .4π C .18π-D .14π-【答案】B 【分析】区域(){},1A x y x y =+≤是由()1,0、()0,1、()1,0-、()0,1-为四个顶点的正方形及其内部,区域()221,2B x y x y ⎧⎫=+≤⎨⎬⎩⎭是以原点为圆心,半径为2的圆及其内部,如下图所示:区域A的正方形及其内部,区域A的面积为22A S ==,区域B的面积为22B S ππ=⨯=⎝⎭,因此,所求概率为224B AS P S ππ===.故选:B.5.(2020·全国高三其他(文))某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A.月收入的极差为60B.7月份的利润最大C.这12个月利润的中位数与众数均为30D.这一年的总利润超过400万元【答案】D【详解】-=,故选项A正确;由图可知月收入的极差为9030601至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:D.6.(2020·吉林(文))从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为A.30B.25C.22D.20【答案】D【解析】()50 1.000.750.250.220⨯++⨯=①故选D①7.(2020·河南许昌·高三一模(文))某企业一种商品的产量与单位成本数据如表:现根据表中所提供的数据,求得y 关于x 的线性回归方程为ˆ21yx =-,则a 值等于( ) A .4.5 B .5C .5.5D .6【答案】B 由所给数据可求得∴ 23433x ++==, 103ay +=, 代入线性回归方程为ˆ21yx =-, 得102313a+=⨯-, 解得5a = 故选:B.8.(2020·江西南昌二中高三其他(文))某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+则宣传费用为3万元时,对应的销售额a 为( ) A .36.5 B .30C .33D .27【答案】D 【分析】回归方程1ˆ9.6 2.9,(4235) 3.54yx x =+=+++=,由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D .9.(2020·云南师范大学附属中学呈贡校区月考(文))设两组数据分别为129,,,x x x 和238,,,x x x ,且123489x x x x x x <<<<<,则这两组数据相比,不变的数字特征是( )A .中位数B .极差C .方差D .平均数【答案】A原始中位数为5x ,去掉1x ,9x 后剩余2348x x x x <<<<…,中位数仍为5x ,A 正确; 原始平均数1234891()9x x x x x x x =++++++…,后来平均数23481()7x x x x x '=++++…, 平均数受极端值影响较大,∴x 与x '不一定相同,D 不正确;22222911[()()()]9s x x x x x x =-+-++- (22222381)[()()()]7s x x x x x x '=-'+-'++-'…,由②易知,C 不正确;原极差91x x =-,后来极差82x x =-,显然极差变小,B 不正确, 故选:A.10.(2020·榆树市第一高级中学校月考(文))某校200名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为( )A .20B .15C .10D .5【答案】C【分析】由频率分布直方图得,该次数学成绩在[)50,60内的频率为:()110.040.030.02100.052---⨯=, ∴该次数学成绩在[)50,60内的人数为2000.0510⨯=, 故选:C11.(2020·四川成都·月考(文))由于美国对华为实施禁令,华为手机的销售受到影响,现统计出今年x 月份{}()6,7,8,9,10x ∈的销售量y (单位:万台)的一组相关数据如下表若变量x ,y 具有线性相关性,x ,y 之间的线性回归方程为ˆ20yx a =-+,则预计今年11月份的销量为( )万台. A .580 B .570C .560D .550【答案】A 【分析】由8x =,640y =,则20800y x a a =-+⇒=,则回归方程为ˆ20800y x =-+ 则当11x =时,ˆ580y= 故选:A12.(2020·安徽月考(文))如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为106,乙组数据的平均数为105.4,则x ,y 的值分别为( )A .5,7B .6,8C .6,9D .8,8【答案】B①甲组数据的中位数为106 ①6x =又①乙组数据的平均数为105.4 ①89106(100)109115105.45y +++++=解得8y =综上,x ,y 的值分别为6,8 故选①B13.(2019·陕西西安·(文))设两个变量x 和y 之间具有线性相关关系,它们的相关系数为r ,y 关于x 的回归直线方程为y kx b =+,则( )A .k 与r 的符号相同B .b 与r 的符号相同C .k 与r 的符号相反D .b 与r 的符号相反【答案】A 【分析】相关系数r 为正,表示正相关,回归直线方程上升, r 为负,表示负相关,回归直线方程下降,k ∴与r 的符号相同.故选A .14.(2020·江西省丰城中学期中(文))根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( ) A .至少有一个样本点落在回归直线ˆˆˆy bx a =+上B .若所有样本点都在回归直线ˆˆˆy bx a =+上,则变量同的相关系数为1C .对所有的解释变量i x (1,2,,300i =),ˆˆibx a +的值一定与i y 有误差 D .若回归直线ˆˆˆy bx a =+的斜率ˆ0b>,则变量x 与y 正相关 【答案】D 【分析】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A 错误;所有样本点都在回归直线ˆˆˆybx a =+上,则变量间的相关系数为1±,故B 错误;若所有的样本点都在回归直线ˆˆˆy bx a =+上,则ˆˆbx a +的值与y i 相等,故C 错误;相关系数r 与ˆb 符号相同,若回归直线ˆˆˆy bx a =+的斜率ˆ0b >,则0r >,样本点分布应从左到右是上升的,则变量x 与y 正相关,故D 正确. 故选D①15.(2020·四川高三开学考试(文))给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心(,)x y ,且至少过一个样本点;①两个变量相关性越强,则相关系数||r 就越接近1; ①将一组数据的每个数据都加一个相同的常数后,方差不变;①在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位. 其中说法正确的是( ) A .①①① B .①①①C .①①①D .①①【答案】B 【分析】对于①中,回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,但不一定过一个样本点,所以不正确; 对于①中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的; 对于①中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于①中,根据回归系数的含义,可得在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的. 故选:B.二、解答题16.(2020·山东省实验中学高三月考)近年来,国资委,党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求y 关于x 的线性回归方程.(计算结果保留两位小数)(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆa y bx =-,()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.临界值表:【答案】(1)ˆ 4.7 1.9y x =+;(2)有.【分析】 依题意:1234535x ++++==,810132524165y ++++==, 故()()()()51(2)(8)16192847i x x y y =--=-⨯-+-⨯-+⨯+⨯=∑,()521411410i x x =-=+++=∑,则()()()5152147 4.710ˆiii i i x x y y bx x ==--===-∑∑,ˆˆ16 4.73 1.9a y bx=-=-⨯= y 关于x 的回归方程为:ˆ 4.7 1.9y x =+.(2)依题意,女性不愿意参与管理的人数为50人, 计算得2k 的观测值为()223001505050503005000500018.7510.828200100200100200100200100k ⨯⨯-⨯⨯⨯===>⨯⨯⨯⨯⨯⨯故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.17.(2020·广西南宁二中高三月考(文))某学校为培养学生的兴趣爱好,提高学生的综合素养,在高一年级开设各种形式的校本课程供学生选择(如书法讲座、诗歌鉴赏、奥赛讲座等).现统计了某班50名学生一周用在兴趣爱好方面的学习时间(单位:h)的数据,按照[0,2),[2,4),[4,6),[6,8),[8,10]分成五组,得到了如下的频率分布直方图.(1)①①①①①①①①①m①①①①①①①①①①①①①①①①①①①①①①①①①(2)①[4①6)①[6①8)①①①①①①①①①①①①①6①①①①①6①①①①2①①①①①1①①[6①8)①①①①①① 【答案】(1)m=0.1,平均时间为5.08;(2)815【分析】(l )由直方图可得:0.0620.0820.222m 0.0621⨯+⨯+⨯++⨯=,所以m 0.1=, 学生的平均学习时间:10.1230.1650.470.290.12 5.08⨯+⨯+⨯+⨯+⨯=; (2)由直方图可得:[)4,6中有20人,[)6,8中有10人,根据分层抽样,需要从[)4,6中抽取4人分别记为1234A A A A 、、、, 从[)6,8中抽取2人分别记为12B B 、,再从这6人中抽取2人,所有的抽取方法有12131411122324A A A A A A A B A B A A A A 、、、、、、、2122343132414212A B A B A A A B A B A B A B B B 、、、、、、、共15种,其中恰有一人在[)6,8组中的抽取方法有1112212231A B A B A B A B A B 、、、、、324142A B A B A B 、、共8种,所以,从这6人中抽取2人,恰有1人在[)6,8组中的概率为815. 18.(2020·广东华南师大附中高三月考(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F .享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(I )6人,9人,10人; (II )(i )见解析;(ii )1115. 【分析】(I )由已知,老、中、青员工人数之比为6:9:10, 由于采取分层抽样的方法从中抽取25位员工, 因此应从老、中、青员工中分别抽取6人,9人,10人.(II )(i )从已知的6人中随机抽取2人的所有可能结果为{}{}{}{}{},,,,,,,,,A B A C A D A E A F ,{}{}{}{},,,,,,,B C B D B E B F ,{}{}{},,,,,C D C E C F ,{}{}{},,,,,D E D F E F ,共15种;(ii )由表格知,符合题意的所有可能结果为{}{}{}{},,,,,,,A B A D A E A F ,{}{}{},,,,,B D B E B F ,{}{},,,C E C F ,{}{},,,D F E F ,共11种,所以,事件M 发生的概率11()15P M =. 19.(2020·江西高三其他(文))3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求.某医疗器械厂开足马力,日夜生产防疫所需物品.质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了50个零件进行测量,根据所测量的零件质量(单位:克),得到如图的频率分布直方图:(1)根据频率分布直方图,求这50个零件质量的中位数(结果精确到0.01);(2)若从这50个零件中质量位于[)70.5,72.5之外的零件中随机抽取2个,求这两个零件中恰好有1个是质量在[]72.5,73上的概率(3)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知这批零件有10000个,某采购商提出两种收购方案:A.所有零件均以50元/百克收购;B.质量位于[)71.0,72的零件以40元/个收购,其他零件以30元/个收购. 请你通过计算为该厂选择收益最好的方案. 【答案】(1)中位数为71.47;(2)35;(3)该厂选择方案B ;答案见解析. 【分析】(1)由直方图中的数据,依次求得零件质量位于[)70.0,71.0、[)70.0,71.5的频率,从而判断这50个零件质量的中位数位于区间[)71.0,71.5,设为x ,根据中位数的性质列出关于x 的方程,解之即可; (2)由频数=样本容量⨯频率可求得质量位于[)70.0,70.5和[]72.5,73.0的零件个数,再利用组合数和古典概型即可得解;(3)先根据平均数的计算方法求得这组数据的平均数为71.5,再求得方案A 的收益;然后计算质量位于[)71.0,72和[)71.0,72之外的零件个数,计算出方案B 的收益,取较大者即可.【详解】(1)零件质量位于[)70.0,71.0的频率为()0.080.20.50.14+⨯=, 零件质量位于[)70.0,71.5的频率为()0.080.20.760.50.52++⨯=,0.140.50.52<<,∴这50个零件质量的中位数位于区间[)71.0,71.5,设为x ,则()0.14710.760.5x +-⨯=,解得71.47x ≈, 故这50个零件质量的中位数为71.47.(2)质量位于[)70.0,70.5的零件个数为500.080.52⨯⨯=个, 质量位于[]72.5,73.0的零件个数为500.120.53⨯⨯=个,故这两个零件中恰好有1个是质量在[]72.5,73上的概率为11232535C C C ⋅=. (3)这组数据的平均数为()0.0870.250.270.750.7671.250.6871.750.1672.250.1272.750.571.5⨯+⨯+⨯+⨯+⨯+⨯⨯=,方案A :收益为21000071.55010357500-⨯⨯⨯=元;质量位于[)71.0,72的零件个数为()100000.760.680.57200⨯+⨯=个,质量位于[)71.0,72之外的零件个数为1000072002800-=个, 方案B :收益为720040280030372000⨯+⨯=元.357500372000<, ∴该厂选择方案B.20.(2020·安徽高三月考(文))2020年初,新冠肺炎疫情暴发,全国中小学生响应教育部关于“停课不停学”居家学习的号召.因此,网上教学授课在全国范内展开,为了解线上教学效果,根据学情要对线上教学方法进行调整,从而使大幅度地提高教学效率.近期某市组织高一年级全体学生参加了某项技能操作比赛,等级分为1至10分,随机调阅了A 、B 校60名学生的成绩,得到样本数据如下:B 校样本数据统计图(1)计算两校样本数据的均值和方差,并根据所得数据进行比较;(2)从A 校样本数据成绩分别为7分、8分和9分的学生中按分层抽样的方法抽取6人,从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和不小于15的概率. 【答案】(1)答案见解析;(2)35. 【分析】(1)从A 校样本数据的条形图可知:成绩分别为4分、5分、6分、7分、8分、9分的学生分别有:6人、15人、21人、12人、3人、3人.A 校样本的平均成绩为465156217128393660A x ⨯+⨯+⨯+⨯+⨯+⨯==(分),A 校样本的方差为24 1.5664151121339A s ⨯+⨯+⨯+⨯=+=⨯.从B 校样本数据统计表可知:B 校样本的平均成绩为49512621798693660B x ⨯+⨯+⨯+⨯+⨯+⨯==(分),B 校样本的方差为2941219186 1.60439B s +=⨯⨯+⨯+=⨯+⨯.因为A B x x =,所以两校学生的计算机成绩平均分相同,又因为22A B s s <,所以A 校的学生的计算机成绩比较稳定,总体得分情况比B 校好;(2)依题意,A 校成绩为7分的学生应抽取的人数为61241233⨯=++人,设为a 、b 、c 、d ;成绩为8分的学生应抽取的人数为:6311233⨯=++人,设为e ;成绩为9分的学生应抽取的人数为:6311233⨯=++人,设为f . 所以,所有基本事件有:ab 、ac 、ad 、ae 、af 、bc 、bd 、be 、bf 、cd 、ce 、cf 、de 、df 、ef ,共15个,其中,满足条件的基本事件有:ae 、af 、be 、bf 、ce 、cf 、de 、df 、ef ,共9个, 所以从抽取的6人中任选2人参加更高一级的比赛,这2人成绩之和大于或等于15的概率为93155P ==.。