实验指导书实验六SolidWorks运动仿真
- 格式:docx
- 大小:964.90 KB
- 文档页数:21
solidworks的仿真流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!SolidWorks是一种专业的三维建模软件,除了设计功能外,还具备强大的仿真分析功能。
虚拟设计实验—SolidWorks三维建模实验指导书济南大学机械工程学院实验一 SolidWorks三维建模一、实验目的:通过实验使学生能够了解虚拟设计技术中三维模型的建模原理,了解SolidWorks三维设计软件的基本功能,掌握SolidWorks三维设计软件的基本建模操作,加深对虚拟设计技术的了解。
二、实验内容:了解SolidWorks三维设计软件的基本功能,掌握SolidWorks三维设计软件的基本建模操作。
通过典型零件的建模,了解三维模型的创建方法,了解SolidWorks建模中的建立基准面、基准轴,镜像、阵列,放样、扫描以及抽壳等编辑技巧。
三、实验设备及软件微型计算机以及SolidWorks三维设计软件。
四、实验方法及步骤:1、五角星建模(如图 2.1)(1)单击【新建】按钮,新建一个零件文件。
(2)选取前视基准面绘制草图,如图2.2(a)所示;拉伸10mm 深度,如图2.2(b)所示。
图2.1 五角星(a) 草图(b)“拉伸”特征图2.2 “拉伸”特征(3) 选择下拉菜单选【插入】| 【参考几何体】| 【基准面】命令,出现【基准面】属性管理器,单击【通过直线/点】按钮,选择“顶点<1>”、“顶点<2>”和“顶点<3>”,单击【确定】按钮,建立新基准面,如图2.3 所示。
(4) 选择【插入】|【切除】|【使用曲面】命令,出现【使用曲面切除】属性管理器,选择“基准面1”,单击【确定】按钮,如图2.4 所示。
图2.3 “通过三点”建立基准面图2.4 “使用曲面切除”特征图2.5 “镜向”特征图2.6 “抽壳”(6)单击【抽壳】按钮,出现【抽壳】属性管理器,在【移出的面】中选择“面<1>”“面<2>”和“面<3>”,在【厚度】文本框内输入“1mm”,单击【确定】按钮,如图2.6 所示。
(7) 选择下拉菜单选【插入】|【参考几何体】|【基准轴】按钮,出现【基准轴】属性管理器,单击【一直线/边线/轴】按钮,选取“边线1”,单击【确定】按钮,如图2.7 所示。
实验一 S o l i d W o r k s 运动仿真 一、 实验目的 1.掌握SolidWorks 图形装配方法 2. 掌握SolidWorks 装配图的motion 分析操作方法二、 实验内容完成下列3个模型的装配及运动仿真三、 实验步骤压榨机机构的装配与仿真3.1 压榨机机构的装配3.1.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。
依次将机架和压榨杆添加进来,添加机架与压榨杆的同轴心配合。
如图4。
再将滑块添加进来,添加滑块与压榨杆的重合配合,如图5。
3.1.2 添加滑块端面与机架端面的重合配合,以及滑块前视基准面与机架前视基准面的重合配合(点击图形区域左边的装配体下的机架前的“+”号即可找到前视基准面)最后将滑块拖动到中间位置。
图1压榨机机构 图2凸轮机构图3夹紧机构图4机架与压榨杆的同轴心配合 图5滑块与压榨杆的重合配合3.2 压榨机机构的运动仿真3.2.1 仿真前先将“solidworks motion ”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion ”的前后框,如下图8所示。
在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图9所示。
3.2.2添加实体接触:单击工具栏上的“接触按钮”,在弹出的属性管理器中【接触类型】栏内选择“实体接触”,在【选择】栏内,点击视图区中压榨杆和滑块,“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“”,如下图10所示。
同理再为滑块与机架添加实体接触,参数设置与压榨杆与滑块之间的一样。
图8载入插件 图9 motin 分析图6机架与滑块的重合配合 图7机架与滑块前视基准面的重合配合3.2.3 添加驱动力:物体对压榨杆的反作用力即为驱动力,故在压榨杆上添加一恒力即可。
单击工具栏中的“力”按钮“”,在弹出的【力/扭矩】属性管理器中,【类型】选择“力”,【方向】选择“只有作用力”,“作用零件和作用应用点”,选择压榨杆上表面,单击改变力的方向向下,【力函数】选择“常量”,大小输入50牛顿,单击确定按钮。
实验六数字化仿真技术一、实验目的1.掌握COSMOSWorks静态应力分析的方法和步骤2.掌握COSMOSWorks优化设计的方法和步骤3.掌握COSMOSMotion运动学分析的方法和步骤二、实验内容1.完成托架零件的静态应力分析2.完成悬臂支撑架的形状优化3.完成活塞式压气机的运动仿真三、实验步骤(一)零件的静态应力分析托架由合金钢制作,在两个孔处固定,并承受有7Mpa 的力载荷,如图所示。
1.打开零件打开零件“static.SLDPRT”2.从 SolidWorks 材料库中指派合金钢材料:(1)单击菜单—>COSMOSWorks—>材料—>应用材料到所有,材质编辑器PropertyManager 出现。
(2)在材料下,执行如下操作:a.从下拉菜单中选择SolidWorks 材料。
b.单击钢后面的加号,然后选择合金钢。
c.合金钢的机械属性出现在物理属性框中。
(3)单击确定。
指派的材料名称显示在 FeatureManager 树中。
3.生成静态研究(1)单击 COSMOSWorks 管理器标签。
(2)单击 COSMOSWorks 主工具栏上研究。
(3)在 PropertyManager 的名称下面:a.键入“静态-1”。
b.在网格类型中选择“实体网格”。
(4)在类型下,单击静态。
(5)单击确定。
COSMOSWorks 将在 COSMOSWorks 管理器树中生成研究。
注意,实体图标上的复选标记表示您已指派了材料。
4.固定两个孔:(1)单击 COSMOSWorks 载荷工具栏上的约束。
约束 PropertyManager 出现。
(2)在类型下,选择“不可移动(无平移)”。
(3)在图形区域中,单击两个孔的面(如图显示)。
面<1> 和面<2> 会出现在约束的面、边线、顶点框内。
要更改约束符号的颜色,单击“符号设定”下的“编辑颜色”。
颜色调色板打开。
选择所需的颜色,然后单击确定。
【声明】为了帮助广大SW爱好者和学习者更加方便,高效地学习和应用SW运动仿真(动画)来表达自己的作品,下面是作者在学习过程中遇到和总结一些问题,希望能对学者有帮助。
运动仿真【动画】在核心SolidWorks 内使用。
可使用【动画】来表达和显示装配体的运动:通过添加马达来驱动装配体中一个或多个零件的运动。
通过设定键码点在不同时间规定装配体零部件的位置。
动画使用插值来定义键码点之间零部件的运动。
【基本运动】在核心SolidWorks内使用。
可使用【基本运动】在装配体上模仿马达、弹簧、碰撞和引力。
【基本运动】在计算运动时考虑到质量。
【基本运动】计算相当快,所以可将其用来生成使用基于物理模拟的演示性动画。
【Motion分析】在SolidWorks Premium 的SolidWorks Motion 插件中使用。
可利用【Motion分析】功能对装配体进行精确模拟和运动单元的分析(包括力、弹簧、阻尼和摩擦)。
【Motion分析】使用计算能力强大的动力学求解器,在计算中考虑到了材料属性和质量及惯性。
还可使用【Motion分析】来标绘模拟结果供进一步分析。
用户可根据自己的需要决定使用三种算例类型中的哪一种:【动画】:可生成不考虑质量或引力的演示性动画。
【基本运动】:可以生成考虑质量、碰撞或引力且近似实际的演示性模拟动画。
【Motion分析】:考虑到装配体物理特性,该算例是以上三种类型中计算能力最强的。
用户对所需运动的物理特性理解的越深,则计算结果越佳。
视频保存压缩质量——越高越清晰可选择时间段保存马达的运动优先于弹簧、引力运动零部件移动的速度与其质量特性有关。
弹簧隧道扫描旋转楼梯的动画.做关联动画时,注意“会变形的零件”要在“装配体中”(插入新零件)建模得到,好让新零件与其他零件相应部位关联,从而使改变这些原有零件的位置重新建模后可以实现新零件的变形。
路径(圆弧类)运动出错:1.配合不严密2.速度太大,难以解出3.视频帧数太低以上3点不准确(正确)!其实质上是在路径运动中,物体是在路径上平移,而不是滑移。
基于SolidWorks的连杆机构的运动分析与仿真共3篇基于SolidWorks的连杆机构的运动分析与仿真1基于SolidWorks的连杆机构的运动分析与仿真引言机械工程是一门涵盖广泛领域的学科,而其核心是机械设计。
机械设计在现代化社会中具有举足轻重的地位,是实现生产自动化、机械化和数字化的必不可少的手段。
在机械设计中,连杆机构是一种非常重要的机械构件,因其能够将单向的直线运动转换为复杂的曲线运动。
因此,了解和掌握连杆机构的运动特点对于机械工程师和设计师具有非常大的实用价值。
本文将介绍基于SolidWorks的连杆机构的运动分析与仿真。
正文SolidWorks是目前应用最广泛的三维计算机辅助设计(CAD)软件之一,其主要功能是建立三维模型和进行工程分析。
在SolidWorks中,连杆机构是一种常用的机构,在机械设计中有着广泛的应用。
通过 SolidWorks 可以进行连杆机构的建模、运动分析和仿真等全过程,以便更好地理解该机构的运动特点,为机械设计提供便利。
连杆机构是一种具有连杆、销轴和铰链等构件相互连接而成的复杂机械结构。
通过连杆机构可以将旋转运动和直线运动相互转换,实现有效的动力传递和力量转换。
对于机械设计师而言,了解连杆机构的运动特点是非常重要的。
在SolidWorks中,连杆机构的建模首先需要考虑构件的建立。
构件的建立应符合物理规律和机械原理,并使得机构具有合适的运动特性。
比如,在连杆机构中,需要考虑杆件的长度、销轴的直径、铰链的设计等因素。
在建模过程中,需要给予合适的参数设定,从而实现模型的运动模拟。
模型建立完毕后,可进行三维建模、组装和运动仿真。
通过连杆机构的仿真,可以深入地理解机械运动规律和性能特点,为机械设计提供便利。
此外,连杆机构的运动分析也是非常重要的一步。
通过对运动分析的深入研究,可以了解动力学和运动学的相关规律,为机械设计提供依据。
具体地,运动分析包括以下几个方面:速度和加速度分析、运动轨迹分析、力学分析等。
solidworks的流体仿真案例讲解1、Solidworks流体仿真案例讲解流体仿真是用计算机模拟流体流动现象,是研究流体力学的重要方法。
借助SolidWorks流体仿真软件,能够快速精确地仿真任意复杂流体场,并提供流体运动及流场物理量的计算解、收敛判断及计算精度控制等,从而达到对复杂流体场现象的直观理解。
下面我们以垂直下降的水柱为例,来学习SolidWorks流体仿真的操作流程和计算过程。
(1)建立模型图1、垂直下降的水柱为了更直观的描述垂直下降的水柱,本例采用内部为圆柱、下端为入口、上端为出口的圆管结构,圆管的形状可以通过设置Lofted Pipe中Lofted Spline的参数来控制。
具体步骤如下:1)点击菜单栏中的Insert——Lofted Pipe;2)单击Sketch按钮,在图形区域当中绘制一个框;3)点击Lofted Spline按钮,调整参数;4)点击OK按钮,完成建模。
(2)设置流动参数在设置流动参数之前,还需要将模型放置在正确的位置,将模型的原点设置在管道口的中心,位置可以通过调整管道原点部分的参数来实现,具体步骤如下:1)点击Flow Simulation菜单,选择Create FlowSimulation;2)点击Flow Setup->Setup Inlet,设置原点;3)点击Flow Setup->Flow Source,设置流体类型及流体速度;4)点击Flow Setup->Flow Source,设置流动参数。
(3)计算模拟设置完流动参数后,可以开始计算流体仿真结果。
因为本例中的流体速度、流体流量都是已知参数,所以仿真过程就是求解流体的压力下降及流速场等指标,由于SolidWorks流体仿真的收敛性较高,只用一次仿真就可得出仿真结果。
(4)结果分析仿真结束后,可以点击Result->Report,查看结果报告,如图2、图3所示:图2、报告结果图3、结果图从报告及图中可以得出:1)水柱下降的高度为5.34m,大于预期的5m;2)入口处温度为20℃,出口处温度为18.5℃,大于预期的10℃;3)入口处流速约为3.53m/s,出口处流速约为2.94m/s,比预期的2m/s略低;4)流速越快,水柱下降的高度越高,出口处温度也会受到影响,水柱下降的高度越高,出口处温度就会越低。
solidworks机械臂运动仿真注意事项SolidWorks机械臂运动仿真是一项重要的工程设计任务,它可以帮助工程师们在设计过程中模拟和验证机械臂的运动性能。
然而,要确保仿真结果准确可靠,需要注意以下几个方面。
一、建立准确的三维模型1. 确保所有零件和装配体的尺寸、形状和材料属性都准确无误。
2. 仔细检查模型中的接触面和连接方式,确保它们能够正确地传递力和扭矩。
3. 确保模型中所有零件之间的约束关系正确设置,并且与实际机械臂相符。
二、设置合理的物理特性1. 确定物体的质量、惯性矩阵和摩擦系数等物理属性,以便在仿真过程中准确地模拟运动行为。
2. 根据实际情况设置关节的刚度和阻尼参数,以获得更真实的仿真结果。
三、定义适当的运动学约束1. 根据机械臂的结构和自由度确定各个关节之间的运动学约束。
2. 设置关节极限角度,并确保在仿真过程中不会超出这些限制。
四、选择合适的仿真方法1. 根据具体需求选择适当的仿真方法,如正向运动学、逆向运动学、动力学仿真等。
2. 在进行大范围运动仿真时,可以采用分析模型和简化模型相结合的方式,以提高计算效率。
五、进行准确的边界条件设定1. 确定初始状态和边界条件,如机械臂的初始位置、速度和加速度等。
2. 设置外部力和扭矩,并根据实际情况调整其大小和方向。
六、进行合理的仿真参数设定1. 选择合适的时间步长,以平衡计算精度和计算效率。
2. 根据实际需求设置仿真时间长度,确保能够观察到完整的运动过程。
3. 对于复杂的机械臂系统,可以使用自适应时间步长来提高仿真精度。
七、分析和解释仿真结果1. 仔细观察并分析仿真结果,包括关节角度、位移、速度等参数。
2. 对比仿真结果与实际情况进行验证,并根据需要对模型进行修改和优化。
八、注意安全问题1. 在进行机械臂运动仿真时,要注意安全事项,确保没有人员或其他物体处于危险区域。
2. 对于高速运动的机械臂,要特别注意碰撞和冲击的可能性,并采取相应的防护措施。
实验指导书实验六S o l i d W o r k s运动仿真
TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】
实验一 SolidWorks运动仿真
一、实验目的
1.掌握SolidWorks图形装配方法
2.掌握SolidWorks装配图的motion分析操作方法
二、实验内容
完成下列3个模型的装配及运动仿真
三、实验步骤
压榨机机构的装配与仿真
3.1 压榨机机构的装配
3.1.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。
依次将机架和压榨杆添加进来,添加机架与压榨杆的同轴心配合。
如图4。
再将滑块添加进来,添加滑块与压榨杆的重合配合,如图5。
3.1.2 添加滑块端面与机架端面的重合配合,以及滑块前视基准面与机架前视基准面的重合配合(点击图形区域左边的装配体下的机架前的“+”号即可找到前视基准面)最后将滑块拖动到中间位置。
3.2 压榨机机构的运动仿真
3.2.1 仿真前先将“solidworks motion”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion”的前后框,如下图8所示。
在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图9所示。
3.2.2 添加实体接触:单击工具栏上的“接触按钮”
,在弹出的属性管理器中【接触
类型】栏内选择“实体接触”,在【选择】栏内,点击视图区中压榨杆和滑块,“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“
”,如下图10所示。
同理再为滑
块与机架添加实体接触,参数设置与压榨杆与滑块之间的一样。
3.2.3 添加驱动力:物体对压榨杆的反作用力即为驱动力,故在压榨杆上添加一恒力即可。
单击工具栏中的“力”按钮“”,在弹出的【力/扭矩】属性管理器中,【类型】选择“力”,【方向】选择“只有作用力”,“作用零件和作用应用点”,选择压榨杆上表面,单击改变力的方向向下,【力函数】选择“常量”,大小输入50牛顿,单击确定按钮。
3.2.4 仿真:将播放速度设置为5秒,右击“键码属性”,选择“编辑关键点时间”,输入0.05确定。
如下图12所示。
然后选择工具栏中的“运动算例属性”按钮,在弹出的【运动算例属性】管理器中,将motion分析下的每秒帧数改为1000并单击确定。
如图13所示。
3.2.5 最后在工具栏中选择“计算”按钮,待计算完成后,点击“结果和图解”按钮
,选取类别为“位移/速度/加速度”,选取子类别为“质量中心位置”,选取结果分量为“X分量”,其中右侧显示栏选择滑块的一表面,单击确定。
同理可得Y分量的图形。
如下图所示。
凸轮机构的装配与仿真
3.3 凸轮机构的装配
3.3.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。
依次将机架和摆杆添加进来,添加摆杆和机架的同轴心配合,如图16所示。
其端面添加重合配合,如图17所示。
3.3.2
将滚子添加进来,添加滚子与摆杆的同轴心配合,如图18所示。
再添加滚子与摆杆的端面重合配合,如图19所示。
3.3.3
将凸轮添加进来,依次添加凸轮与机架的同轴心配合,重合配合,如下图所示。
图18滚子与摆杆的同轴心配合图19滚子
3.3.4 为使滚子处于正确的装配位置,将凸轮与滚子柱面添加相切配合,如图22所示。
在设计树中右击该相切配合,在弹出的菜单中选择“压缩”,使该相切暂时不起作用,以免影响后面的运动仿真。
3.4 凸轮机构的运动仿真
3.4.1 仿真前先将“solidworks motion”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion”的前后框,如下图24所示。
在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图25所示。
3.4.2 添加马达:单击工具栏中“马达”按钮,在弹出的马达菜单中,“马达类型”选择旋转马达,“零部件方向”中马达位置,选择模型中凸轮的基圆边线。
在“运动”中选择等速,72 RPM。
凸轮参数以及位置如下图所示。
3.4.3 将时间长度中的键码属性拖动到一秒,如图28所示。
然后选择工具栏中的“运动算例属性”按钮,在弹出的【运动算例属性】管理器中,将motion分析下的每秒帧数改为100并单击确定。
如图29所示。
3.4.4 添加实体接触与引力:单击工具栏上的“接触按钮”,在弹出的属性管理器中【接触类型】栏内选择“实体接触”,在【选择】栏内,点击视图区中凸轮和滚子,“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“”,如下图30所示。
再单击工具栏上的“引力”按钮,在弹出的【引力参数】栏内选择Y轴的负方向作为参考方向,数值为默认值,单击确定。
如图31所示。
3.4.5 最后在工具栏中选择“计算”按钮,待计算完成后,点击“结果和图解”按钮
,选取类别为“位移/速度/加速度”,选取子类别为“角位移”,选取结果分量为“幅值”,其中右侧显示栏选择摆杆的任意一表面,单击确定。
如图32所示。
同理可得Z分量的角加速度图形。
如图35所示。
夹紧机构的装配与仿真3.5夹紧机构的装配
3.5.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。
依次将机架和杻板添加进来,添加机架与杻板的同轴心配合,如图36所示。
其端面添加重合配合,如图37所示。
3.5.2 将手柄添加进来,添加手柄与杻板的同轴心及端面配合。
如下图所示。
3.5.3 将支架添加进来,添加支架与手柄的同轴心配合及重合配合,如下图所示。
3.5.4 将钩头添加进来,添加钩头与支架的同轴心配合,如图42所示。
再添加钩头与杻板的同轴心及重合配合,如图43与图44所示。
最后添加钩头底面与机架上表面的重合配合。
如图45所示。
3.5.5 为了仿真的顺利进行,右击机架与钩头的重合配合,选择压缩按钮,将此配合先压缩。
同理再将钩头与工件的重合配合压缩。
压缩后的配合显示为灰色。
如下图所示。
3.6 夹紧机构的运动仿真
3.6.1 仿真前先将“solidworks motion”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion”的前后框,如下图48所示。
在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图49所示。
3.6.2 添加压力:单击工具栏中的“力”按钮“”,在弹出的【力/扭矩】属性管理器中,【类型】选择“力”,【方向】选择“只有作用力”,“作用零件和作用应用点”
,选择手柄端部分割线,单击改变力的方向向下。
将【相对于此的力】下的【所选零部件】激活,然后选择手柄。
【力函数】选择“常量”,大小输入90牛顿,单击确定按钮。
如下图所示。
3.6.3 将播放速度设置为5秒,右击“键码属性”,选择“编辑关键点时间”,输入
0.03确定。
如下图52所示。
然后选择工具栏中的“运动算例属性”按钮,在弹出的【运动算例属性】管理器中,将motion分析下的每秒帧数改为1000并单击确定。
如图53所示。
3.6.4 添加实体接触:单击工具栏上的“接触按钮”,在弹出的属性管理器中【接触类型】栏内选择“实体接触”,在【选择】栏内,选中“使用接触组”复选框,零部件组1中用鼠标在视图区选中钩头,零部件组2中选择机架与工件。
“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“”,如下图54所示。
3.6.5 添加弹簧:单击工具栏上的弹簧按钮,在弹出的属性管理器中【弹簧类型】选择“线性弹簧”,在【弹簧参数】栏内,“弹簧端点”选择视图区中工件的边线与机架倒圆处边线,“弹簧常数”输入100牛顿/mm,单击确定,如下图所示。
3.6.6 最后在工具栏中选择“计算”按钮,待计算完成后,点击“结果和图解”按钮
,选取类别为“力”,选取子类别为“反作用力”,选取结果分量为“幅值”,其中
右侧显示栏选择设计树中的线性弹簧,单击确定,生成弹簧反作用力幅值曲线图。
如图
57所示。