第五章土的抗剪强度
- 格式:ppt
- 大小:4.53 MB
- 文档页数:29
第五章土的抗剪强度在外荷载作用下,土工建筑物和地基内部会产生剪应力和相应的变形,与此同时也会引起抵抗这种剪切变形的阻力。
当土体内的剪应力和抗剪应力处于平衡状态时,土工建筑物和地基会保持稳定。
随着剪应力的增加,抗剪应力相应也会增加,但是抗剪应力增加有一个限度,达到这一限度时,土体就要发生破坏,这个限度称为土的抗剪强度。
如果土体内某一部分的剪应力达到它的抗剪强度时,该部分的土体就出现剪切破坏或产生塑性流动,最终可能导致一部分土体沿着某个面相对于另一部分土体产生滑动,发生整体破坏。
一、库仑定律与土的极限平衡条件1、库仑定律1776年库仑根据砂土剪切试验的结果提出砂土抗剪强度公式后来对粘性土进行剪切试验,得到粘性土抗剪强度公式2、土的抗剪强度影响因素摩擦力:土的原始密度、剪切面上的法向总应力、土粒的形状、土粒的表面粗糙程度、土的颗粒级配粘聚力:粘粒含量、矿物成分、含水量、土的结构3、土中某点的应力状态土体内部某点不同方位上截面上应力(正应力和剪应力)的集合。
土体内部某点的不同方位上所有截面应力组合均在莫尔应力圆上,圆心坐标[1/2(+ ),0],应力圆半径r=1/2(- )。
因此土的应力状态可以用莫尔应力圆表示。
4、土的极限平衡条件把抗剪强度包线与描述土体中某点的莫尔应力圆绘在同一座标系中,根据两者的相对位置判断土体该点所处的状态。
莫尔应力圆位于抗剪强度包线的下方,该点处于弹性平衡状态。
莫尔应力圆与抗剪强度包线相切,该点处于极限平衡状态莫尔应力圆与抗剪强度包线相割,该点已经被剪破。
土体处于极限平衡状态的极限平衡条件:二、土的抗剪强度试验1、直接剪切试验2、三轴剪切试验3、无侧限抗压强度试验4、十字板剪切试验三、不同排水条件下的剪切试验成果1、总应力强度指标和有效应力强度指标土的抗剪强度并不是由剪切面上的法向总应力决定,而是取决于剪切面上的有效法向应力,可以根据有效应力表示的土体抗剪强度表达式表示有效应力强度指标确切的表示出土的抗剪强度的实质。
第5章土的抗剪强度第五章土的抗剪强度名词解释1、抗剪强度:指土体抵抗剪切破坏的极限能力。
2、库仑定律:将土的抗剪强度ιf 表示为剪切面上法向应力σ的函数,即φστtan +=c f ,式中c 、Ф分别为土粘聚力和内摩擦角,该关系式即为库仑定律。
3、莫尔一库仑强度理论:由库仑公式表示莫尔包线的强度理论。
填空:1.根据莫尔一库仑破坏准则,土的抗剪强度指标包括和。
2.莫尔抗剪强度包线的函数表达式是。
3.土的抗剪强度有两种表达方法:一种是以表示的抗剪强度总应力法,另一种是以表示的抗剪强度有效应力法。
4.应力历史相同的一种土,密度变大时,抗剪强度的变化是;有效应力增大时,抗剪强度的变化是。
5.直接剪切仪分为控制式和控制式两种,前者是等速推动试样产生位移,测定相应的剪应力,后者则是对试件分级施加水平剪应力测定相应的位移。
6.排水条件对土的抗剪强度有很大影响,实验中模拟土体在现场受到的排水条件,通过控制加荷和剪坏的速度,将直接剪切试验分为快剪、和。
7.对于孔隙中充满水的完全饱和土,各向等压条件下的孔隙压力系数等于,表明施加的各向等压等于;对于干土,各向等压条件下的孔隙压力系数等于。
8.对于非饱和土,土的饱和度越大,各向等压条件下的孔隙压力系数越。
参考答案1.粘聚力,内摩擦角;2.φστtan +=c f ;3.总应力,有效应力; 4.增大,增大;5.应变,应力;6.固结快剪,慢剪;7.1,孔隙水压力,o ;8.大选择题1、建立土的极限平衡条件依据的是( 1 )。
(1)极限应力圆与抗剪强度包线相切的几何关系;(2)极限应力圆与抗剪强度包线相割的几何关系;(3)整个莫尔圆位于抗剪强度包线的下方的几何关系(4)静力平衡条件2、根据有效应力原理,只要( 2 )发生变化,土体强度就发生变化(1)总应力;(2)有效应力;(3)附加应力;(4)自重应力。
3.无侧限抗压强度试验可用来测定土的( 4 )。
(1)有效应力抗剪强度指标; (2)固结度; (3)压缩系数; (4)灵敏度。
第五章土的抗剪强度第一节概述土是固相、液相和气相组成的散体材料。
一般而言,在外部荷载作用下,土体中的应力将发生变化。
当土体中的剪应力超过土体本身的抗剪强度时,土体将产生沿着其中某一滑裂面的滑动,而使土体丧失整体稳定性。
所以,土体的破坏通常都是剪切破坏。
在工程建设实践中,道路的边坡、路基、土石坝、建筑物的地基等丧失稳定性的例子是很多的(图5-1)。
为了保证土木工程建设中建(构)筑物的安全和稳定,就必须详细研究土的抗剪强度和土的极限平衡等问题。
图5-1 土坝、基槽和建筑物地基失稳示意图(a)土坝(b)基槽(c)建筑物地基土的抗剪强度是指土体抵抗剪切破坏的能力,其数值等于土体产生剪切破坏时滑动面上的剪应力。
抗剪强度是土的主要力学性质之一,也是土力学的重要组成部分。
土体是否达到剪切破坏状态,除了取决于其本身的性质之外,还与它所受到的应力组合密切相关。
不同的应力组合会使土体产生不同的力学性质。
土体破坏时的应力组合关系称为土体破坏准则。
土体的破坏准则是一个十分复杂的问题。
到目前为止,还没有一个被人们普遍认为能完全适用于土体的理想的破坏准则。
本章主要介绍目前被认为比较能拟合试验结果,因而为生产实践所广泛采用的土体破坏准则,即摩尔—库伦破坏准则。
土的抗剪强度,首先取决于其自身的性质,即土的物质组成、土的结构和土所处于的状态等。
土的性质又与它所形成的环境和应力历史等因素有关。
其次,土的性质还取决于土当前所受的应力状态。
因此,只有深入进行对土的微观结构的详细研究,才能认识到土的抗剪强度的实质。
目前,人们已能通过采用电子显微镜、X射线的透视和衍射、差热分析等等新技术和新方法来研究土的物质成分、颗粒形状、排列、接触和连结方式等,以便阐明土的抗剪强度的实质。
这是近代土力学研究的新领域之一。
有关这方面的研究,可参132133 见相关的资料和文献。
土的抗剪强度主要由粘聚力c 和内摩擦角ϕ来表示,土的粘聚力c 和内摩擦角ϕ称为土的抗剪强度指标。
第五章 土的抗剪强度一、名 词 释 义l. 抗剪强度:指土体抵抗剪切破坏的极限能力。
2.破坏准则:当土体中的应力组合满足一定关系时,土体即发生破坏,这种应力组合即为破坏准则,亦即判定土体是否破坏的标准。
破坏准则又称为极限平衡条件。
3.库仑定律: 将土的抗剪强度f τ表示为剪切面上法向应力σ的函数,即φστtg c f ⋅+= 式中,φ,c 分别为土粘聚力和内摩擦角,该关系式即为库仑定律。
4.莫尔一库仑强度理论:由库仑公式表示莫尔包线的强度理论。
5.莫尔包线:土体发生剪切破坏时,剪切破坏面上的剪应力f τ是该面上的法向应力σ 的函数,这个函数在στ−f 坐标中是一条曲线,该曲线称为莫尔包线。
6.快剪试验:在试样施加竖向压力后,立即快速施加水平应力使试样剪切破坏的直接剪切试验,要求在3~5min内将土样剪坏。
7.固结快剪试验:是允许试样在竖向压力下充分排水,待固结稳定后,再快速施加水平剪应力使试样剪切破坏的直接剪切试验,要求在3~5min内将土样剪坏。
8. 慢剪试验:是允许试样在竖向压力下排水,待固结稳定后,再缓慢地施加水平剪应力使试样剪切破坏的直接剪切试验,为了保证剪切过程中土样内不产生孔隙水压力,施加水平剪应力使试样剪切破坏历时较长,对粘性土一般历时4~6h。
9. 不固结不排水试验:试样在施加周围压力和随后施加竖向压力直至剪切破坏的整个过程中都不允许排出,自始至终关闭排水阀门的三轴压缩试验。
10.固结不排水试验:施加周围压力,打开排水阀门,允许排水固结,固结完成后关闭排水阀门,再施加竖向压力,使试样在不排水的条件下剪切破坏的三轴压缩试验。
11.固结排水试验:试样在施加周围压力后允许排水固结,待固结稳定后,再在排水条件下施加竖向压力至试件剪切破坏的三轴压缩试验。
12.无侧限抗压强度:将圆柱形土样放在无侧限抗压仪中,在不加任何侧向压力的情况下施加垂直压力,直到使土样剪切破坏,剪切破坏时试样所能承受的最大轴向压力称为无侧限抗压强度。
第五章土的抗剪强度及其参数确定土的抗剪强度是土体在受到剪切力作用下抵抗破坏的能力。
土的抗剪强度是土力学中的重要参数,用于设计土体的承载力及稳定性。
土的抗剪强度与土体的力学性质有关,主要包括土粒间的摩擦力和粘聚力。
土粒间的摩擦力是由于土粒之间的接触而产生的阻力,而粘聚力是吸附在土粒表面的水膜力量。
土的抗剪强度可通过劈裂强度和摩擦强度来表示,即抗剪强度=粘聚力+摩擦力。
土体的抗剪强度可通过室内试验测定。
常见的试验方法有直剪试验、三轴剪切试验和扭转试验等。
其中,直剪试验是最简单的一种试验方法,适用于研究土体的剪切特性及其参数的确定。
直剪试验是将土样切割成一定形状的试件,然后施加垂直于剪切面的正压力和平行于剪切面的剪切力,观察土样的破坏模式及其抗剪强度。
试验可以得到剪切应力-剪切应变曲线,从而确定土体的抗剪强度及其参数。
直剪试验中,土样的形状和尺寸对试验结果有一定影响。
常见的土样形状有圆形、方形、矩形等。
土样尺寸的选择要符合土体的工程实际,并考虑统计性。
在试验过程中,还需控制剪切速率、正压力等试验条件。
直剪试验得到的剪切应力-剪切应变曲线常表现为线性段和非线性段。
线性段表征土体的弹性特性,非线性段表征土体的塑性特性。
通过拟合这两个段的曲线,可以确定土体的抗剪强度及其参数。
土体的抗剪强度参数主要包括内摩擦角和粘聚力。
内摩擦角是土体摩擦力大小的一种表征,可通过试验结果计算得到。
粘聚力是土体粘聚力大小的一种表征,需要通过试验得到。
根据试验结果,可以进一步确定土体的抗剪强度参数。
土的抗剪强度及其参数对土体的工程设计和稳定性分析具有重要的意义。
确定准确的抗剪强度参数可以保证土体工程的安全可靠性,也有助于优化土体的设计和施工方案。
因此,在土力学和岩土工程中,研究土的抗剪强度及其参数的确定是一个重要的课题。