典型方程和定解条件的推导-
- 格式:ppt
- 大小:804.00 KB
- 文档页数:28
《数学物理方程》(应用人才)教学大纲一、课程基本信息1、课程英文名称:Equations of Mathematical Physics2、课程类别:基础课程3、课程性质:学位课4、课程学时:总学时 365、学分:26、先修课程:《高等数学》、《积分变换》、《复变函数》7、授课方式:多媒体演示、演讲与板书相结合,讨论8、适用专业:工学专业的学术型硕士和博士9、大纲执笔:研究生教研室10、大纲审批:理学院学术委员会11、制定(修订)时间:2015年6月、2018年7月二、课程的目的与任务数学物理方程是工科院校相关专业硕士研究生的一门重要的学位课程,数理方程主要是指在物理学、力学以及工程技术中常见的一些偏微分方程。
通过本课程的学习,要求学生掌握数学物理方程的基本知识、解偏微分方程的经典方法与技巧。
本课程主要讲述三类典型的数学物理方程,即波动方程、热传导方程、调和方程的物理背景、定解问题的概念和古典的求解方法, 如波动方程的分离变量法、D`Alembert解法、积分变换法、Green函数法,算子法等;通过本课程的学习,能够建立一些较为简单的实际问题数学物理模型,学会用数学物理方程理论与方法解决实际问题的初步技能。
三、课程的基本要求1、理解数学物理方程的基本概念。
2、掌握利用微元法建立数学物理方程的思想和方法。
3、理解数学物理方程解的适定性概念。
4、掌握分离变量法在三种定解条件下的求解步骤。
5、理解圆域内二维拉普拉斯方程定解问题的求法。
6、会求解非齐次方程的定解问题。
7、掌握非齐次边界条件的处理方法。
8、了解施图姆—刘维尔问题及其性质。
9、掌握Fourier变换的定义和基本性质,会用Fourier变换求解某些简单的数学物理方程定解问题。
10、掌握Laplace变换的定义和基本性质,会用Laplace变换的在求解某些简单的数学物理方程定解问题。
11、掌握达朗贝尔公式的推导过程和物理意义,掌握解决柯西始值问题的行波法。
课程介绍数学物理方法是物理类专业的必修课和重要基础课,也是一门公认的难道大的课程。
该课程通常在本科二年级开设,既会涉及到先行课高等数学和普通物理的内容,又与后续课程密切相关。
故这门课学习情况的好坏,将直接关系到后继课四大力学和专业课程的学习问题,也关系到学生分析问题解决问题的能力的提高问题。
如何将这门“难教、难学、难懂”的课变为“易教、易学、易懂”的课,一直是同行教师十分关注的问题。
本课程包括复变函数论、数学物理方程、特殊函数、非线性方程和积分方程共四篇的内容。
其中,第一篇复变函数论又含解析函数、解析函数积分、无穷级数、解析延拓·Г函数和留数理论五章;第二篇数理方程又包括:定解问题、行波法、分离变量法、积分变换法和格林函数法五章;第三篇特殊函数又包括勒让德多项式、贝塞耳函数、斯特姆-刘维本征值问题三章;而第四篇包括非线性方程、积分方程两章。
第一、二、三篇为传统数学物理方法课程所含内容,而第四篇是为了适应学科发展需要所引入的传统同类教材中没有的与前沿科学密切相关的新内容。
《数学物理方法》是物理系本科各专业学生必修的重要基础课,是在"高等数学"课程基础上的又一重要的基础数学课程,它将为进行下一步的专业课程学习提供基础的数学处理工具。
所以,本课程受到物理系学生和老师的重视。
对一个物理问题的处理,通常需要三个步骤:一、利用物理定律将物理问题翻译成数学问题;二、解该数学问题;三、将所得的数学结果翻译成物理,即讨论所得结果的物理意义。
因此,物理是以数学为语言的,而"数学物理方法"正是联系高等数学和物理专业课程的重要桥梁。
本课程的重要任务就是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法,如分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等等。
近十几年来,负责厦门大学物理系"数学物理方法"课程教学的教师共有三位(朱梓忠教授,张志鹏,李明哲副教授),他们都是中青年教师,均获得物理方面的理学博士学位。
《数理方程与特殊函数》教学大纲课程名称:数理方程与特殊函数(Equations of Mathematical Physics and Special Functions)课程编号:FX042120B学分:2.5总学时:40适用专业:光电信息类专业,也可供其它专业选用先修课程:《高等数学》、《线性代数》、《积分变换》一、课程性质、目的与任务:通过本课程学习,使学生初步掌握数学物理方程的基本理论与方法,为学习有关专业课程与扩大知识面提供必要的数学基础。
二、教学基本要求:了解典型方程的建立,定解问题及线性偏微分方程的迭加原理;熟练掌握分离变量法,会应用变量代换法、积分变换法与格林函数法,会用贝塞尔函数与勒让德函数有关的定解问题。
本课程的内容按教学要求的不同,概念、理论从高到低用“理解”、“了解”一词表述,方法、运算用“掌握“一词表述。
第一章一些典型方程和定解条件的推导1、了解三类典型方程的物理背景和导出步骤;2、了解定解条件所反映的物理意义;3、了解三种定解问题(初值问题、边值问题、混合问题)的区别。
知道不同方程有不同的定解问题的提法;4、知道并掌握线性偏微分方程解的叠加性质。
第二章分离变量法1、掌握分离变量法,能应用于振动方程、传导方程的混合问题和特殊区域上拉普拉斯方程的狄里克莱问题;2、掌握求解非齐次方程的固有函数法和齐次化原理;3、了解对于非齐次边界条件的处理方法。
第三章行波法与积分变换法1、会用行波法导出一维波动方程的达朗贝尔公式(限于齐次方程);2、了解弦振动问题的“依赖区间”、“决定区域”和“影响区域”的概念;3、了解三维波动方程的泊松公式的导出方法;4、会用降维法从三维波动方程的泊松公式导出二维波动方程的泊松公式以及一维波动方程的达朗贝尔公式;5、会用付里叶变换和拉普拉斯变换求解一些定解问题。
第四章 拉普拉斯方程的格林函数法1、了解拉普拉斯方程两种定解问题(狄里克莱问题和诺依曼问题)的提法,(每种问题又分内问题和外问题);2、会从高斯公式导出格林第一、第二公式;3、知道三维(二维)拉普拉斯方程的基本解)1ln (100M M M M r r ,会借助基本解从格林第二公式导出调和函数的积分表达式;4、了解引进格林函数的目的,及格林函数的物理意义;5、掌握上半空间和球域的格林函数及相应的泊松公式,会用公式求解定解问题。