课题三 中频感应加热电源1
- 格式:ppt
- 大小:8.45 MB
- 文档页数:195
中频电源广泛应用于熔炼、透热、淬火、焊接等领域,不同的应用领域对中频电源有着不同的要求,因此,中频电源的控制电路和主电路就有不同的结构形式。
熟练掌握这些电路的基本工作原理和功率器件的基本特性是开展好工作的必备前提,只有在此基础上,才能准确迅速地分析判断故障原因,并采取有效的措施排除故障。
在这里仅对典型电路和常见故障进行一下探讨。
2 典型电路和常见故障2.1 故障现象一及处理方法:设备无法启动,启动时只有直流电流表有指示,直流电压、中频电压表均无指示,2.1.1逆变触发脉冲现象,用示波器检查逆变脉冲(在可控硅AK上检查),如有缺脉冲现象,检查连线是否接触不好或开路,前级是否有脉冲输出。
2.1.2逆变可控硅击穿,更换可控硅。
2.1.3电容器击穿,拆除损坏的电容器极柱。
2.1.4负载有短路,接地现象,排除短路点和接地点。
2.1.5中频信号取样回路有开路或短路现象,用示波器观察各信号取样点的波形,查找开路点或短路点。
2.2.故障现象二及处理方法:重载冷炉起动时各电参数和声音都正常但功率升不上去过流保护。
分析处理:2.2.1 逆变换流角太小用示波器观看逆变晶闸管的换流角,把换流角调到合适值;2.2.2 炉体绝缘阻值低或短路,用兆欧表检测炉体阻值排除炉体的短路点;2.2.3 炉料钢铁相对感应线圈阻值低,用兆欧表检测炉料相对感应圈的阻值;若阻值低重新筑炉。
2.2.4换炉开关有接地现象或开关触头有接触不良现象,更换换炉开关或触头。
2.3故障现象三及处理方法:启动困难,启动后直流电压最高只能升到1400v,且电抗器震动大,声音沉闷。
2.3.1整流可控硅开路、击穿、软击穿或电参数性能下降,用示波器观察各整流可控硅的管压降波形,查找损坏的可控硅后更换。
2.3.2缺少一组整流触发脉冲,用示波器分别检查各路触发脉冲,检查出没有脉冲的回路时,用倒推法确定故障位置,更换其损坏器件。
2.4故障现象四及处理方法:频繁烧坏可控硅元件,更换新可控硅后,又被烧坏。
中频加热原理中频加热是一种常见的加热方式,它利用电磁感应原理将电能转化为热能,广泛应用于金属加热、熔炼、热处理等工业领域。
中频加热原理简单易懂,下面将为您详细介绍中频加热的工作原理和特点。
1. 电磁感应原理。
中频加热的核心原理是电磁感应,即利用交变电流在导体中产生的涡流来实现加热。
当导体置于交变电磁场中时,导体内部将产生涡流,涡流会使导体发热,从而实现加热的效果。
这种加热方式不需要接触导体,因此可以实现对金属的局部加热,避免了传统加热方式中可能出现的热量浪费和热损失。
2. 工作原理。
中频加热设备主要由电源系统、感应线圈和工件组成。
电源系统产生中频交变电流,经过感应线圈产生交变磁场,工件在交变磁场中产生涡流,从而实现加热。
中频加热设备可以根据工件的材质、形状和加热要求进行调节,实现精准的加热控制。
3. 特点。
中频加热具有许多优点,例如加热效率高、加热速度快、加热均匀等。
与传统的火焰加热和电阻加热相比,中频加热可以大大提高加热效率,减少能源消耗。
此外,中频加热还可以实现对金属的局部加热,避免了整体加热时可能产生的变形和损坏。
4. 应用领域。
中频加热广泛应用于金属热处理、锻造、熔炼、焊接等工业领域。
在金属热处理中,中频加热可以实现对金属的局部加热,提高了生产效率和产品质量。
在金属锻造中,中频加热可以实现对工件的局部加热,减少了能源消耗和生产成本。
在金属熔炼和焊接中,中频加热可以实现对金属的快速加热和精准控制,提高了生产效率和产品质量。
总结,中频加热作为一种高效、节能的加热方式,已经成为工业生产中不可或缺的技术手段。
通过深入了解中频加热的工作原理和特点,可以更好地应用这一技术,提高生产效率,降低能源消耗,实现可持续发展。
高频感应加热电源的研究的开题报告一、课题研究的背景和意义高频感应加热技术因其快速、可控、高效、节能、环保等特点,被广泛应用于钢铁、有色金属、机械制造、汽车制造、电子电器、食品医药等行业的加热、热处理、淬火、熔铸等领域。
高频感应加热技术的核心是高频感应加热电源。
传统的高频感应加热电源存在着功率因数低、能量损失大、体积大、重量重、效率低等缺点。
为了满足工业生产和环保要求,需要研究和开发一种新型的高频感应加热电源。
本课题将针对传统高频感应加热电源存在的问题,研究和开发一种功率因数高、能量损失小、体积小、重量轻、效率高的新型高频感应加热电源,为工业生产提供更高效、更可靠的加热设备。
二、研究内容和目标1. 分析高频感应加热技术的原理、特点和应用现状;2. 对传统高频感应加热电源存在的问题进行分析和研究;3. 研究新型高频感应加热电源的工作原理和基本结构;4. 设计并制作新型高频感应加热电源的电路图和PCB板;5. 对新型高频感应加热电源进行性能测试和优化;6. 编写新型高频感应加热电源的使用说明书。
本课题的目标是研制一种功率因数高、能量损失小、体积小、重量轻、效率高、可控性强的新型高频感应加热电源,在满足工业生产和环保要求的情况下,提高生产效率、降低能耗和成本。
三、研究方法和步骤本课题采用文献研究、理论分析、实验测试和数值模拟等方法。
具体步骤如下:1. 对高频感应加热技术的原理、特点和应用现状进行文献研究和理论分析;2. 对传统高频感应加热电源存在的问题进行文献研究和理论分析;3. 分析和设计新型高频感应加热电源的工作原理和基本结构;4. 制作新型高频感应加热电源的电路图和PCB板;5. 对新型高频感应加热电源进行性能测试和优化,测试参数包括功率因数、效率、温度、频率等;6. 对新型高频感应加热电源进行数值模拟,优化并验证其设计参数;7. 编写新型高频感应加热电源的使用说明书。
四、预期成果和应用价值预期成果:1. 研制出功率因数高、能量损失小、体积小、重量轻、效率高、可控性强的新型高频感应加热电源;2. 完成新型高频感应加热电源的电路图、PCB板、性能测试和数值模拟等工作;3. 编写新型高频感应加热电源的使用说明书。
中频感应加热设备的设计引言中频感应加热设备是一种常见的工业加热设备,通过电磁感应原理将电能转换为热能,广泛应用于金属材料的加热、熔化、焊接等工艺中。
本文将详细介绍中频感应加热设备的设计原理、设备组成以及关键技术要点。
设计原理中频感应加热设备的工作原理基于法拉第电磁感应定律:当导体处于变化磁场中时,会在内部产生感应电流。
设备通过线圈产生变化的高频电磁场,导体进入电磁场后,感应电流在导体内部产生摩擦热,从而实现加热效果。
设备组成中频感应加热设备主要由以下组成部分构成:1. 电源装置电源装置是中频感应加热设备最关键的组成部分,它负责提供稳定的高频电能。
常见的电源装置包括中频电源、功率电源和电容器等。
中频电源通过变压器将市电的低压高频电流转换为设备所需的高压高频电流,功率电源则提供稳定的电能供给线圈工作,而电容器则用于存储电能以供应设备瞬时需求。
2. 线圈线圈是中频感应加热设备的核心部件,它由绝缘材料包裹的铜导线组成。
线圈内通有高频电流,通过线圈的电流在导体中产生变化的磁场,从而实现感应加热效果。
线圈的设计要考虑到导热性能、电流容量以及加热均匀性等因素。
3. 冷却系统中频感应加热设备在工作过程中会产生大量的热量,需通过冷却系统及时散热。
常见的冷却系统包括水冷系统和气冷系统。
水冷系统通过与线圈接触的水管吸热并带走热量,起到冷却的作用;气冷系统则通过风扇或风道将热风吹散,降低设备温度。
4. 控制系统中频感应加热设备的控制系统用于监控和调节设备的运行状态和参数,保证设备的稳定工作。
常见的控制系统包括温度传感器、电流传感器、PLC控制器等。
温度传感器用于监测被加热物体的温度,电流传感器用于监测线圈电流,PLC控制器则用于根据监测到的参数进行智能控制和调节。
设计要点在中频感应加热设备的设计过程中,需要注意以下几个要点:1. 加热物体的选择不同的加热物体具有不同的导热性能和电磁感应特性,因此在设计过程中需要根据实际工艺需求选择合适的加热物体。
中频感应加热电源的设计
1.电源输出功率和频率:根据加热要求确定电源的输出功率和频率。
输出功率一般由加热负荷大小决定,频率一般选择在1kHz~20kHz之间,
根据不同的加热要求进行调整。
2.电源结构设计:电源的结构设计主要包括整流、逆变、振荡等电路
的设计。
整流电路用于将交流电转换成直流电,逆变电路用于将直流电转
换成交流电,振荡电路用于产生中频振荡信号。
3.电源控制系统设计:电源控制系统主要包括开关控制电路、保护电
路和自动控制电路等。
开关控制电路用于控制电源的开关,保护电路用于
保护电源和负载不受损坏,自动控制电路用于实现加热功率的调节和温度
等参数的监测和控制。
4.效率和功率因数:设计中频感应加热电源时,需要考虑电源的效率
和功率因数,以提高电源的能量利用率和减少对电网的电能需求。
5.冷却系统设计:中频感应加热电源在工作过程中会产生大量的热量,需要通过冷却系统将热量排出,以保证电源的正常工作和寿命。
6.控制方式:中频感应加热电源的控制方式有手动控制和自动控制两种。
手动控制方式需要人工操作电源的开关和参数调节,自动控制方式通
过传感器和控制器实现对加热过程的自动控制。
7.安全性设计:中频感应加热电源设计中需要考虑安全性问题,包括
过载、短路、过流、过热等保护措施的设计,以及对电源和负载的绝缘和
接地等安全措施的实施。
综上所述,中频感应加热电源的设计需要考虑输出功率和频率、电源结构、电源控制系统、效率和功率因数、冷却系统、控制方式、安全性等方面的因素。
通过合理的设计和选择,可以提高电源的性能和工作效率,满足不同加热需求的要求。
中频感应加热原理
中频感应加热原理是一种新型的、高效的电热加工方式。
它具有加热速度快、能耗低、效率高等优点,被广泛应用于金属加热处理、电热锅炉、电热水器等领域。
那么,中频感应加热原理是如何实现的呢?下面,我们来分步骤阐述。
首先,中频感应加热的核心部件是感应线圈。
感应线圈由钢管或铜管制成,内部包含有数百到数千匝的导线。
当通过感应线圈中通以交流电时,会在线圈内部产生强烈的磁场。
其次,中频感应加热的加热对象是导电材料。
当将导电材料置于感应线圈中央时,磁场穿过导电材料,由于导体内部存在自由电子,这些自由电子就会受到力的作用而运动起来,形成感应电流。
第三步,感应电流会产生相应的热量。
这是由于感应电流在运动中受到材料的阻力而发热。
热量的大小与导体本身的电阻和感应电流的强度有关。
第四步,根据荷兰物理学家洛伦兹提出的“磁力效应”原理,感应电流产生的热量会在导体内部生成匀称的热场,由感应电流所产生的磁场产生有向的热流,使加热对象产生均匀的温度分布。
第五步,提高感应电流的频率,可以进一步有效地减少感应电流引起的功耗损失。
中频感应加热技术采用1-20kHz的频率,能够使得感应电流在导体表面分布,产生肖特基振荡,增加焦耳热的产生量。
最后,总结起来,中频感应加热原理是利用强磁场感应出导体内部的感应电流,再利用感应电流内部的电阻发热,进而达到加热的目的。
这种加热方式具有加热速度快、能耗低、效率高等优点,被越来越广泛地应用于各个领域。
中频感应加热电源原理中频感应加热电源是一种常用的加热设备,它利用中频电流的感应作用将电能转化为热能。
该电源的工作原理主要包括电源单元、谐振电路、功率变换单元和控制单元等几个关键部分。
电源单元是提供电能的装置,通常由三相交流电源和整流电路组成。
交流电源通过整流电路将交流电转化为直流电,然后进一步进行滤波,以保证电源稳定。
谐振电路是中频感应加热电源的核心部分,它由电容器和电感器组成。
谐振电路的作用是将直流电转化为中频交流电,并将其输出到功率变换单元。
功率变换单元主要由功率开关管和输出变压器组成,其作用是将中频交流电通过功率开关管的控制进行变换,使其达到所需的电压和电流。
功率开关管可以根据负载的变化来调整输出功率,从而实现对加热过程的控制。
输出变压器则是将电源提供的中频交流电转化为适用于加热设备的高电压和高电流。
控制单元是中频感应加热电源的智能化部分,它通过传感器实时监测加热过程中的温度、电流和电压等参数,并根据设定的加热要求进行调节。
控制单元可以实现加热功率的精确控制和加热时间的设定,从而提高加热效率和产品质量。
中频感应加热电源具有许多优点。
首先,它具有高效率和节能的特点。
由于中频电流只在工件表面产生感应加热效应,因此加热效率较高,可以减少能量的浪费。
其次,中频感应加热电源具有快速加热和均匀加热的特点。
由于电磁感应的作用,加热速度快且加热均匀,可以提高生产效率和产品质量。
此外,中频感应加热电源还具有操作简便、自动化程度高等特点,可以提高工作环境的安全性和操作的便利性。
中频感应加热电源广泛应用于金属加热、焊接和热处理等领域。
在金属加热方面,中频感应加热电源可以用于钢铁、铜、铝等金属材料的加热和熔炼。
在焊接方面,中频感应加热电源可以实现金属材料的局部加热,从而实现高效的焊接。
在热处理方面,中频感应加热电源可以用于金属材料的淬火、回火和退火等工艺,以改善材料的性能和延长使用寿命。
中频感应加热电源是一种高效、节能的加热设备,其工作原理简单明了。
功率可调中频感应加热电源控制系统的设计中频感应加热电源是一种高效、节能和安全可靠的加热设备,被广泛应用于金属加热、淬火、硬化、熔炼等领域中。
其中,功率可调中频感应加热电源是一类集节能、可靠性、自动控制于一体的中频感应加热设备,可以根据不同需要实现功率的调整和控制。
本文提出一种基于单片机控制的功率可调中频感应加热电源控制系统的设计方案。
该方案主要包括硬件设计和软件设计两个方面。
硬件设计:1.电源电路设计:整个系统采用三相交流电源。
电源电路包括整流、滤波、逆变和输出控制等功能,通过滤波电容的设计,保证电源输出的稳定性和滤波效果。
2.中频谐振电路设计:中频感应加热电源需要产生一定频率的中频信号,用来激励感应加热线圈。
中频谐振电路可以采用LC谐振电路或者串/并联谐振电路,根据实际需要选择。
3.功率控制模块设计:采用功率芯片进行功率输出控制。
根据用户需求,可采用PID控制算法或者其他控制算法对输出功率进行控制。
4.保护电路设计:系统应包括短路保护、过流保护、过压保护等保护电路,以保证系统的稳定性和安全性。
软件设计:1.中频信号控制程序设计:根据实际需要,设计中频信号的输出和控制程序,通过控制中频信号的频率和幅值,实现功率的调整和控制。
2.功率控制算法设计:根据系统的实际需要,选择合适的功率控制算法,例如PID控制算法,通过调整算法参数,实现功率输出的控制。
3.保护程序设计:针对各种保护电路,编写保护程序,实时检测各项保护电路的工作状态,保证系统的安全稳定运行。
在实际工程应用中,中频感应加热电源控制系统设计还需要结合各种实际工况和用户需求,进行相应的优化和调整,以实现最优化的功率调节和控制效果。
洛阳理工学院毕业设计(论文)题目中频感应加热电源的设计姓名王强系(部)电气工程与自动化系专业应用电子技术指导教师张刚2013 年 6 月1 日中频感应加热电源的设计摘要感应加热电源具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点,目前已在金属熔炼、工件透热、淬火、焊接、铸造、弯管、表面热处理等行业得到了广泛的应用。
本设计研究了中频感应加热及其相关技术的发展、现状和趋势,并在较全面的论述基础上,对2.5kHz/250kW可控硅中频感应加热电源的整流电路以及控制电路进行了设计。
本文设计的电源电路可用于大型机械热加工设备的感应加热电源。
整流电路采用三相桥式全控整流电路,其电路结构简单,使电源易于推广;控制策略选用双闭环反馈控制系统,改善了信号迟滞的缺点,为以后研制大功率、超音频的感应加热电源打下了基础。
关键词:可控硅中频电源,感应加热,逆变,保护电路Design Of Induction Heating Power Of Medium FrequencyABSTRACTInduction heating power is equipped with lots of advantages such as high heating efficiency, fast speed, good controllability, which is prone to make heating of high and partial temperature ,and realize mechanization and automation. At present metal melting, work piece heat penetration, quenching, welding, casting, elbow piece, surface heating processing has been widely applied.Induction heating of medium frequency and development, current situation, and tendency related technology has been studied,and have made quite comprehensive and in the profound elaboration foundation, this article has carried on the design to main circuit and the inversion control of the 2.5kHz/250kW silicon-controlled rectifier intermediate frequency induction heating power. This design is used for big facility of mechanical heating processing. Structure of rectification circuit is easy, which makes power popularized easily. Three-phase bridge rectification circuit is used in Rectification circuit. Rectification circuit uses feedback control of two closed loop, improving the disadvantages. The foundation for inventing induction heating power of big power and super audio is made.KEY WORDS: Controllable silicon medium power, Induction heating, Inverter, Protect circuit目录前言 (1)第1章概述 (2)1.1 感应加热电源的特点和应用 (2)1.2 感应加热电源的发展阶段 (3)1.3 国内外发展现状 (3)1.4 影响感应加热电源发展的主要因素 (4)1.5 感应加热电源的发展趋势 (5)第2章感应加热电源的结构及工作原理 (7)2.1 基本工作原理 (7)2.2 感应加热电源的基本结构 (8)第3章整流电路设计 (8)3.1 整流电路的分类 (9)3.2 整流电路的选择 (9)3.3 三相桥式全控整流电路 (9)3.4 整流电路的参数设计 (13)第4章逆变器的选择 (15)4.1 串并联谐振电路的比较 (15)4.2 串联谐振电源工作原理 (17)4.3 串并联谐振逆变器拓扑电路的对偶关系 (19)4.4 串并联谐振优缺点比较 (20)第5章控制电路设计 (21)5.1 控制电路系统的概述 (21)5.2 控制电路的结构与原理 (21)5.3 控制电路的作用 (24)5.4 控制策略 (24)5.5 2.5kHz/250kW感应加热电源控制电路结构 (28)5.6 控制触发回路频率跟踪调节 (28)5.6.1 触发要求 (28)5.6.2 频率跟踪电路 (29)第6章过流和过压的保护电路 (30)结论 (32)谢辞 (33)参考文献 (34)外文资料翻译 (36)前言感应加热技术是在20世纪初才应用于工业生产的,因其具有加热速度快、物料内部发热和热效率高、加热均匀且具有选择性、产品质量好、几乎无环境污染、可控性好及易于实现生产自动化等一系列优点,因此近年来得到了迅速发展。
0096编号:毕业设计论文课题:中频感应加热电源的设计院(系):机电与交通工程系专业:电气工程及其自动化学生姓名:吴科虎学号: 020120221指导教师单位:电气工程教研室姓名:何少佳职称:高级实验师题目类型:2006年 06月 03 日中频感应加热以其加热效率高、速度快,可控性好及易于实现机械化、自动化等优点,已在熔炼、铸造、弯管、热锻、焊接和表面热处理等行业得到广泛的应用。
本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了20KW 中频感应加热电源。
本设计中感应加热电源采用IGBT作为开关器件,可工作在10 Hz~10 kHz 频段。
它由整流器、滤波器、和逆变器组成。
整流器采用不可控三相全桥式整流电路。
滤波器采用两个电解电容和一个电感组成Ⅱ型滤波器滤波和无源功率因数校正。
逆变器主要由PWM控制器SG3525A控制四个IGBT的开通和关断,实现DC-AC的转换。
设计中采用的芯片主要是PWM控制器SG3525A和光耦合驱动电路HCPL-316J。
设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。
由于HCPL-316J 具有快的开关速度(500ns),光隔离,故障状态反馈,可配置自动复位、自动关闭等功能,所以选择其作为IGBT的驱动。
对原理样机的调试结果表明,所完成的设计实现了设计任务规定的基本功能。
此外,为了满足不同器件对功率需要的要求,设计了功率可调。
这部分超出了设计任务书规定的任务。
关键词:感应加热电源;串联谐振;逆变电路;IGBTThe Intermediate Frequency Induction Heating has been widely applied in melting, casting, bend, hot forging, welding, Surface Heat Treatment due to its advantages of high heating efficiency、high speed、easily controlled、easily being mechanized and automated.The scheme has made a plan of designs based on the task of design, designed corresponding hardware circuit and developed 20kW intermediate frequency induction heating power system.The thesis discusses the Choice of converter scheme in detail. Series Resonance Inverter has another name is Voltage Inverter. Its Output Voltage approaches square wave and load current approaches sine-wave. Inversion must follow the Principles of break before make and there is enough dead-time between turn-off and turn on in order to avoiding direct through in upper and lower bridges.The thesis discussed the Choice of converter scheme in detail as well as introduced the control circuit of this power source and its design principle. Develop 20kW intermediate frequency induction heating power system with switch element IGBT. Make a research on Converter Circuit, control circuit, driver circuit etc.The CMOS chip that is applied in the design is mainly PWM Controller SG3525A and optical coupler Drive Circuit HCPL-316J. The controlled feature of PWM Controller SG3525A is fully utilized in the process of design, which has wide adjustable operating frequency and dead time, input under voltage lock function and twin channel output current. The optical coupler Drive Circuit HCPL-316J is chosen as the driven of IGBT due to its functions, such as fast switch speed (500ns), optical isolation, the feedback of fault situation, wide operating voltage (15V~30V), automatic reset and automatic close down etc.Key words:Induction heating power supply; series resonance;inverse circuit;IGBT目录引言 (1)1 绪论 (2)1.1 感应加热的工作原理 (2)1.2 感应加热电源技术发展现状与趋势 (3)2 感应加热电源实现方案研究 (5)2.1 串并联谐振电路的比较 (5)2.2 串联谐振电源工作原理 (7)2.3 电路的功率调节原理 (8)2.4 本课题设计思路及主要设计内容 (8)3 感应加热电源电路的主回路设计 (9)3.1 主电路的主要设计元器件参数 (9)3.2 感应加热电源电路的主回路结构 (9)3.2.1主回路的等效模型 (10)3.2.2整流部分电路分析 (13)3.2.3逆变部分电路分析 (15)3.3 系统主回路的元器件参数设定 (16)3.3.1整流二极管和滤波电路元件选择 (16)3.3.2IGBT和续流二极管的选择 (17)3.3.3槽路电容和电感的参数设定 (18)4 控制电路的设计 (19)4.1控制芯片SG3525A (19)4.1.1内部逻辑电路结构分析 (20)4.1.2芯片管脚及其功能介绍 (21)4.2 电流互感器 (23)5 驱动电路的设计 (24)5.1 绝缘栅双极型晶体管(IGBT)对驱动电路的要求 (24)5.1.1门极电压对开关特性的影响及选择 (24)R对开关特性的影响及选择 (25)5.1.2门极串联电阻G5.2 IGBT过压的原因及抑制 (25)5.3 IGBT的过流保护 (26)5.3.1设计短路保护电路的几点要求 (27)5.4 集成光电隔离驱动模块HCPL-316J (27)5.4.1器件特性 (27)5.4.2芯片管脚及其功能介绍 (28)5.4.3内部逻辑电路结构分析 (28)5.4.4器件功能分析 (29)5.4.5驱动电路的试验和注意问题 (30)6 辅助直流稳压电源 (31)6.1 三端固定稳压器 (31)6.2 本次设计用的的电源 (32)6.2.1 18伏,15伏稳压电压电源 (32)6.2.2 ±12伏,±5伏双路稳压电源 (32)6.2.3元器件选择及参数计算 (33)7 硬件调试 (34)8 结论 (35)致谢 (37)参考文献 (38)附录一整体电路原理图 (39)附录二控制电路PCB (40)引言随着功率器件的发展,感应加热电源的频率也逐步提高,经历了中频、超音频、高频几个阶段。
中频感应加热原理
中频感应加热原理是利用中频电磁场对金属进行加热的一种技术。
当高频电源经过逆变器产生特定频率的电流后,通过中频电感线圈产生交变磁场。
金属工件放置在磁场中,由于金属具有良好的电导性,电磁感应效应导致金属内部电流的涡流形成,从而使金属工件发热。
中频感应加热的原理主要可分为两个方面,即涡流加热和焦耳热。
首先,涡流加热是指在金属工件时,磁场变化时,金属内部自发产生的涡流因阻力而产生的热量。
由于涡流只在金属的表面层产生,并会在截面内发散,因此涡流加热主要发生在金属工件的表面。
其次,焦耳热是指磁场变化时,电流通过金属内部的阻抗而产生的热量。
焦耳热主要发生在金属工件的内部,通过整个金属截面进行均匀加热。
中频感应加热的加热效果主要受到磁场的频率、磁场强度、工件材料和形状、感应线圈参数等因素的影响。
通过调节这些参数,可以控制金属工件的加热速度和加热均匀性。
中频感应加热广泛应用于工业生产中的金属加热、热处理和熔炼等领域。
其优势包括加热速度快、能量利用率高、加热温度可控、操作灵活、环境污染小等。
中频电磁感应加热原理嗨,朋友们!今天咱们来聊一聊特别神奇的中频电磁感应加热原理。
这可不是什么枯燥的科学知识哦,就像一场魔法表演,超有趣的。
我有个朋友小李,他是个铁匠。
以前他用传统的加热方式给铁块加热,那可费劲了。
要烧好久的煤,烟熏火燎的,还不一定能把铁块加热得很均匀。
有一天,他看到了中频电磁感应加热设备,那效果,简直让他惊掉了下巴。
那中频电磁感应加热到底是咋回事呢?咱们就想象一下,电流就像一群调皮的小精灵。
在中频电磁感应加热设备里,有一个特殊的线圈,这个线圈就像是一个魔法圈。
当我们给这个线圈通上中频交流电的时候,哇塞,那些电流小精灵就在这个魔法圈里欢快地跑来跑去。
这时候,如果我们把要加热的金属工件,比如说铁块吧,放到这个魔法圈附近。
嘿,神奇的事情就发生了。
金属里面其实也住着一群小小的电子居民。
电流小精灵在魔法圈里跑的时候,就像在召唤金属里的电子居民一样。
这些电子居民呢,就会受到影响,开始跟着电流小精灵的节奏一起动起来。
你可能会问,这动起来又能怎么样呢?这就像是一场大狂欢。
电子居民们这么一动,就会产生很多的热量。
为啥呢?这就好比一群人在一个小屋子里不停地跑来跑去,肯定会让屋子里变得热乎乎的。
金属里的电子居民们这么折腾,金属也就跟着热起来了。
而且啊,这种加热方式特别均匀。
不像小李以前用煤加热,有的地方热得快,有的地方热得慢。
中频电磁感应加热就像是给金属做了一个全方位的热桑拿。
每个地方都能享受到均匀的热量。
我还认识一个做热处理的老师傅老王。
他跟我说,这中频电磁感应加热啊,还有一个厉害的地方。
就是它加热的速度特别快。
就像闪电一样。
传统的加热方式可能要等个老半天,这中频电磁感应加热,“嗖”的一下,就把金属加热到想要的温度了。
这是为啥呢?因为那些电流小精灵的召唤能力很强,电子居民们响应得也快,热量自然就产生得快喽。
咱们再从另外一个角度看。
这中频电磁感应加热就像是一场音乐会。
电流小精灵是指挥家,金属里的电子居民是乐队成员。
中频加热工作原理中频加热是一种常见的工业加热方法,通过电磁感应原理实现。
在中频加热设备中,电能首先被变频器将工频电源转换为中频电源,然后通过电感线圈产生交变磁场,从而使加热物体内部产生感应电流,从而实现加热效果。
一、工作原理中频加热的工作原理基于法拉第电磁感应定律和焦耳定律。
当中频电源通过电感线圈时,会在线圈周围形成一个交变磁场。
磁场的改变会产生变化的磁通量,进而在加热物体中产生感应电流。
感应电流的大小与加热物体的导电性能、电磁场的频率、磁感应强度等因素相关。
在加热物体中,感应电流会随着电阻产生热量。
根据焦耳定律,热量的大小与电流强度、电阻和加热时间有关。
中频加热的目的就是通过控制电流的大小和加热时间,使加热物体达到所需的温度。
二、中频加热的优势与传统加热方法相比,中频加热具有以下优势:1. 加热速度快:由于中频加热利用了感应电流直接在内部产生热量,因此加热速度比传统加热方法更快。
2. 加热均匀:中频加热的电磁场可以穿透加热物体,使整个物体受热均匀,避免了传统加热方法中表面温度高而内部温度低的问题。
3. 能耗低:中频加热设备在工作时可以实现高效传能,减少能量损失,因此能耗相对较低。
4. 控制精度高:中频加热设备可以通过调节电流大小和加热时间来实现对加热温度的精确控制,满足不同工艺要求。
5. 环境友好:中频加热过程中无烟尘、无噪音,对环境干扰较小。
三、中频加热的应用领域由于中频加热的优势,它在工业生产中得到广泛应用。
以下是几个常见的应用领域:1. 金属加热:中频加热广泛应用于金属热处理、钢板加热成形等领域。
它可以快速加热各种金属材料,提高生产效率。
2. 焊接与熔炼:中频加热可用于焊接、熔炼及热煅烧等工艺,可实现快速、均匀的加热效果。
3. 塑料加热压制:中频加热可以在塑料加工中加热塑胶,使其达到合适的软化温度,从而方便塑料加工。
4. 玻璃制造:中频加热在玻璃制造中可用于玻璃成型、玻璃熔化等工艺中的加热环节。
摘要本文以感应加热为研究对象,简要介绍了感应加热的基本原理和特点,阐述了感应加热技术的现状及其发展趋势。
本文主要研究了感应加热器的设计方法。
感应加热器是利用工件中的涡流的焦耳效应将工件加热,这种加热方式具有效率高、控制精确、污染少等特点,在工业生产中得到了广泛的应用。
如何设置感应线圈的参数使之满足被加热工件中性能要求普遍关注的问题。
传统的设计方法是利用线圈在整个电路中的等效电阻地位,利用一系列电磁学公式计算出线圈的性能参数。
然而这种基于实验的系统设计方法却耗时费力,并且测量成本高。
因此,近似模拟方法对于感应加热器的设计和研究具有重要意义。
本文的主要工作是建立感应加热器的近似设计方法。
从感应加热理论的一系列经过实验数据修正过的理论曲线为依据,根据工艺要求得出相关物理参数,并通过计算得到感应器的设计参数。
关键词:第一章绪论1.1 国内外感应加热的发展与现状随着现代科学技术的发展,对机械零件的性能和可靠性要求越来越高,金属零件的性能和质量除材料成分特新外,更与其加热技术密不可分。
例如,加热速度的快慢不仅影响生产效率而且影响产品的氧化程度,局部温度过冷或过热可能导致产品变形甚至损坏等。
由于感应加热具有热效率高,便于控制等优点,目前在金属材料加工,处理等方面得到广泛应用。
在工业发达国家,感应加热研究起步较早,应用也更为广泛。
1890年瑞士技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽式有芯炉,感应加热技术开始进入实用化阶段。
1966年,瑞士和西德开始利用可控硅半导体器件研制感应加热装置。
从此感应加热技术开始飞速发展,并且被广泛用于生产活动中。
在我国,感应加热技术起步比较晚,与世界发达国家相比存在较大的差距。
直到80年代初,感应加热设备才有一定的应用,但因其与其它加热方式相比在节能和无环境污染等方面的显著优势,近几年来得到了长足的发展,已经广泛应用于钢铁、石油、化工、有色金属、汽车、机械、和军工产品的零部件热处理方面,且随着感应加热技术的进一步发展,其市场应用前景将越来越广阔。