化学反应工程第六章
- 格式:ppt
- 大小:1.10 MB
- 文档页数:12
第一章习题1有一反响在间歇反响器中进行,经过8min 后,反响物转化掉80%,经过18min 后,转化掉90%,求表达此反响的动力学方程式。
解2A A min 18A0min 8A0AA A0d d 219.019.0181)(218.018.081)(11kc tc kc kc x x c kt =-=-⋅==-⋅=-⋅=为假设正确,动力学方程 2在间歇搅拌槽式反响器中,用醋酸与丁醇生产醋酸丁酯,反响式为:()()()()S R B A O H H COOC CH OH H C COOH CH 2943SO H 94342+−−→−+反响物配比为:A(mol):B(mol)=1:4.97,反响在100℃下进行。
A 转化率达50%需要时间为24.6min ,辅助生产时间为30min ,每天生产2400kg 醋酸丁酯〔忽略别离损失〕,计算反响器体积。
混合物密度为750kg·m -3,反响器装填系数为0.75。
解3313111111i 1.2m 0.750.8949总体积反应0.8949m 0.910.9834有效体积反应0.91hr6054.6折合54.6min 3024.6总生产时间hr 0.9834m 750737.5换算成体积流量hr 737.5kg 634.1103.4总投料量hr 634.1kg 744.97724.1B 4.97:1B :A hr 103.4kg 601.724折算成质hr 1.724kmol 0.50.862的投料量A ,则50%转化率hr 0.862kmol 116100hr 100kg 2400/24R 116 74 60 M S R B A ==⨯==+=⋅=+⋅=⨯⨯=⋅=⨯⋅=⋅=⋅=+→+-------器器投料量则量流量产量3反响(CH 3CO)2O+H 2O →2CH 3COOH 在间歇反响器中15℃下进行。
一次参加反响物料50kg ,其中(CH 3CO)2O 的浓度为216mol·m -3,物料密度为1050kg·m -3。
第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。
并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。
习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。
再由求得水解速率。
习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。
注意题中所给比表面的单位应换算成。
利用下列各式即可求得反应速率常数值。
习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。
习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。
(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。
这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。
习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。
(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。
《化学反应工程》第三版(陈甘堂著)课后习题答案第二章均相反应动力学基础2-4三级气相反应2NO+O22NO2,在30℃及1kgf/cm2下反应,已知反应速率常数2kC=2.65×104L2/(mol2 s),若以rA=kppApB表示,反应速率常数kp应为何值?解:原速率方程rA=dcA2cB=2.65×104cAdt由气体状态方程有cA=代入式(1)2-5考虑反应A课所以kp=2.65×104×(0.08477×303) 3=1.564后当压力单位为kgf/cm2时,R=0.08477,T=303K。
答p p 2rA=2.65×10 A B =2.65×104(RT) 3pApBRT RTp表示的动力学方程。
解:.因,wwnAp=A,微分得RTVdaw案24网pAp,cB=BRTRT3P,其动力学方程为( rA)=dnAn=kA。
试推导:在恒容下以总压VdtVδA=3 1=21dnA1dpA=VdtRTdt代入原动力学方程整理得wdpA=kpAdt设初始原料为纯A,yA0=1,总量为n0=nA0。
反应过程中总摩尔数根据膨胀因子定义δA=n n0nA0 nA若侵犯了您的版权利益,敬请来信通知我们!Y http://.cn.co(1)mol/[L s (kgf/cm2) 3]m(1)则nA=nA01(n n0)δA1(P P0)δA(2)恒容下上式可转换为pA=P0所以将式(2)和式(3)代入式(1)整理得2-6在700℃及3kgf/cm2恒压下发生下列反应:C4H10发生变化,试求下列各项的变化速率。
(1)乙烯分压;(2)H2的物质的量,mol;(3)丁烷的摩尔分数。
解:P=3kgf/cm2,(1)课MC4H10=58,(2)w.krC2H4=2( rC4H10)=2×2.4=4.8kgf/(cm2 s)PC4H10=PyC4H101 dpC4H10= P dt2.4-1==0.8 s 3w(3)nC4H10=nyC4H10=n0(1+δC4H10yC4H10,0xC4H10)yC4H10dnH2dtdnH2dt=hdaw后n0=nC4H10,0=δC4H10rC4H10=反应开始时,系统中含C4H*****kg,当反应完成50%时,丁烷分压以2.4kgf/(cm2 s)的速率dyC4H10dt答1rCH=2.4224wdnC4H10dt案116×1000=2000mol582+1 1==21网dyC4H10=n0(1+δC4H10yC4H10,0xC4H10) dt=2000×(1+2×1×0.5)×0.8=3200 mol/s若侵犯了您的版权利益,敬请来信通知我们!Y http://.cno2C2H4+H2,dP=k[(δA+1)P0 P]=k(3P0 P)dtm(3)dpA1dP= dtδAdt2-9反应APS,( r1)=k1cA , ( r2)=k2cp,已知t=0时,cA=cA0 ,cp0=cS0=0, k1/k2=0.2。
第一章习题1 有一反应在间歇反应器中进行,经过8min 后,反应物转化掉80%,经过18min 后,转化掉90%,求表达此反应的动力学方程式。
解2A A min 18A0min 8A0AA A0d d 219.019.0181)(218.018.081)(11kc tc kc kc x x c kt =-=-⋅==-⋅=-⋅=为假设正确,动力学方程2 在间歇搅拌槽式反应器中,用醋酸与丁醇生产醋酸丁酯,反应式为:()()()()S R B A O H H COOC CH OH H C COOH CH 2943SO H 94342+−−→−+反应物配比为:A(mol):B(mol)=1:4.97,反应在100℃下进行。
A转化率达50%需要时间为24.6min,辅助生产时间为30min,每天生产2400kg醋酸丁酯(忽略分离损失),计算反应器体积。
混合物密度为750kg·m-3,反应器装填系数为0.75。
解3313111111i 1.2m 0.750.8949总体积反应0.8949m 0.910.9834有效体积反应0.91hr6054.6折合54.6min 3024.6总生产时间hr 0.9834m 750737.5换算成体积流量hr 737.5kg 634.1103.4总投料量hr 634.1kg 744.97724.1B 4.97:1B :A hr 103.4kg 601.724折算成质hr 1.724kmol 0.50.862的投料量A ,则50%转化率hr 0.862kmol 116100hr 100kg 2400/24R 116 74 60 M S R B A ==⨯==+=⋅=+⋅=⨯⨯=⋅=⨯⋅=⋅=⋅=+→+-------器器投料量则量流量产量3 反应(CH 3CO)2O+H 2O →2CH 3COOH 在间歇反应器中15℃下进行。
已知一次加入反应物料50kg ,其中(CH 3CO)2O 的浓度为216mol ·m -3,物料密度为1050kg ·m -3。
华理版6-1 解:10010min 10t == ()/1t t F t e -=-所以,停留时间为0~1min 的分率为()1/1011F e -=-停留时间为2~10min 的分率为()()10/102/10102F F e e ---=-+停留时间大于30min 的分率为()30/10130F e --=6-2解:将数据绘成f(t) ~t 图从曲线形状可知,该反应系统接近于PFR 和CSTR 的组合模型,当t <1min 时,反应器出口响应为0,说明此为平推流,设V p 为PFR 总分的体积,则0 1.0pV v =01.0 1.05050p V v L ==⨯=当t >1min 时,曲线形状呈指数衰减,如将t=1min 以后的数据按ln f(t) ~t 作图,可得一直线,直线的斜率为1,即为全混流总分的平均停留时间,所以全混流部分容积V m 为 V m =1.0×50=50L所以该反应器系统模型为PFR 与CSTR 串联,容积V p 、V m 各为50L ,相应停留时间均为1min 。
6-3解:CSTR中均相二级反应00c c ====0.435 即转化率为0.565CSTR 中固相二级反应:0100011i c k c e e c c k c k τττ⎛⎫=∙ ⎪⎝⎭6-4 解:()()000c t c f t dt c c ∞=⎰ 根据动力学方程可知,()21/200022c t c kt c c ⎛⎫-= ⎪⎝⎭,f(t)=0.5 代入已知条件,()21/200022c t c kt c c ⎛⎫-= ⎪⎝⎭= ()21t - ()()000c t c f t dt c c ∞=⎰=()2201t dt -⎰=0.667 所以转化率为A x =1-0.667=0.3336-5解:(1)由图知,反应器为通过一PFR 反应器和一全混釜反应器,0.4P ks τ=,求()dF t dt ,再取对数,用ln f(t) ~t 作图,可得一直线,斜率为1.25,所以0.8m ks τ=,平均停留时间为1.2ks 。
《化学反应工程》课程教学大纲课程名称:化学反应工程课程类型:必修课,专业课总学时:54 讲课学时:54 实验学时:0学分:3.0适用对象:化学工程、化学工艺先修课程:物理化学、化工工艺学、化工原理、化工热力学一、课程性质、目的和任务课程性质:化学反应工程是以化学反应器原理为要紧线索,要紧研究化学反应过程需要解决的工程问题,是化工生产的龙头、关键和核心,是一些基础学科诸如物理化学、传递过程、化学工艺等相互渗透与交叉而演变成的边缘学科,其内容要紧涉及化学反应动力学、反应器中传递特性、反应器类型结构、数学建模方法、操作分析及反应器设计,具有高度综合性、广泛基础性和自身专门性。
课程目的与任务:一是培养学生将物理化学、传递过程、化学工艺、化工热力学、操纵工程等学科知识用之于化学反应工程学的综合能力;二是使学生把握化学反应工程学科的理论体系、研究方法,了解学科前沿;三是使学生初步具备改进和强化现有反应技术和设备、开发新的反应技术和设备、解决反应过程中的工程放大问题以及实现反应过程中最优化的能力二、教学差不多要求通过本课程的教学,要使学生系统地把握化学反应动力学规律、传递过程对化学反应的阻碍规律,把握反应器设计、过程分析及最佳化方法。
四、课程的重点和难点绪论重点是化学反应工程的研究内容和方法。
第一章均相单一反应动力学和理想反应器重点:①化学反应动力学方程②理想反应器设计方程难点:动力学方称的建立;反应器设计运算第二章复合反应与反应器选型重点:复合反应动力学方程表达法;复合反应动力学特点分析;平推流反应器的串联和全混流反应器的串联。
难点:可逆反应吸热反应和放热反应动力学特点推导与分析;循环反应器设计方程的数学推导;复合反应(包括可逆反应、自催化反应、平行反应、连串反应)在PFR 和CSTR反应器的优化设计运算第三章非理想流淌反应器重点:停留时刻分布的概率函数及特点值;停留时刻分布的实验测定;解决均相反应过程问题的近似法即活塞流模型、全混流模型、凝聚流模型、多级混合槽模型、轴向扩散模型的推导、结论及应用比较。
第六章 ⽓-液反应平衡⽓-液相平衡⽓-液相达平衡时,i 组分在⽓相与液相中的逸度相等⽓相为理想⽓体: i=1如果不是稀溶液,则还应引⼊活度和活度因⼦亨利系数Ei 与溶解度系数Hi 与温度和压⼒的关系为溶液中⽓体溶解度的估算如果溶液中含有电解质h 1、h2为溶液中各电解质所引起的溶解度降低系数如果吸收剂中含有⾮电解质溶质,⽓体溶解度亦会降低带化学反应的⽓—液相平衡被吸收组分与溶剂相互作⽤被吸收组分在溶液中离解被吸收组分与溶剂中活性组分作⽤⽓-液反应历程⽓-液传质模型 例如双膜论、Higbie 渗透论、Danckwerts 表⾯更新论和湍流传质论等,其中以双膜论最为简便。
双膜论 假定在⽓-液相界⾯两侧各存在⼀个静⽌膜,⽓侧为⽓膜,液侧为液膜,⽓-液相间传质速率N ,kmol/(m2·s),取决于通过⽓膜和液膜的分⼦扩散速率化学反应在相间传递中的作⽤化学反应可忽略的过程 若化学反应⾜够缓慢,液相中化学反应的量与物理吸收的量相⽐可忽略时,则可视为物理吸收过程。
此时条件为:液相中反应量远⼩于物理溶解量。
若液相中进⾏⼀级不可逆反应:Vk1cA<<QLcA液相主体中进⾏缓慢化学反应和膜中进⾏的快反应 如果反应⽐较缓慢⽽不能在液膜中完成,需扩散⾄液相主体中进⾏,此时,必需满⾜:液膜中反应量远⼩于通过液膜扩散所传递的量化学吸收的增强因⼦⽓-液反应动⼒学特征伴有化学反应的液相扩散过程 不可逆反应:A+νBB →Q 。
取单位⾯积的微元液膜进⾏考察,液膜中扩散微元。
⼀级不可逆反应不可逆瞬间反应 当液相中反应为不可逆瞬间反应,因反应极快,反应仅在液膜内某⼀平⾯上完成,此平⾯称为反应⾯ ⼆级不可逆反应可逆反应平⾏反应 多种反应剂对⼀种⽓体的吸收过程在⼯业中极为常⻅。
例如,H2S 或CO2被多种有机胺所吸收,CO2被有机胺活化了的溶液所吸收和氯被多种烯烃所吸收等,均属平⾏反应过程 ⽓-液反应器概述⼯业⽣产对⽓-液反应器的要求 应具备较⾼的⽣产强度; 应有利于提⾼反应的选择性;应有利于降低能量消耗; 应有利于控制反应温度; 应能在较少液体流率下操作。