122全等三角形的判定HL
- 格式:ppt
- 大小:1.18 MB
- 文档页数:7
12.2全等三角形的判定(HL)教学设计一、教学目标1.理解全等三角形的定义及判定条件之一——HL判定法;2.能够应用HL判定法判断两个三角形是否全等;3.能够解决与HL判定法相关的实际问题。
二、教学内容全等三角形的判定(HL)。
三、教学重点1.HL判定法的理解与应用;2.解决与HL判定法相关的实际问题。
四、教学难点理解HL判定法并灵活运用于实际问题的解决。
五、教学准备1.教师准备:–教材《人教版八年级上册数学》;–讲解PPT;–演示三角板。
2.学生准备:–尺子;–铅笔、橡皮擦;–教材。
六、教学过程步骤一:导入(5分钟)教师通过提问的方式,复习之前学过的两个全等三角形的判定方法——SAS和ASA,并引出本节课要学习的判定方法——HL判定法。
步骤二:概念讲解(15分钟)1.教师通过PPT展示HL判定法的定义。
HL判定法:如果两个直角三角形的斜边和一个锐角分别相等,则这两个直角三角形全等。
2.教师通过PPT和黑板演示HL判定法在判断两个三角形是否全等时的运用方法。
步骤三:示例分析(20分钟)教师通过示例分析的方式,引导学生掌握HL判定法的具体运用。
示例1:已知图中的∠ABC = 90°, BC = EF, AC = EF。
询问三角形ABC和三角形EFG 是否全等。
解析:根据题目,可以得知∠ABC = 90°,BC = EF,AC = EF。
由于∠ABC为直角,得出三角形ABC是直角三角形。
根据HL判定法,如果两个直角三角形的斜边和一个锐角分别相等,则这两个直角三角形全等。
在这个例子中,紧连接点C的两条边相等,所以三角形ABC和三角形EFG全等。
示例2:已知图中的∠LMN = 90°, MN = PQ, LM = QR。
询问三角形LMN和三角形NMQ 是否全等。
解析:根据题目,可以得知∠LMN = 90°,MN = PQ,LM = QR。
由于∠LMN为直角,得出三角形LMN是直角三角形。
初中数学公式之全等三角形的判定最新初中数学公式之全等三角形的判定最新全等三角形的判定公式1边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等2 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等3 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等4 边边边公理(SSS) 有三边对应相等的两个三角形全等5斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等6 定理1 在角的平分线上的点到这个角的两边的距离相等7 定理2 到一个角的两边的距离相同的点,在这个角的平分线上8角的平分线是到角的两边距离相等的所有点的集合初中数学几何公式大全之全等三角形的判定公式,看过的同学请认真记忆了。
接下来还有更多更全的初中数学知识讯息尽在。
初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
12.2 三角形全等的判定(HL)教学目标1.知识与技能在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题。
2.过程与方法经历探索直角三角形全等判定的过程,掌握数学方法,提高合情推理的能力。
3.情感、态度与价值观培养几何推理意识,激发学生求知欲,感悟几何思维的内涵。
教学重点运用直角三角形全等的条件解决一些实际问题。
教学难点熟练运用直角三角形全等的条件解决一些实际问题。
教学方法采用启发诱导,实例探究,讲练结合,小组合作等方法。
教学准备全等三角形纸片、三角板、教学过程一、提出问题,复习旧知1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(4)若AB=DE,BC=EF,AC=DF则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)二、创设情境,导入新课如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放课件)(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?(1)[生]能有两种方法.第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.[师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?三、探究做一做:已知线段AB=5cm,BC=4cm和一个直角,利用尺规做一个直角三角形,使∠C=•90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体课件演示,激发学习兴趣).作法:第一步:作∠MCN=90°.第二步:在射线CM 上截取CB=4cm .第三步:以B 为圆心,5cm 为半径画弧交射线CN 于点A .第四步:连结AB .就可以得到所想要的Rt △ABC .(如下图所示)将Rt △ABC 剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等. 可以验证,对一般的直角三角形也有这样的规律.探究结果总结:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL ”).[师]你能用几种方法说明两个直角三角形全等呢?[生]直角三角形也是三角形,一般来说,可以用“定义、SSS 、SAS 、•ASA•、•AAS ”这五种方法,但它又具有特殊性,还可以用“HL ”的方法判定.[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.四、例题:[例1]如图,AC ⊥BC ,BD ⊥AD ,AC=BD . 求证:BC=AD .分析:BC 和AD 分别在△ABC 和△ABD 中,所以只须证明△ABC ≌△BAD ,•就可以证明BC=AD 了.证明:∵AC ⊥BC ,BD ⊥AD∴∠D=∠C=90°在Rt △ABC 和Rt △BAD 中AB AB AC BD =⎧⎨=⎩∴Rt △ABC ≌Rt △BAD (HL )∴BC=AD .[例2]有两个长度相等的滑梯,左边滑梯的高AC•与右边滑梯水平方向的长度DF 相等,两滑梯倾斜角∠ABC 和∠DFE 有什么关系?[师生共析]∠ABC 和∠DFE 分别在Rt △ABC 和Rt △DEF 中,•已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.证明:在Rt △ABC 和Rt △DEF 中 又∵∠DEF+∠DFE=90°BC EF AC DF =⎧⎨=⎩∴∠ABC+∠DFE=90° 所以Rt △ABC ≌Rt △DEF (HL ) ∴∠ABC=∠DEF即两滑梯的倾斜角∠ABC 与∠DFE 互余.五、课时小结至此,我们有六种判定三角形全等的方法:1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS )4.角边角(ASA ) 5.角角边(A A S ) 6.HL (仅用在直角三角形中)六、布置作业课本P44页习题12.2中的第7,8七、板书设计12.2.4 三角形全等判定(4)一、复习导入二、尝试活动 探索新知三、应用新知 解决问题四、总结提高教学反思:。
12.2 三角形全等的判定(5)HL【学习目标】1、理解直角三角形全等的判定方法“HL ”,并能灵活选择方法判定三角形全等; 2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力; 3. 极度热情、高度责任、自动自发、享受成功。
【学习过程】一、自主学习,复习思考(1)、判定两个三角形全等的方法: 、 、 、(2)、如图,Rt △ABC 中,直角边是 、 ,斜边是活动一 探索新知如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗? (动手操作):已知线段a ,c (a<c) 和一个直角α, 利用尺规作一个Rt△ABC , 使∠C =∠α,AB=c ,CB= a .1、按步骤作图: a c ① 作∠MCN =∠α=90°. ② 在射线 CM 上截取线段CB=a .③ 以B 为圆心,c 为半径画弧,交射线CN 于点A .α ④ 连结AB .2、与同桌重叠比较,看所作的Rt△ABC 是否重合?3、从中你发现了什么?的两个直角三角形全等.(简称“斜边、直角边”或“HL ”) 活动二 巩固新知1.如图1,△ABC 中,AB=AC ,AD 是高,则△ADB 与△ADC (填“全等”或“不全等” ),根据 (用简写法). 2.判断两个直角三角形全等的条件不正确的是( ) A. 两条直角边对应相等 B. 斜边和一锐角对应相等 C. 斜边和一条直角边对应相等 D. 两个锐角对应相等ABCDEF图13.如图2,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由.学以致用,当堂检测 1.判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等.( ) (2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等.( ) (3)两直角边对应相等的两个直角三角形全等.( ) (4)两边对应相等的两个直角三角形全等..( )(5)一个锐角与一边对应相等的两个直角三角形全等.( )2.如图3,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( ) A.5对 B. 4对 C. 3对 D.2对3.如图4,已知:在△ABC 中,AD 是BC 边上的高,AD=BD ,BE=AC ,延长BE 交AC 于F ,求证:BF 是△ABC 中AC 边上的高.(提示:关键证明△ADC ≌△BDE )能力提升:如图1,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB =CD ,AF =CE ,BD 交AC 于M 点。
12.2 《三角形全等的判定(四)(HL)》【课标内容】1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验.2.体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力.3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度.4.掌握基本事实:斜边和直角边分别相等的两个直角三角形全等.【教材分析】本节课的主要内容是探索两个直角三角形全等的条件和如何利用“直角边斜边”的条件证明三角形全等,是在学生学习了线段、角、相交线、平行线和三角形的有关知识之后展开的.“HL”是证明两个三角形全等的重要方法之一,也是证明线段相等、角相等的重要依据.在【教学过程】中,我让学生充分体验到动手操作、剪拼、翻折平移、推理证明的数学方法,一步步培养他们的逻辑推理能力.整节课让学生从画几何图形,剪拼,翻折平移,起到了较好的作用,学生更加清楚直观,以及学习推理证明的方法.【学情分析】本节是人教版八年级上册第十二章第二节的第四课时,全等三角形的判定(HL)是学生学习了图形的全等的概念及特征后的一节内容,它不仅是后面学习平行四边形性质与判定的基础,而且也是证明线段相等、角相等以及两线互相垂直、平行的重要依据.因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用.【教学目标】1.经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握直角三角形全等的判定,并能运用其解决一些实际问题.3.在探索直角三角形全等的判定及其运用的过程中,能够进行有条理的思考并进行简单的推理.【教学重点】掌握判定两个直角三角形全等的特殊方法-HL【教学难点】熟练选择判定方法,判定两个直角三角形全等【教学方法】五步教学法、引导探究法【课前准备】三角板、多媒体【课时设置】一课时【教学过程】一、预学自检互助点拨(阅读教材P41-43,完成以下问题)1.判定三角形全等:、、、 .2.如图,Rt△ABC中,直角边是、,斜边是 .(【设计意图】复习旧知,可更快更准确地解答下面的两个直角三角形全等的条件.)二、合作互学探究新知(动手操作):1.已知线段a,c ,和一个直角α,利用尺规作一个Rt△ABC,使∠C=∠α,AB=c,CB= a.2.与同桌重叠比较,是否重合?3.从中你发现了什么?(【设计意图】比较判定两个直角三角形全等的条件与判定两个一般三角形全等的条件的异同点,感知直角三角形全等判定也能用已学的判定条件.激发学生挑战新问题的积极性,培养学生的分析、作图能力.画法直接由教师蛤出,而不安排学生画出,是考虑学生反映画图有一定的难度,况且作图不是本节课的重点.)三、自我检测成果展示1.如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.理由:∵ AF⊥BC,DE⊥BC (已知)∴∠AFB=∠DEC= °(垂直的定义)在Rt△和Rt△中⎩⎨⎧==_______________________________∴ ≌ ( )∴∠ = ∠ ( )∴ (内错角相等,两直线平行)【设计意图】 让学生表述,培养归纳、表达能力,并能进一步理解“HL ”这一条件,自己读题、审题,先独自证明,培养学生独自面对围难的勇气和信心.2.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等3.如图,∠B=∠D=90°,BC=CD ,∠1=30°,则∠2的度数为( )A. 30°B. 60°C. 30°和60°之间D. 以上都不对4.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A. AASB.SASC.HLD.SSS5.如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,若BD=4cm ,CE=3cm ,求DE 的长.四、应用提升挑战自我在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC 上,且AE=CF.(1)求证: Rt△ABE≌Rt△CBF;(2)若∠CAE=30º,求∠ACF度数.(【设计意图】充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.)五、经验总结反思收获本节课你学到了什么?写出来【设计意图】充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.教师引导学生总结今天学习的主要内容,关键是区别两种情况,判断哪一种情况可以判断两个三角形全等,在学习后进行适当总结有助于学生更加深刻理解内容.【板书设计】全等三角形判定HL【备课反思】本节数学课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SSS、SAS、ASA、AAS、)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程.数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”.纵观整个教学,不足的方面:第一,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;第二,在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;第三,在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会.这些我在今后的教学中会争取改进.。
三角形全等的判定条件
全等三角形判定条件(六种)是:
1、定义法:两个完全重合的三角形全等。
2、SSS:三个对应边相等的三角形全等。
3、SAS:两边及其夹角对应相等的三角形全等。
4、ASA:两角及其夹边对应相等的三角形全等。
5、AAS:两角及其中一角的对边对应相等的三角形全等。
6、HL:斜边和一条直角边对应相等的两个直角三角形全等。
经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。