第九讲变质岩结构、构造的识别
- 格式:ppt
- 大小:22.25 MB
- 文档页数:61
变质岩的结构类型变质岩的结构构造和化学成分、矿物成分一起,是变质岩的最基本的特征,是恢复原岩、再造变质作用历史及岩石分类命名的标志。
变质岩的化学成分主要反映原岩特点;变质岩的矿物成分主要反映变质作用条件下,那么结构构造则主要是变质作用机制的反映。
变质岩结构、构造的成因分类:变晶结构变余构造变余结构变成构造变形结构交代结构对结构、构造的研究,可以了解变质岩形成过程的变质作用类型、因素、方式和程度;再者,结构和构造是变质岩分类命名的重要依据之一。
1变质岩的结构(1)变形结构原岩在定向压力作用下,当压力超过岩石或矿物的弹性极限时,便发生塑性变形;当压力超过其强度极限时,则发生破裂和粒化作用,形成碎裂结构。
碎裂结构是以岩石、矿物的形变为主,可伴有矿物的重结晶和变质结晶。
根据破碎、变形特点和程度可细分为:碎裂结构、碎斑结构和糜棱结构等类型。
碎裂结构岩石或(和)矿物颗粒产生裂隙、裂开并在颗粒的接触处和裂开处被破碎成许多小碎粒(即碎边),因而矿物颗粒或其集合体的外形都呈不规则的棱角状、锯齿状;粒间则为粒化作用形成的细小碎粒和粉末;破碎的颗粒间一般位移不明显。
碎斑结构当破碎剧烈时,在粉碎了的矿物颗粒(称碎基)中还残留有部分较大的矿物碎粒,很象斑晶(即碎斑),称为碎斑结构。
碎斑形状不规则,其撕碎状边缘、裂纹,波状消光发育。
碎基是粒化的细小碎粒至隐晶质状的粉未;碎基颗粒往往也具波状消光等现象。
当碎斑很少时,过渡为碎粒结构;若碎基的粒径为<0.02mm时,可称为碎粉结构。
糜棱结构矿物颗粒几乎全部破碎成细小颗粒(常为粒径0.5mm以下的细粒至隐晶质状,称为糜棱质),并在应力作用下形成矿物的韧性流变现象;糜棱质呈明显的定向排列,形成明显糜棱面理、片理或条带状、条纹状构造等;其中可残留少量稍大的矿物碎粒(即碎斑,常为具粒内变形的石英、长石等)。
当碎斑较多时,可称为初糜棱结构;当碎基粒径<0.02mm时,可称为超糜棱结构。
奇⽯中的地质现象——变质岩的结构和构造前⾯给⼤家介绍了沉积岩和⽕成岩的结构和构造形成的奇⽯现象,本篇给⼤家介绍有关变质岩结构和构造对于奇⽯形成的影响。
变质岩:地壳中原有的岩浆岩、变质岩或沉积岩,由于地壳运动和岩浆活动等造成物理化学环境的改变,当其处在⾼温、⾼压及其他化学因素作⽤下,使原来岩⽯的成分、结构和构造发⽣⼀系列变化,所形成的新的岩⽯称为变质岩。
这种改变岩⽯性质的作⽤,称为变质作⽤。
⼀、引起变质作⽤的因素引起变质作⽤的因素有温度、压⼒及化学活动性流体。
变质温度的基本来源包括地壳深处的⾼温、岩浆及地壳岩⽯断裂错动产⽣的⾼温等。
引起岩⽯变质的压⼒包括上覆岩⽯重量引起的静压⼒、侵⼊于岩体空隙中的流体所形成的压⼒,以及地壳运动或岩浆活动产⽣的定向压⼒。
化学活动性流体则是以岩浆、H2O、CO2为主,并含有其它⼀些易挥发、易流动的物质。
变质作⽤与温度及压⼒的相关关系⼆、变质作⽤的类型根据变质作⽤的地质成因和变质作⽤因素,将变质作⽤分为下列⼏种类型。
1、接触变质作⽤指发⽣在侵⼊岩与围岩之间的接触带上,并主要由温度和挥发性物质所引起的变质作⽤。
可分为热接触变质作⽤和接触交代变质作⽤两类。
(1)接触热变质作⽤:引起变质的主要因素是温度。
岩⽯受热后发⽣矿物的重结晶、脱⽔、脱炭以及物质的重新组合,形成新矿物与变晶结构。
(2)接触交代变质作⽤:引起变质的因素除温度以外,从岩浆中分异出来的挥发性物质所产⽣的交代作⽤同样具有重要意义。
故岩⽯的化学成分有显著变化,产⽣⼤量新矿物。
形成的岩⽯有⼤理岩、矽卡岩等。
2、区域变质作⽤这是在⼴⼤范围内发⽣、并由温度、压⼒以及化学活动性流体等多种因素引起的变质作⽤。
例如,粘⼟质岩⽯可变为⽚岩和⽚⿇岩,区域变质岩的岩性,在很⼤范围内是⽐较均匀⼀致的。
3、混合岩化作⽤是指原有的区域变质岩体与岩浆状的流体互相混合交代⽽形成新岩⽯(混合岩)的作⽤。
流体的来源可能是原来的变质岩体局部熔融产⽣的酸性岩浆,也可能是地壳深部富含K、Na、Si的热液引起的再⽣岩浆。
变质岩结构鉴定一、变余结构①与正常沉积岩有关的变余结构原岩为砂砾岩等正常沉积碎屑岩,变质后岩石中常部分保留砾石或砂砾的外形,称为变余砾状结构及变余砂状(碎屑)结构图22变余碎屑及角砾状结构黑云变粒岩变余碎屑、角粒由长石、石英组成图23 变余砂状碎屑结构、均质混合岩中斜长石(PI)包有原岩碎屑物对于砂状或粉砂状结构在变质较浅时,常表现为胶结物(如泥质、泥灰质、硅质)容易重结晶成绢云母、绿泥石、细粒石英集合体;而原岩中较粗的石英碎屑,仍可保持一定的碎屑外形,或具磨圆轮廓;当变质较深时,可以全部重结晶,围绕原碎屑颗粒生长成不规则的镶嵌状颗粒,此时,镜下可能观察到原有碎屑的轮廓。
(图IV一22,23)。
变余砂状碎屑结构。
黑云变粒岩中石英间隙处有氧化物薄膜及变质重结晶的变余碎屑轮廓和自生长大的痕迹原岩为长石砂岩在原岩泥质结构基础上发育起来变余泥质结构(blastopelitic texture):大多分布于泥质板岩和接触变质轻微的泥质岩石中,为泥质原岩经轻微变质作用后还保留了部分或大部分的泥质结构。
泥质结构(pelitic texture)又称粘土结构(clay texture),是粘土岩的特有结构。
其特点是岩石中粘土物质占50%以上,由于混有不同含量的砂及粉砂,故存在一系列过渡型结构。
由极细小(小于0.005mm)的粘土矿物组成,比较致密均一和质地比较软的结构。
有时见有鲕粒状及豆状结构,是在沉积过程中粘土质点围绕核心凝聚成德同心圆圈结构。
图IV-25 变余斑状结构。
绢云钠长石英片岩中、钠长石(Ab)呈变余斑晶图iv一26 变余斑状及溶蚀结构。
绿泥阳起片岩中示变余斑晶钠长石(Ab)有变余溶蚀现象②与岩浆岩有关的变余结构由侵入岩和喷出熔岩经变质后的岩石中,变余斑状结构较常见.侵入岩由于其粒度较组,变质作用有时难以彻底改造其面貌,而保留变余花岗结构和辉长结构辉绿结构。
斜长角闪岩中。
原岩斜长石轮廓已被细小斜长石所代替。
奇石中的地质现象——变质岩的结构和构造地球上存在着各种形态的石头,其中有些不仅仅是美丽的奇石,还隐藏着丰富的地质现象。
变质岩就是其中之一,它源于早期岩石在高温高压环境下发生变化,形成了新的矿物和结构。
本文将探讨变质岩的结构和构造,以便更加深入地了解地球的地质过程。
一、变质岩的结构与特征变质岩是地球上最广泛分布的岩石之一,包括片麻岩、页岩、石英岩、云母岩、大理岩、绿片岩和蛇纹石等。
变质岩的最大特点是由早期岩石在高温高压环境中发生变化形成的新的岩石,因此它们具有一些独特的结构和特征。
1. 片理结构变质岩中最常见的结构是片理结构,它是由岩石中不同矿物质的成份不同、硬度不同所引起的现象。
这些矿物质在变质作用下被重新排列,形成了一定方向性的层理。
在岩石中的各个层面上可以看到不同矿物质的明显界限,这种结构称为片理。
片理是变质岩中一个十分重要的结构,它能反映岩石中的应力状态、变形程度等变化。
2. 石英化结构石英化是变质岩中常见的变质作用之一,它是指酸性矿物和硅质沉积岩在高温高压环境下与地下水中高浓度的二氧化硅反应,形成新的矿物质——石英矿。
石英化的效果是使矿物质原来颗粒粗大的岩石细腻,结构坚实,而且让岩石具有一定的耐腐蚀性和抗风化能力。
3. 斑岩结构斑岩是变质岩中最基础的类型之一,通常它由辉石和斜长石组成,并含有许多小的晶体,称为地理化学元素。
在形成斑岩过程中,早期岩石的一部分矿物质会被高温高压下中的热水溶解,并将元素和矿物物质重新混合,然后在高温高压下结晶形成新的岩石。
这种结构称为斑岩结构,它是变质岩中的典型构造之一。
二、变质作用与变质岩的形成变质作用是指岩石在高温高压和化学反应作用下发生的变化过程,导致了早期岩石的成分、结构和形态发生改变,形成了新的岩石类型。
变质作用的形成以及变质岩的生成起源与以下几个方面有关。
1. 高温高压变质作用是在高温高压的条件下发生的,因此变质岩的形成需要有一定的温度和压力。
正常的岩石形成温度一般在1000度左右以上,而压力也巨大,约为1万倍以上,所以这些变质过程具有很强的灵敏性和难以预测性。
变质岩的结构和构造变质岩的结构和构造是识别变质作用条件和过程的重要标志,利用结构和构造特征可以鉴别变质岩的类型,为变质岩命名提供依据,因此,一直受到地质学家们的重视。
常见的变质岩结构有以下四种类型:变余结构顾名思义,是变质作用不彻底,留下了原来岩石的一些面貌而得名。
比如沉积形成的砂砾岩,变质后还保留着砾石和砂粒的外形。
有时甚至砾石成分发生了变化,其轮廓仍然很清楚。
变晶结构是一种因变质作用使矿物重结晶所形成的结构。
根据变质岩中矿物晶形的完整程度和形状,分出鳞片变晶结构、纤维变晶结构和粒状变晶结构。
说起鳞片,人们很容易联想到鱼鳞,这只是一个类似的比喻。
变晶矿物呈片状,沿一定方向排列形成鳞片变晶结构。
只有少数情况矿物的排列不定向,互相碰接形成交叉结构;纤维变晶结构是纤维状、柱状变晶呈定向排列,形成片理;粒状变晶结构是由粒状矿物组成的结构,这些矿物颗粒自形程度和形态不同。
比如显微粒状变晶结构,也称角岩结构,是由显微颗粒组成的。
而石英岩、大理岩的变晶颗粒比较大,呈多边形,是典型的粒状变晶结构。
交代结构是指矿物或矿物集合体被另外一种矿物或矿物集合体所取代形成的一种结构。
矿物之间的取代常常引起物质成分的变化,矿物集合体的取代过程不仅会造成物质成分的改变,还会引起结构的重新组合。
如果交代作用进行得不完全,就会留下原生矿物的残余;如果交代彻底,被交代的原生矿物只能留有假象,矿物本身已经完全变成另一种成分了。
变形结构与变形作用有关,分脆性变形和韧性变形两类。
在物理学中,我们知道弹性极限的概念,这可以帮助加深对这两类变形的理解,当所施压力大于矿物或岩石的弹性极限时,矿物或岩石会破碎或裂开,这是产生脆性变形的结果;如果岩石所受压力超过塑性弯曲强度时,岩石就会发生褶皱、扭曲等变化,但不会被折断,这种变形被称为塑性变形。
变质岩的构造,主要有两大类型:块状构造和定向性构造。
所谓块状构造,是指矿物或矿物集合体在岩石中排列无顺序,呈均匀地分布。
变质岩的常见结构和构造变质岩是指地球表面或地壳深部由原始岩石在高温高压作用下发生化学、矿物和结构组成的变化而形成的岩石。
它具有特殊的结构和构造特征,下面将详细介绍变质岩的常见结构和构造。
1.层状结构层状结构是变质岩中最常见的结构之一、变质岩经历了多次变质作用后,矿物晶粒的排列经常会形成层状构造。
层状可以是平行于岩层的,也可以是不平行的,取决于变质时的构造应力和化学成分的变化。
例如,片麻岩中的黑云母片麻岩和云硬岩中的大理岩都具有明显的层状结构。
2.斑状结构斑状结构是变质岩中一种比较常见的结构,它由大块晶体和小晶粒组成。
大块晶体称为斑晶,小晶粒称为基质。
斑晶通常是早期生长的矿物,而基质中的矿物则是后期形成的。
斑状结构在石英片岩和绿帘岩中较为常见,形成原因是岩浆和热液活动造成的晶体生长差异。
3.织构和线理织构和线理是变质岩中由矿物的排列方式引起的特殊结构。
织构通常是由大规模结构组成的,它们可以是树叶状、纺锤状、卷入状等。
线理则是沿变质岩中一定方向延伸的线状结构。
织构和线理的形成是变质岩在构造作用下产生的。
例如,片麻岩的麻状结构和云母片岩的线理都是由于层状矿物的形成和排列引起的。
4.断裂和褶皱断裂和褶皱在变质岩中也是常见的构造。
断裂是岩石断裂形变所形成的裂缝,它可以是不连续的,也可以是连续的。
断裂通常是由于地壳的应力超过了岩石的强度而产生的。
褶皱是变质岩中岩石层或岩体的弯曲形变,可以是折叠形成的褶皱,也可以是波浪状的褶皱。
褶皱的形成是由于地壳构造作用的挤压作用力导致的。
5.成岩构造和成矿构造成岩构造和成矿构造是变质岩中具有重要地质意义的结构。
成岩构造是指形成变质岩的过程中,岩石受到的构造应力和变形作用。
成矿构造则是岩石在成岩过程中,受到化学作用而形成的矿石和矿物。
成岩构造和成矿构造对岩石的形成和组成起着重要的作用,可以通过研究这些构造来了解岩石的变质演化过程。
以上是变质岩的常见结构和构造,变质岩是地球历史演化中重要的岩石类型,研究变质岩的结构和构造有助于了解地壳演化和岩石的形成机制。
第九讲变质岩结构构造的识别变质岩是一类在高温、高压环境下形成的岩石,其特征是晶粒明显,结构有序,具有变质过程中形成的特殊构造。
变质岩的结构和构造的识别对于岩石学研究和地质勘探具有重要意义,下面将详细介绍变质岩结构、构造的识别方法。
一、变质岩结构的识别1.晶粒结构变质岩的晶粒结构是指岩石中晶粒的排列方式和晶粒之间的关系。
晶粒结构可以分为无定形、自形、薄片状、柱状和细粒状等几种。
变质岩中晶粒的大小、形状、组成、排列方式等特征可以反映出变质岩的形成过程和变质程度。
2.组分结构变质岩的组分结构是指岩石中各组分的分布、排列方式和相互关系。
变质岩的组分结构主要通过显微镜下观察各组分的分布和相互关系来识别。
比如片麻岩中的角闪石颗粒沿云母排列,反射板岩中的云母片平行排列等。
3.矿物组成变质岩的矿物组成是指岩石中各种矿物的类型、含量及其分布。
不同类型的变质岩具有不同的矿物组成,通过研究矿物组成可以确定岩石的类型和变质过程。
4.结构组合变质岩中的结构组合是指在岩石中具有一定空间排列关系的构造组合。
例如叠层状、鱼子状、扇贝状、蚍蜉状、波动状等,这些结构组合可以表明岩石形成的环境和变质过程。
1.逆冲构造逆冲构造是指地壳岩石在构造应力下发生逆冲滑动,形成的压裂、剪断、皱褶等构造。
逆冲构造在变质岩中常常出现,如片麻岩中的逆冲断层、逆衍生矿物等。
2.脆性构造脆性构造是指岩石在应力作用下发生断裂或破碎的构造,常见的有节理、断层、锯齿状剪切面等。
脆性构造常发生于高应力环境下,变质岩中的脆性构造可以通过显微镜观察岩石的断裂面、剪切面等来识别。
3.层状构造层状构造是指岩石呈现层状排列的构造,常见的有片麻岩、页岩等。
层状构造可以通过显微镜观察岩石中的层状结构来识别。
4.波动构造波动构造是指岩石呈现波状形态的构造,常见的有波动状褶皱、波动状矿脉等。
波动构造可以反映出岩石形成过程中应力的变化和环境的波动。
综上所述,变质岩结构和构造的识别对于了解岩石形成的变质过程、环境和变质程度有着重要意义。