开关稳压电源的工作原理
- 格式:ppt
- 大小:374.00 KB
- 文档页数:9
开关稳压电源的工作原理
开关稳压电源的工作原理是通过采用开关器件(如MOSFET 等)和一系列电子元器件来控制输入电压的开关状态,从而实现对输出电压的稳定调节。
工作原理如下:
1. 输入电压经过整流(如桥式整流电路)并通过滤波电容进行滤波处理,以去除电源中的交流成分和波动。
2. 基于控制电路内部的反馈机制,比较输入电压与期望输出电压之间的差异,以确定开关器件的开关状态。
3. 当输入电压过低时,控制电路将开关器件导通,让电流通过电感储能,进而提高输出电压。
4. 当输入电压过高时,控制电路将开关器件断开,使电感储能的电流通过输出电容器供电,从而降低输出电压。
5. 控制电路根据反馈信息连续地监测和调整开关器件的开关状态,以使输出电压始终维持在设定的稳定值。
6. 为了提供更加稳定的输出电压,开关稳压电源通常还包括过电压保护、过载保护、短路保护等功能。
通过不断地开关和调整开关器件的状态,开关稳压电源可以实
现对输入电压的有效调节,从而保证输出电压的稳定性和可靠性。
开关型稳压电源的工作原理开关型稳压电源是一种通过开关元件进行高效能稳压的电源设备。
它采用开关元件( 通常为晶体管或MOSFET)以高频率开关的方式来调整输出电压,从而实现稳压。
以下是开关型稳压电源的主要工作原理:1.整流:首先,交流电源输入会经过整流电路,将交流电转换为直流电。
这通常使用整流桥等元件实现。
2.滤波:直流电经过整流后可能会包含一些脉动成分,为了去除这些脉动,通常使用滤波电容进行滤波处理,使输出电压更趋于稳定。
3.开关调节:开关型稳压电源的核心是开关调节部分。
这部分包括一个开关元件(通常为晶体管或MOSFET)、一个能够调整开关频率的控制电路和一个输出变压器。
4.开关频率调节:控制电路会根据输出电压的变化情况,调整开关频率。
通过高频率的开关操作,可以更精细地控制输出电压,实现稳压。
5.变压器工作:输出变压器是一个重要的组成部分,通过开关调节,可以改变变压器的工作状态,从而调整输出电压。
通过变压器的变压比例,可以实现输出电压的调节。
6.反馈控制:稳压电源通常采用反馈控制,通过比较输出电压与设定的目标电压,产生一个误差信号。
这个误差信号用于调整开关频率,使输出电压保持稳定。
7.过载和过压保护:开关型稳压电源通常配备有过载和过压保护机制,以防止电源或负载发生故障时损坏设备。
这些保护机制可以通过监测电流和电压进行触发。
8.输出滤波:最后,输出电压还可能通过输出滤波电路进行进一步的滤波,以确保输出信号的纯净性。
开关型稳压电源以其高效能和小体积的特点在电子设备、通信设备、计算机等领域得到广泛应用。
由于采用开关调节的方式,开关型稳压电源相比线性稳压电源能够更有效地调整电压,减少功耗和体积。
开关式稳压电源的工作原理1. 引言稳压电源是电子设备中常见的一种电源类型,它能够将不稳定的输入电压转换为稳定的输出电压,以保证电子设备的正常工作。
开关式稳压电源是一种常用的稳压电源设计,它采用了开关管和电容的组合,以实现高效能量转换和稳定输出。
2. 基本原理开关式稳压电源的基本工作原理是通过开关管控制电源输入与输出之间的连接与断开,以实现对电能的有效转换和输出的稳定。
2.1 输入端开关式稳压电源的输入端通常接收交流(AC)电源或直流(DC)电源。
当输入电源为交流电源时,通常还会有一个整流电路用于将交流电转换为直流电。
整流电路可以采用整流二极管桥或者整流三极管等元件。
2.2 控制电路开关式稳压电源还需要一个控制电路来控制开关管的开关状态,以实现输入与输出之间的连接与断开。
常用的控制电路包括脉冲宽度调制(PWM)控制和恒压/恒流控制等。
2.2.1 脉冲宽度调制(PWM)控制脉冲宽度调制是一种常见的开关式稳压电源控制方法,它通过改变开关管通断时间的比例来控制输出电压的大小。
当输出电压偏高时,控制电路会减小开关管的导通时间,从而降低输出电压;当输出电压偏低时,控制电路会增加开关管的导通时间,从而提高输出电压。
2.2.2 恒压/恒流控制恒压/恒流控制是另一种常见的开关式稳压电源控制方法,它通过感知输出电压和输出电流的变化来调整开关管的导通时间,以保持输出电压和输出电流在设定的范围内。
当输出电压或输出电流超出设定范围时,控制电路会相应地调整开关管的导通时间,以实现稳定的输出。
2.3 输出端开关式稳压电源的输出端通常连接到被供电的设备或装置。
输出端需要提供稳定的输出电压和输出电流,以满足设备或装置的工作需求。
3. 工作流程开关式稳压电源的工作流程可以概括为以下几个步骤:1.输入端接收电源输入,可以是交流电源或直流电源。
2.控制电路感知输出端的电压和电流,并根据设定范围调整开关管的导通时间。
3.开关管根据控制电路的指令,控制输入与输出之间的连接与断开。
开关稳压电源⼯作基本知识§6.1开关稳压电源基本⼯作原理分析6.1.1开关稳压电源与串联调整型稳压电源⽐较稳压电源是使⽤电⼦电路调整输出电压达到稳定⽬的的电源,有串联型稳压电源、并联型稳压电源、开关稳压电源,开关电源也是稳压电源,但稳压电源不能直接称为开关电源。
普通的串联稳压电源都安装电源变压器,具有输出电压稳定、波纹⼩等优点,但是电压范围⼩,效率低。
并联稳压电源输出电压特别稳定,但是负载能⼒很差,⼀般只在仪表内部做基准⽤。
开关稳压电源的效率⾼,电压范围宽,输出电压相对稳定,由于开关管⼯作在开关状态,功耗⼩,所以开关电源的⼯作效率可达80 %?90 %。
⽽通常的线性调整式稳压电源的效率仅达50 %左右开关电源是近代普遍推⼴的稳压电源,⽐如现在电脑的ATX电源、笔记本电脑电源适配器、打印机电源、⼿机充电器等等。
稳压电源是在负载功率变化时,输出电压仍然保持固定的电压值。
开关电源也是稳压电源,但稳压电源不能直接称为开关电源。
6.1.2开关电源的分类1、根据开关管在电路中的连接⽅式分类,可分为串联型开关稳压电源,并联型开关稳压电源和脉动变压器耦合式开关电源。
如图6.1所⽰四种类型开关电源电路。
(1)串联型开关稳压电源是指:开关管(或储能电感)与负载采⽤串接⽅式连接的⼀种电源电路。
(2)并联型开关稳压电源并联型开关稳压电源是指:开关管(或储能电感)与负载采⽤并接⽅式连接的⼀种电源电路(3)脉冲变压器耦合型开关稳压电路电源是指:开关管与脉冲变压器⼀次绕组串联后与整流电路并联,负载电路与脉冲变压器⼆次绕组并联。
2、根据开关管的激励⽅式不同分类,开关电源可分为⾃激式开关稳压电源和他激式开关稳压电源。
(1)⾃激式开关稳压电源是利⽤电源电路中的正反馈电路来完成⾃激振荡,启动电源。
(2)他激式开关稳压电源电路是专门设有⼀个振荡器来启动电源的3、根据使⽤的器件种类不同分类,可分为由分⽴元器件组成的开关稳压电源和由集成电路组成的开关稳压电源4、根据稳压的控制⽅式不同分类,开关稳压电源可分为脉冲调宽式和脉冲调频式两种(1)所谓脉冲调宽式开关稳压电源是指:由相关电路对开关的脉冲宽度进⾏调制的⼀种稳压电路(2)所谓脉冲调频式开关稳压电源是指:由相关电路对开关的脉冲频率进⾏调制的⼀种稳压电路6.1.3串联型开关稳压电源电路⼯作原理分析1. 串联开关稳压电源是指开关管串联在输⼊电压与负载电路之间的⼀种⼯作⽅式的电源电路。
开关稳压电源电路原理
开关稳压电源是一种常用的电源供电方式,它通过开关管的开关动作来调节输出电压,从而实现对负载电压的稳定控制。
本文将从原理、工作过程和应用领域三个方面介绍开关稳压电源的相关知识。
一、原理
开关稳压电源的核心组成部分是开关稳压电源芯片和开关管。
芯片是控制开关管开关动作的重要元件,它通过反馈电路感知输出电压,并将感知到的电压信号与设定值进行比较,从而控制开关管的导通与截止。
开关管则负责将输入电源与输出负载连接或断开,实现对输出电压的调节与控制。
二、工作过程
开关稳压电源的工作过程可以分为两个阶段:导通状态和截止状态。
当芯片感知到输出电压低于设定值时,它会控制开关管导通,使得输入电源与输出负载连接,从而提供稳定的输出电压。
当输出电压达到设定值时,芯片会控制开关管截止,切断输入电源与输出负载的连接,以维持输出电压的稳定性。
三、应用领域
开关稳压电源由于其输出电压稳定、效率高和体积小等特点,被广泛应用于各个领域。
在家用电器领域,开关稳压电源常用于电视、音响、电脑等设备的电源供应;在工业控制领域,开关稳压电源常用于PLC、变频器、伺服系统等设备的电源供应;在通信领域,开
关稳压电源常用于无线基站、通信设备等的电源供应。
此外,开关稳压电源还广泛应用于医疗设备、航空航天、军事装备等领域。
总结:
开关稳压电源通过芯片和开关管的协同工作,实现对输出电压的稳定控制。
其工作过程简单明了,应用领域广泛。
在今后的发展中,随着电子技术的不断进步,开关稳压电源将更加高效、稳定和可靠,为各个领域的电子设备提供更好的电源供应。
开关稳压电源的原理分析和应用一、什么是开关稳压电源开关稳压电源是一种能够将输入电压转换为稳定输出电压的电源设备。
它通过采用开关管和电感等元件,通过周期性开关操作,将输入电压进行高效的转换和稳定,提供给需要稳定电压的设备使用。
二、开关稳压电源的原理开关稳压电源的工作原理基于开关电源中的开关管和电感元件。
以下是开关稳压电源的工作原理:1.开关管工作原理:开关稳压电源中通常采用MOS管或IGBT作为开关管。
通过控制开关管的导通和截止状态,实现电流的开关控制。
当开关管导通时,电流从输入端流过,而当开关管截止时,电流被阻断。
2.电感元件工作原理:电感是开关稳压电源中的重要元件之一。
它通过电流在其线圈中建立磁场,当电流改变时,磁场也随之改变。
这种磁场变化会导致产生电动势,实现电压的转换和稳定。
3.控制电路工作原理:开关稳压电源中的控制电路负责对开关管进行精确的开关控制。
它通常由反馈电路和PWM调制器组成。
反馈电路通过对输出电压进行监测,将信息反馈给PWM调制器,从而控制开关管的导通和截止,稳定输出电压。
三、开关稳压电源的应用开关稳压电源由于其高效稳定的特点,被广泛应用于各种领域。
以下是一些开关稳压电源的常见应用:1.电子设备:开关稳压电源被广泛应用于各种电子设备,如计算机、通信设备、音频设备等。
它能够提供稳定的电源供给,保证设备的正常运行。
2.工业自动化:在工业自动化领域,开关稳压电源可用于供应PLC(可编程逻辑控制器)、传感器和执行器等设备。
它能够提供可靠的电源,确保工业系统的正常运行。
3.医疗设备:在医疗设备中,如医疗成像设备、手术仪器等,开关稳压电源可提供高品质、稳定、可靠的电源供应,确保医疗设备的安全运行。
4.军事领域:在军事领域,开关稳压电源可用于供应军事通信、雷达、导航和武器系统等设备。
它能够提供稳定的电源供应,确保军事设备的正常运行。
5.太阳能和风能转换:开关稳压电源可以用于太阳能和风能转换系统中。
自激式开关稳压电源工作原理作原理:下图是一个自激式开关稳压电源电路,由开关功率管VT2、脉宽调制管VT3、误差放大管VT4、过流保护可控硅开关VTl和脉冲变压器Tl等组成。
其中开关功率管兼做间歇振荡管。
VT2、Tl、R2~R5等构成变形间歇振荡器。
接通电源后,整流器输出的直流高压经过R2~R5降压后给VT2基极提供一个适当的正偏压,使其导通。
其集电极电流Ic2通过初级线圈N1,在其两端产生上正、下负的感应电压,并通过T1耦合到次级反馈线圈N5。
N5两端感应电压的极性刚好使VT2的基极为正,致使Ic2增大。
可见,这是正反馈的过程,VT2便迅速进入饱和导通状态。
此时,基极便失去控制作用,间歇振荡器相对进入稳定阶段。
电容器C5两端的充电电压为左正、右负,与N5反馈电压的极性相反。
所以,基极电源Ib2逐渐减小,VT2从饱和区退回到放大区,J&减小,使Nl感应电动势改变方向,N5上电势也改变方向,Ib2急剧下降,Ic2也急剧下降。
由于正反馈的作用,VT2迅速转为截止状态。
这时变压器中的磁能不能立即消失,在集电极回路中感应出较高的电压,与电源电压叠加,使VT2集一射极之间的电压超过输人电压。
当VT2截止时,变压器初级线圈上的电压反向,并且感应以次级。
当次级电压升高到一定程度时,输出整流管VD2、VD3、VD4便导通,输出端有输出电压。
当VT2再次导通时,N1上的电流将线性增加,耦合到次级电压使输出整流二极管反偏而截止。
此时输出电压由LC滤波电路储存的能量提供。
假如由某种原因造成输出电压下降时,经过稳压二极管VD5加到VT4发射极上的电压也下降,通过R15、Rl7、R16分压加在VT4基极上的电压也降低。
很明显,发射极电压减小量比基极大,故VT4集电极电流减小,在R11两端的电压降也减小,VT3的基极电压下降,集电极电流如减小,R2、R3、R4、R5上压降减小,开关管VT2基极电位升高,开关管导通时间加长,使输出电压上升,从而保持输出电压的稳定。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um —矩形脉冲最大电压值;T —矩形脉冲周期;T1 —矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电原基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。
为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。
正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um—矩形脉冲最大电压值;T—矩形脉冲周期;T1—矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电原基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
开关稳压电源的工作原理一、开关稳压电源的概述开关稳压电源是一种广泛应用于电子设备中的电源,其具有高效率、精确稳压和较小体积等特点。
本文将详细讨论开关稳压电源的工作原理,以及其中涉及的元器件和电路。
二、开关稳压电源的组成开关稳压电源主要由输入滤波电路、变压器、整流电路、滤波电路、功率开关元件、控制电路和输出稳压电路等组成。
2.1 输入滤波电路输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,保证电源的稳定性和可靠性。
常见的输入滤波电路包括电容滤波、电感滤波和RC滤波等。
2.2 变压器变压器是开关稳压电源中的重要组成部分,用于将输入电源的交流电压变换为适合后续电路工作的直流电压。
其结构主要包括输入线圈、输出线圈和铁芯。
2.3 整流电路整流电路的作用是将变压器输出的交流电压转换为直流电压。
常用的整流电路有单相桥式整流电路和三相桥式整流电路,其中桥式整流电路具有高效率和较低功率损耗的优点。
2.4 滤波电路滤波电路用于去除整流电路输出的直流电压中的纹波和杂散干扰,使输出电压更加稳定。
常见的滤波电路有电容滤波电路和电感滤波电路。
2.5 功率开关元件功率开关元件是开关稳压电源中的核心部件,主要有晶体管和MOS管。
通过控制它们的导通和截止,可以实现对电源输出的精确控制。
2.6 控制电路控制电路用于对功率开关元件进行控制,保证输出电压的稳定性和可调节性。
常见的控制电路有反馈控制电路、比例积分控制电路和脉宽调制控制电路等。
2.7 输出稳压电路输出稳压电路用于保持输出电压的稳定性,避免电压波动对负载造成影响。
常见的输出稳压电路有电压稳定二极管、稳压芯片和反馈电路等。
三、开关稳压电源的工作原理开关稳压电源的工作原理可以简单概括为以下几个步骤:1.输入电源经过输入滤波电路后,进入变压器进行变压变流,得到合适的交流电压。
2.变压器输出的交流电压通过整流电路,转换为脉冲状的直流电压。
3.直流电压经过滤波电路进行纹波滤除,得到较为稳定的直流电压。
开关稳压电源的工作原理一、引言开关稳压电源是一种常见的电源类型,它能够将输入电压稳定输出,并且具有高效率、小体积等优点。
本文将介绍开关稳压电源的工作原理。
二、开关稳压电源的基本结构开关稳压电源由输入滤波器、变压器、整流滤波器、开关管、控制电路和输出滤波器等组成。
输入滤波器用于去除输入电压中的高频噪声,使得变压器能够正常工作。
变压器将输入电压变换为所需的输出电压和电流。
整流滤波器用于将交流信号转换为直流信号,并去除残余交流信号。
开关管是核心部件,它通过控制通断时间来调节输出电压和输出功率。
控制电路用于控制开关管的通断时间,以实现恒定输出和保护功能。
输出滤波器用于去除残余高频噪声和纹波。
三、开关稳压电源的工作原理1. 输入滤波当输入交流信号进入输入端口时,首先经过一个低通RC滤波器,去除高频噪声和干扰信号。
然后进入变压器。
2. 变压器变压器将输入电压变换为所需的输出电压和电流。
变压器一般采用双绕组结构,包括一个主绕组和一个副绕组。
主绕组与输入端口相连,副绕组与输出端口相连。
当开关管导通时,主绕组中的磁能量会被传递到副绕组中,从而使得输出电压和电流增加。
3. 整流滤波经过变压器的信号是交流信号,需要通过整流滤波器将其转换为直流信号。
整流滤波器一般采用二极管桥式整流电路,将交流信号转换为直流信号,并通过滤波电容去除残余交流信号和纹波。
4. 开关控制开关管是开关稳压电源的核心部件,它通过控制通断时间来调节输出电压和输出功率。
当开关管导通时,变压器中的磁场能量会被传递到输出端口,从而使得输出电压和电流增加;当开关管断开时,则没有磁场能量传递到输出端口,从而使得输出电压和电流减小。
控制开关管的通断时间是开关稳压电源的关键,一般采用PWM(脉冲宽度调制)技术实现。
PWM技术通过改变开关管导通和断开时间的比例来控制输出电压和输出功率。
PWM技术具有精度高、反应速度快等优点。
5. 输出滤波经过开关管控制后的信号仍然存在高频噪声和纹波,需要通过输出滤波器去除。
开关稳压电源的工作原理
开关稳压电源是一种通过开关电路控制输入电源的开关状态,从而实现稳定输出电压的电源。
其工作原理主要包括以下几个方面:
1. 输入滤波电路:开关稳压电源的输入端通常会加入滤波电路,用于滤除输入电源中的杂散信号和电磁干扰。
2. 整流电路:输入电源经过滤波电路后,会进入整流电路。
整流电路通过二极管或桥式整流电路将交流电转换为直流电。
3. 开关变换器:开关稳压电源的核心部件是开关变换器。
开关变换器由开关管、变压器和输出滤波电路组成。
其中,开关管根据控制信号的要求对输入电源进行开关动作,变压器用于改变电压平均值和叠加高频信号,输出滤波电路则用于滤除高频噪声。
4. 反馈控制电路:开关稳压电源通常会添加反馈控制电路,用于监测输出电压并与设定值进行比较,从而调整开关管的开关频率和占空比,以实现稳压功能。
当输出电压低于设定值时,反馈控制电路使开关频率增加,提高占空比,增加输出功率;当输出电压高于设定值时,反馈控制电路降低开关频率,减小占空比,降低输出功率。
5. 输出稳压电路:最后,开关稳压电源的输出端加入稳压电路,用于提供稳定
的输出电压。
总的来说,开关稳压电源通过对输入电源进行开关控制,并通过反馈控制电路来调整开关频率和占空比,使输出电压保持在设定值附近。
其通过高效能的开关变换器实现高转换效率,并且具有稳定输出、快速响应和较低的功率损耗等优点。
第一章开关电源的基本工作原理开关电源是利用时间比率控制(Time Ratio Control,缩写为TRC)的方法来控制稳压输出的。
按TRC控制原理,有以下三种方式:1)脉冲宽度调制(Pulse Width Modulation,缩写为PWM)。
开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
2)脉冲频率调制(Pulse Frequency Modulation,缩写为PFM)导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。
3)混合调制导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。
在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
本设计采用的就是脉宽调制型开关稳压电源,其基本原理可参见右图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压Uo可由公式计算,即Uo=Um×T1/T式中Um —矩形脉冲最大电压值;T —矩形脉冲周期;T1 —矩形脉冲宽度。
从上式可以看出,当U m与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
[1]此外,为因应各种不同的输出功率,开关电源按DC/DC变换器的工作方式分又可分为反激式(Flyback)、顺向式(Forward)、全桥式(Full Bridge)、半桥式(Half Bridge)和推挽式(Push-Pull)等电路拓扑(Topology)结构。
其中单端反激式开关电源是一种成本最低的电源电路,输出功率为20~100W,可以同时输出不同的电压,且有较好的电压调整率,应用较为广泛。
本设计采用的就是该方案,其典型的电路如图所示。
[1]图1-1 反激式开关电源典型电路结构藉由PWM IC控制开关管的导通与否,配合次级侧的二极管和电容,即可得到稳定DC电压的输出。
开关式稳压电源的工作原理开关式稳压电源是一种常见的电源供应装置,它可以将输入的电压转换为稳定且可调节的直流电压输出。
它在各种电子设备中都被广泛使用,包括计算机、通信设备、工业自动化设备等。
开关式稳压电源的工作原理基于开关管的开关动作和存储元件的能量转换。
它主要由输入电路、逆变电路、滤波电路、输出电路和控制电路等组成。
首先,输入电路将交流电源输入到开关式稳压电源中。
然后,交流电压经过整流桥进行整流,转换为脉冲电压。
接下来,脉冲电压经过滤波电路,将脉冲电压转换为平稳的直流电压。
随后,平稳的直流电压通过控制电路控制开关管的开关动作。
开关管的开关动作使得直流电压被短暂接通和断开,以调节输出电压的大小。
当开关管导通时,直流电压经过逆变电路输出,并被传输到电子设备的负载上。
当开关管断开时,电感元件储存电能,以供后续使用。
为了稳定输出电压,控制电路会监测输出电压的变化,并根据需要调整开关管的开关频率和占空比。
这样可以使得输出电压在负载变化和输入电压波动的情况下保持稳定。
开关式稳压电源相比线性稳压电源具有一些优势。
首先,开关式稳压电源转换效率较高,能量损耗较小,因为它可以调整开关管的导通与断开时间,减少能量的浪费。
其次,开关式稳压电源尺寸较小,适合于小型化和集成化设计。
此外,开关式稳压电源的输出电压可调范围较大,适用于不同的应用场景。
然而,开关式稳压电源也存在一些问题。
其主要问题是输出电压中可能包含较高的噪声和电磁干扰。
为了解决这个问题,开关式稳压电源通常需要在输出端添加滤波电路,以减少噪声和电磁干扰的影响。
总结起来,开关式稳压电源通过开关管的开关动作和储能元件的能量转换,将输入的电压转换为稳定可调的直流电压输出。
它在各种电子设备中起着重要的作用,具有高效率、小尺寸和可调范围大的优势,但也需要注意输出电压中可能存在的噪声和电磁干扰问题。