沪科版七年级下册知识汇总
- 格式:pdf
- 大小:33.53 KB
- 文档页数:3
沪科版数学七年级下册全册单元知识总结实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“”。
2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
(0);注意的双重非负性:-(<0)03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:,这说明三次根号内的负号可以移到根号外面。
七年级下册沪教知识点沪教版七年级下册共有15个单元,包括语文、数学、英语、化学、历史、物理、地理、生物、信息技术等学科。
本文将为大家汇总每个单元的重点知识和重要概念,帮助同学们更好地掌握学科知识。
一、语文:《古文观止》选读本单元主要选读了《韩非子》、《荀子》、《鬼谷子》等古代文化名著,并引导学生掌握古代汉语的基本语法和特点。
其中,韩非子的“养生主”、“君臣相敬”等思想对后世产生了深远的影响,是中国思想文化的重要组成部分。
重点知识:1.古代汉语的语法特点及运用2.韩非子、荀子、鬼谷子等著名古代文化名著的选读与理解二、数学:相似三角形相似三角形是初中数学重要的一部分,它涉及到比例、等比数列、勾股定理等多个知识点,需要通过大量练习和实际应用来掌握。
重点知识:1.相似三角形的定义和性质2.相似三角形的判定方法3.相似三角形求解实际问题的应用三、英语:Unit 6 My family本单元主要介绍家庭成员及家庭活动的相关词汇和语言表达,让学生熟悉英语常用口语和日常生活用语,提高交际能力。
重点知识:1.家庭成员的称谓和介绍2.家庭活动的词汇和表达3.熟练掌握句型:What does he/she do? He/She is a/an…四、化学:化学式和化合价化学式和化合价是化学学科的基础知识,是理解化学反应和化合物结构的关键。
通过本单元的学习,学生能够了解离子化合物、分子化合物的基本知识。
重点知识:1.化学式的定义和表示方法2.离子化合物和分子化合物的区别3.物质的化合价的计算和应用五、历史:秦汉风俗历史学科是人类文明发展史的记录和研究,本单元主要介绍了秦汉时期的风俗习惯和社会制度,让学生了解古代文化和社会。
重点知识:1.秦汉时期的政治、经济和文化背景2.秦汉时期的风俗习惯和生活情况3.秦汉时期的社会制度和政治体制六、物理:像的形成本单元主要介绍了光学中的像的形成原理和规律,使学生了解光学基本知识,有助于培养学生的科学思维和实验能力。
沪科版七年级数学知识点总结(下册)6.1 实数6.1.1 平方根和算术平方根平方根是指如果 $x^2=a$,那么 $x$ 就是 $a$ 的平方根,记作 $\pm\sqrt{a}$,其中 $a>0$。
算术平方根是指正的平方根,记作 $\sqrt{a}$,其中$a>0$。
开平方公式包括以下两种情况:①$a^2=a$,当$a>0$ 时,有$a=\sqrt{a}$,当$a=0$ 时,有 $a=0$,当 $a<0$ 时,无实数解。
② $(a)^2=a\times a$,对于任意实数 $a$,有$(\pm\sqrt{a})^2=a$。
6.1.2 平方值和立方根平方值是指对于 $11\sim20$ 中的每个数,求它的平方,结果如下:11^2=121$,$12^2=144$,$13^2=169$,$14^2=196$,$15^2=225$,$16^2=256$,$17^2=289$,$18^2=324$,$19^2=361$,$20^2=400$。
立方根是指如果 $x^3=a$,那么 $x$ 就是 $a$ 的立方根,记作 $\sqrt[3]{a}$。
开立方公式包括以下三种情况:① $3\sqrt[3]{a^3}=a$,对于任意实数 $a$。
② $(3\sqrt[3]{a})^3=a$,对于任意实数 $a$。
③ $3\sqrt[3]{-a}=-\sqrt[3]{a}$,对于任意实数 $a$。
6.2 实数6.2.1 无理数无理数是指无限不循环小数,常见的有三种类型:①含根号且开不尽方的数;②化简后含 $\pi$ 的数;③有规律但不循环的无限小数。
6.2.2 实数的分类按照定义,实数可以分为以下几类:①正有理数、零和负有理数,其中正有理数和零可以表示为有限小数或有理数,负有理数可以表示为无限循环小数。
②正无理数和负无理数,其中正无理数可以表示为无限不循环小数,负无理数可以表示为无限不循环小数。
七年级数学下册知识点第六章 实 数(一)平方根与立方根 1、平方根(1)定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
如果2x a =,那么x 叫做a 的平方根.记作“a ±”,且a ≥0即X=a ±(2)表示:非负数a 的平方根记作±a ,读作“正负根号a ”,(a 叫做被开方数)(3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数没有平方根。
(4)开平方:求平方根的运算叫做开平方。
Ⅰ、平方根是开平方的结果;Ⅱ、 开平方与平方互为逆运算。
2、算术平方根(1)定义:正数a 的正的平方根a 叫做a 的算术平方根,0的算术平方根是0。
例如:a 的算术平方根.记作“a ”,且a ≥0 即X=a (2)性质:(1)一个数a 的算术平方根具有非负性; 即:a ≥0恒成立。
(2)正数的算术平方根只有1个,且为正数;0的算术平方根是0;负数没有算术平方根3.开平方公式有哪些? ①2(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩②2()(0)a a a = 且 a ≥04.求1120的平方值: 112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,202=4001、 1.414212≈ 1.7323≈ 2.2365≈5、立方根:(1)定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。
如果3x a =,那么x 叫做a 3a .即X=3a(2)表示:a 的立方根记作3a ,读作“三次根号a ”(a 叫做被开方数,3叫根指数)(3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。
6.33a a = ②33()a a = 33a a -=(二)实数1、无理数:无限不循环的小数。
沪科版七年级数学下册知识点数学是一门研究数量、结构、变化以及空间模型等概念的学科;数学解题的关键就是知识和方法;知识是锁眼,方法是钥匙。
缺少哪个都不能打开题目这把锁;那么我们的数学学习也要针对这两点进行。
一、掌握课本知识内容及内涵 数学知识是数学解题的基石。
只有掌握了课本知识的内容,理解知识的内涵,才能更好地运用它来解决问题。
二、多看例题数学有的概念、定理较抽象,我们可以通过例题,将已有的概念具体化,使自己对知识的理解更加深刻,更加透彻!看例题时,还要注意以下几点:1、看一道例题,解决一类问题。
不能只看皮毛,不看内涵。
我们看例题,要注意总结并掌握其解题方法,建立起更宽的解题思路。
不能看一道题就只会一道题,只记题目答案不记方法,这样看例题也就失去了它本来的意义。
每看一道题目,就应理清解题思路,掌握解题方法,再遇到同类型的题目,我们就不在难了。
既然有“授人以鱼,不如授人以渔”,那么我们是不是也可以说“要鱼不如要渔”呢!2、我们不仅要看例题还要会总结,总结题型、解题思路和方法。
运用了哪些数学思想。
最好把总结的写出来。
以后复习时再看,就事半功倍了。
3、会模仿,也要创新。
在看例题的解题时,首先想自己遇到这个题怎么做,然后看例题怎么解答的,之后我们还要思考还有没有其它方法和思路。
我们最后看哪种方法更简便。
三、多做练习“多”讲的是题型多,不是题目数量多。
不怕难题,就怕生题。
题海战术不一定好,但是接触的题型多了,总结的解题方法多了。
以后遇到相同类型的题目也就不怕了。
四、心细,多思,善问,勤总结数学是严谨的,做题目时要细心,一个符号之差,题目的解就可能完全不一样了,遇到问题要多思考,培养自己的数学思维,思考实在不会的,我们就要问,去弄懂。
在数学学习过程中,我们要会总结,还要勤总结。
多总结知识内容,总结解题方法,解题思想。
一方面能够起到复习巩固的作用,另一方面能提高自己的自学能力。
数学的四大思维体系:数形结合、函数思想、分类讨论、方程思想。
沪科版_七年级数学下册复习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN沪科版数学七年级(下册)笔记第六章实数一、知识总结(一)平方根与立方根1、平方根(1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。
(2)表示:非负数a的平方根记作±a,读作“正负根号a”,(a叫做被开方数)(3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。
(4)开平方:求平方根的运算叫做开平方。
Ⅰ、平方根是开平方的结果;Ⅱ、开平方与平方互为逆运算。
2、算术平方根(1)定义:正数a的正的平方根a叫做a的算术平方根,0的算术平方根是0。
(2)性质:(1)一个数a的算术平方根具有非负性;即:a≥0恒成立。
(2)正数的算术平方根只有1个,且为正数;0的算术平方根是0;负数的没有算术平方根。
3、立方根:(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做三次方根。
(2)表示:a的立方根记作3a,读作“三次根号a”(a叫做被开方数,3叫根指数)(3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。
(二)实数1、无理数:无限不循环的小数。
(一个无理数与若干有理数之间的运算结果还是无理数)2、实数:有理数和无理数统称为实数。
3、实数分类:(1)按定义分(略)(2)按正负性分(略)4、实数与数轴上的点一一对应。
5、实数的相反数、绝对值、倒数:(与有理数的相反数、绝对值、倒数意义类似)6、实数的运算:实数与有理数一样,可以进行加、减、乘、除、乘方运算,正数及零可以进行开平方运算,任意一个实数可以进行开立方运算,而且有理数的运算法则和运算律对于实数仍然适用。
7、实数大小:(1)正数> 0 > 负数;(2)两个负数相比,绝对值大的反而小;绝对值小的反而大。
(3)数轴上不同的点表示的数,右边点表示的数总比左边的点表示的数大。
沪科版七年级下册数学知识点总结Chapter 6 Real Numbers in Grade 7 Mathematics1) Square Roots and Cube Roots1.Square Roots1) n: Generally。
if the square of a number is equal to a。
then this number is called the square root of a。
also known as the second root。
If x2 = a。
then x is called the square root of a。
denoted by "±a"。
and a ≥ 0.that is。
x = ±a.2) n: The square root of a non-negative number a is denoted by ±a。
read as "positive or negative square root of a" (a is called the radicand)。
3) Properties: A positive number has two square roots。
which are opposite to each other。
the square root of 0 is 0.a negative number does not have a square root.4) Square Root: The n of finding the square root is called taking the square root.Ⅰ。
The square root is the result of taking the square root。
Ⅱ。
Taking the square root and squaring are inverse ns.2.Arithmetic Square Roots1) n: The positive square root of a positive number a is called the arithmetic square root of a。
.沪科版七年级下册数学知识点复习总结.七年级数学下册知识点第六章实数(一)平方根与立方根、平方根1的平方根,也叫做二1()定义:一般地,如果一个数的平方等于a,那么这个数叫做a 次方根。
2ax aa??”,且的平方根.如果记作“,那么a叫做ax?X=即≥0a a)表示:非负数a的平方根记作±叫做被开方数),读作“正负根号a”,((2 0;负数没有平方根。
(3)性质:正数的平方根有两个,且互为相反数;0的平方根为(4)开平方:求平方根的运算叫做开平方。
开平方与平方互为逆运算。
Ⅰ、平方根是开平方的结果;Ⅱ、2、算术平方根a。
的算术平方根是1)定义:正数a的正的平方根0叫做a的算术平方根,(0aa”例如:a,且的算术平方根.a记作“X=0 即≥a≥0恒成立。
)性质:(1)一个数a的算术平方根具有非负性;即:(2 0的算术平方根是0;(2)正数的算术平方根只有1个,且为正数;负数没有算术平方根 3.开平方公式有哪些?0)(a?a??22aa(…0))(a?0)aa??a?0(且 a①②0≥??0)a??a(?22222=225,=169,14=144,134.求1120的平方值: 11=196,15=121,1222222=400=289,1816=361,20=256,17=324,191.41421?22.236?3?1.7325、1、立方根:5的立方根,也叫做三一般地,如果一个数的立方等于a,那么这个数叫做a(1)定义:33ax3a a.的立方根,记作“,那么叫做”如果ax? X=即次方根。
3a 3叫根指数),读作“三次根号a”(a(2)表示:的立方根记作a叫做被开方数,。
1个负数;0的立方根是01(3)性质:正数的立方根是个正数;负数的立方根是333333aa?a??a? 6.开立方公式有哪些?①②③a()a?(二)实数8 / - 1 -- 1 -.沪科版七年级下册数学知识点复习总结.1、无理数:无限不循环的小数。
七年级下数学知识点沪教版七年级下数学知识点(沪教版)一、整式与多项式整式包括常数、变量、一次幂、二次幂等。
多项式是由若干项的和组成的式子,其中每一项都是整式。
1. 单项式和多项式的定义及表示方法2. 多项式的加减运算3. 多项式的乘法运算二、一元一次方程方程的定义是等式两边用相同的数代替变量所得到的语句。
一元一次方程中只有一个变量,并且变量的最高次数为一次。
1. 一元一次方程的定义及解法2. 化简方程3. 利用方程解决实际问题三、一元一次不等式不等式是数之间的大小关系,一元一次不等式中只有一个变量,并且变量的最高次数为一次。
1. 一元一次不等式的定义及解法2. 不等式的加减运算和乘除运算3. 利用不等式解决实际问题四、勾股定理勾股定理是指在直角三角形中,直角边上的两个平方和等于斜边上的平方。
1. 勾股定理的定义与证明2. 勾股定理的应用:求直角三角形的边长、判断三角形是否为直角三角形等五、平面图形的初步认识平面图形是二维图形,包括点、线、角、三角形、四边形、多边形等。
1. 点、线、角的定义及表示方法2. 三角形、四边形、多边形的定义及分类3. 利用图形性质解决实际问题六、比例与比例应用比例是指两个同类量之间的比值关系,比例应用包括比例的计算、比例方程的解法、百分数的应用等。
1. 比例的定义及表示方法2. 比例的性质及其应用3. 实际问题中的比例应用:比例的计算、比例方程的解法、百分数的应用等。
七、平面直角坐标系平面直角坐标系是用数轴表示平面上的点的一种表示方式,又称笛卡尔坐标系。
1. 平面直角坐标系的定义及表示方法2. 点、线段在平面直角坐标系中的坐标表示及计算3. 直线的方程及表示方法八、统计图统计图是一种图形化展示数据的方式,包括条形图、折线图、饼图等。
1. 统计图的定义及分类2. 统计图的绘制方法及数据解读3. 利用统计图解决实际问题以上是七年级数学下册的知识点概述,希望能够帮助同学们对数学知识有更深入的了解。
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式沪科版七年级数学下册知识点数学是一门研究数量、结构、变化以及空间模型等概念的学科;数学解题的关键就是知识和方法;知识是锁眼,方法是钥匙。
缺少哪个都不能打开题目这把锁;那么我们的数学学习也要针对这两点进行。
一、掌握课本知识内容及内涵数学知识是数学解题的基石。
只有掌握了课本知识的内容,理解知识的内涵,才能更好地运用它来解决问题。
二、多看例题数学有的概念、定理较抽象,我们可以通过例题,将已有的概念具体化,使自己对知识的理解更加深刻,更加透彻!看例题时,还要注意以下几点:1、看一道例题,解决一类问题。
不能只看皮毛,不看内涵。
我们看例题,要注意总结并掌握其解题方法,建立起更宽的解题思路。
不能看一道题就只会一道题,只记题目答案不记方法,这样看例题也就失去了它本来的意义。
每看一道题目,就应理清解题思路,掌握解题方法,再遇到同类型的题目,我们就不在难了。
既然有“授人以鱼,不如授人以渔”,那么我们是不是也可以说“要鱼不如要渔”呢!2、我们不仅要看例题还要会总结,总结题型、解题思路和方法。
运用了哪些数学思想。
最好把总结的写出来。
以后复习时再看,就事半功倍了。
3、会模仿,也要创新。
在看例题的解题时,首先想自己遇到这个题怎么做,然后看例题怎么解答的,之后我们还要思考还有没有其它方法和思路。
我们最后看哪种方法更简便。
三、多做练习“多”讲的是题型多,不是题目数量多。
不怕难题,就怕生题。
题海战术不一定好,但是接触的题型多了,总结的解题方法多了。
以后遇到相同类型的题目也就不怕了。
四、心细,多思,善问,勤总结数学是严谨的,做题目时要细心,一个符号之差,题目的解就可能完全不一样了,遇到问题要多思考,培养自己的数学思维,思考实在不会的,我们就要问,去弄懂。