令b=POI=√a²-c², 那么方程⑤就
由于方程②③的两边都是非负实数,因此方程①到方程⑥的变形都是同解变 形.这样,椭圆上任意一点的坐标(x,y) 都满足方程⑥;反之,以方程⑥的解为 坐标的点(x,y)与椭圆的两个焦点(c,0),(-c,0)的距离之和为2a, 即以方程⑥的 解为坐标的点都在椭圆上.则方程⑥是椭圆的方程,这个方程叫做圆的标准方 程.它表示焦点在x 轴上,两个焦点分别是F(-c,0),F₂ (c,0) 的椭圆,这里
所以点M 的轨迹是椭圆.
例3如图,设A,B 两点的坐标分别为(-5,0),(5,0).直线AM,BM 相交于点M, 且它们的斜率之积是 ,求点M 的轨迹方程.
事
解 :设点M 的坐标为(x,y),因为点A 的坐标是(-5,0), 所以直线AM的斜率 同理,直线 BM 的斜率 由已知有
化简得点M 的轨迹方程为
设M(x,y )是椭圆上任意一点,椭圆的焦距为2c(c>0), 那么焦点F,F₂ 的 坐 标分别为(-c,0),(c,0) ,根据椭圆的定义,设点M 与焦点F,F₂ 的距离的和等于 2a.
由椭圆的定义可知,椭圆可看作点集P={M||MF₁I+|MF₂I=2a}. 因为IMFI= √ (x+c)²+y²,IMF₂F= √ (x-c)²+y², 所以J(x+c)²+y²+ √ (x-c)²+y²=2a.① 化简得√(x+c)²+y²=2a-√(x-c)²+y².② 对方程②两边平方得(x+c)²+y²=4a²-4aJ(x-c)²+y²+(x-c)²+y². 整理得a²-cx=aJ(x-c)²+y².③