1000瓦正弦波逆变器原理实图
- 格式:docx
- 大小:13.34 KB
- 文档页数:5
⾼频逆变器前级、后级电路的设计(从原理上了解逆变)⾼频逆变器前级、后级电路的设计(从原理上了解逆变)⼀、⾼频逆变器前级电路的设计逆变器前级电路⼀般采⽤推挽结构,开环和闭环的问题。
供分析的电路如下?01、闭环前级变压器匝数⽐的设计逆变器前级⽆论是开环还是闭环只是变压器的匝⽐和反馈环路的参数不同⽽已。
⽐如需要设计⼀个输⼊12V,变化范围为10.5-15V,输出电压为交流 220V50HZ 的⾼频修正⽅波逆变器。
如果前级采⽤闭环结构,12V 升压后直流电压稳定在 270V⽐较好,这样为了使输⼊ 10.5V 时还能输出 270V,则变压器的变⽐⼤约为(270+2VD)(10.5-VDS)D,其中 VD 为⾼压整流管压降,VDS 为前级 MOS 管的压降,D 为最⼤占空⽐。
计算出来的结果⼤约是28。
特别注意的是当前级⼯作在闭环状态时,⽐如输⼊电压⽐较⾼的话,D1,D3 正端整流出来的脉冲的峰值将超过 270V,占空⽐⼩于1需要 L1,C11 平滑滤波,所以 L1 不能省略,还要⾜够⼤,否则 MOS 管发热损耗⼤。
具体计算可根据正激类开关电源输出滤波电感的计算。
02、准开环前级变压器匝数⽐的设计实际中的逆变器前级往往省略 L1,从电路上看还是闭环稳压,电压也是通过 R1 进⾏反馈,从上⾯闭环稳压的计算中可以看出,为了保持输出的稳压,变压器的变⽐设计的⽐较⼤。
逆变器前后级都稳压当然⽐较好,但也可以只是后级稳压,后级稳压在 AC220V,我们可以把前级直流⾼压设计在最低220V,此时占空⽐为 50%。
如果前级直流⾼压⼤于 220V ,可以⾃动把占空⽐调⼩些,这样输出交流电也稳定在 220V 了。
⽤这种⽅式的话我们的变压器变⽐可以按照输⼊ 10.5V 时输出 220V 设计,计算结果变⽐⼤约是22。
这样输⼊ 10.5-15V 变换时,前级⾼压的变动范围⼤约是220-320V。
如果 L1 直接短路,R1 去掉,这样就是⼀个纯开环的电路,只是有于变压器漏感尖峰的存在,在逆变器空载时,前级输出的直流⾼压会虚⾼,对⾼压滤波电容和后级⾼压 MOS 管的安全不利。
1000W正弦波逆变器制作过程详解1000W正弦波逆变器制作过程详解作者:老寿这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。
逆变器原理智能型工频率正弦波逆变器,是在单片微处理控制芯片控制下,产生正弦波高频调制信号后再经驱动电路驱动大功率场效应管或IGBT管,使其工作在高频开关状态而达到将直流电源转变成正弦波电源的基本工作原理.其原理图框图如下:1.逆变/充电变频电路:在外电网供电时,使电池充电,当外电网断电时自动切换到电池供电状态,从而使逆变电源自动完成逆变与充电的切换.2.大功率开关元件:采用大功率场效应管IGBT器件并工作在正弦波调制的高频脉冲开关状态,从而使电池供应的直流电能转换成高频脉冲电能.3.工频变压器:隔离电池供电与输出正弦波的电回路并将电池电压升压或降压成所需要的电压.4.电池滤波和抗干扰电路:防止逆变电源本身产生的干扰通过与电池的连接线向电池及外界产生干扰.5.输出滤波和抗干扰电路:将正弦高频调制脉冲波转换成纯净的工频正弦波.6.输入整流滤波电路:将电网交流电能转换成直流电能.7.电池充电系统:将高压直流电能隔离且转换成充电电池所需要的电压8.单片机控制系统:由单片微处理控制器产生正弦波高频调制脉冲信号传送到驱动电路,同时单片微处理控制电路将所有检测到的电信号进行分析, 处理和控制而使整体逆变电源系统工作可靠,协调.9.输出电压取样:检测逆变电源逆变时的输出电压.10.输出电流检测:检测逆变电源在逆变时的输出电流.11.电池电压取样:检测逆变电源电池的电压供单片机控制系统处理,从而保护电池在充电状态时,快速充电,逆变时保护电池不过度放电而损坏.12.电池电流检测:检测逆变电源在充电或放电时电池的充电电流或放电电流.13.驱动电路:为驱动可执行元件而设置的功率放大电路.14.显示器:逆变电源输出电压值及输出电流值的显示.逆变器工作原理介绍时间:2010-07-31 21:43:32 来源:电源网作者:逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。
转换器是将市电电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V 直流电压转变为高频的高压交流电;两个部分同样都采用了目前用得比较多的脉宽调制(PWM)技术。
1000W正弦波逆变器制作过程详解
作者:老寿
电路图献上!!
这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图
也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
:
因为电流较大,所以用了三对6平方的软线直接焊在功率板上
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K 的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
这个机器,BT是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器,也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
这是SPWM驱动板的PCB,本方案用的是张工提供的单片机SPWM芯片TDS2285,输出部分还是用250光藕进行驱动,因为这样比较可靠。
也是为了可靠起见,这次二个上管没有用自举供电,而是老老实实地用了三组隔离电源对光藕进行供电。
因为上面的小变压器在打样,还没有回来,所以这块板子还没有装好。
1000W24V纯正弦波逆变器使用说明书一,前言:本逆变器使用本公司智能IC控制,其线路已申请专利,具有非常完善的保护功能(包括过载保护,过流保护,高温保护,短路保护,反接保护,电池高.低压保护,设有内置式保险丝等等),指示功能。
采用优质的双面线路板及零器件,保证产品高质量,高性能。
本机的输出波形为纯正弦波,可以适用于任何负载,过载保护,过流保护,短路保护,保护后自动延时10秒启动。
本机的体积非常小巧,便于携带。
二:使用方法将足够功率的输入电源接上逆变器,注意电源电压要在规定范围内,连接的电源线要有足够的承载电流能力,并且尽量短,打开逆变器的电源开关,输出负载在开机前或开机后接入均可(我公司产品配有符合标准的电源线)。
三,输入电源要求:●输入电源电压必须在逆变器规定的电压范围内。
●输入电源必须能够提供足够的电流,其具体算法约为输出功率/输入电压/0.8=输出电流,例如:带一个1000W的负载,输入24V,则输入电流=1000/24/0.8=52.1(A)。
●输入电源线必须要与逆变器连接牢固,并且要有足够的承载能力。
如果电流为52.1A,电源线的截面面积应尽量大于16平方毫米。
四,技术参数:九,注意事项:●本逆变器只能接小于其所规定最大功率的负载。
●本逆变器输入电压为24V,过高的电压将使其损坏。
●本逆变器在高于40摄氏度的高温环境和不通风环境下将导致过热,使输出功率下降。
●如果逆变器开机后输出负载过大而产生输出保护后,应先关机,移开负载10秒后再开机,如频繁过载开机将有可能使逆变器永久损坏。
●禁止本逆变器和市电有连接,否则将有可能使逆变器永久损坏●请不要用湿手或在潮湿的环境中使用本逆变器。
●在不使用本逆变器时,请将其电源关闭。
十,排除故障:●逆变器开机后指示灯不亮:检查输入电压是否合适,正负极有无接反情况。
●逆变器开机后输入指示灯亮红色:输入电压偏低或偏高。
●逆变器开机后亮两个绿灯,2~3秒后关机:输出负载太大或输出短路。
1000W逆变器---带参数表
82937816 称号:助理工程师积分: 288分发帖: 201帖第1帖2008-10-20 10:26
逆变器,1000W.采用4 个EC40加8个场管作为前级驱动.后级采用IRF360做成桥式电路输出,过压过流,高低压保护是最基本保护方式.对于电路上的设计,我个人认为,除有好的电路原理外,最重要的还是采用怎样的电路结构.同一张图,不同的结构,出来的确产品往往差别很大.如下图:
合理的内部设计,能使电源电压输出极为稳定.但还必需配合好的散热.
电路原理图:(改进型)
在使用逆变器过程中,往往出问题是在电池快没电的情况下,这只要是逆变器没计有输出电压的上下限,因为电池电压低时,输出级得到的直流电压也低了,因此场管得不到饱和导通,发热过大而坏.所以给逆变器设计一个好的输出电压上下限是很重要的.
有很多使用过逆变器的朋友,都知12V的大电容比较热.这个只要是因为前级电路处于开关下工作,变压器自感生产很高的尖峰电压,如果不采用合适的方法处理,哪电容发热,坏就常见了.
做一款逆变器,会使用变压器,场管,桥变换电路是最基本与最简单的,逆变器真正精华还是在电路布局,保护电路上.真正做到一款理想的逆变器,不是容易的事情呵!亲手开发的逆变器可能有40款了,新出的肯定要比以前的机要好,但用起来就感觉没有自己想像的好.因为只有这款新产品开了出来了,我才会感觉到下一款的产品如何改进.
在这里不多说了,如果要详细了解逆变器方面的,可以到电源网我的个人空间上看看.
http://www.mm
QQ:417278103,可以直接聊嘛!大家交流交流!到我的空里,保证你不白跑.。
1kw纯正弦波逆变电源原理图和PCB图这个机器,BT是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器,也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
这是SPWM驱动板的PCB,本方案用的是工提供的单片机SPWM芯片TDS2285,输出部分还是用250光藕进行驱动,因为这样比较可靠。
也是为了可靠起见,这次二个上管没有用自举供电,而是老老实实地用了三组隔离电源对光藕进行供电。
1000w逆变器电路图,这里会详细的告诉你有了电,我们的生活充满光亮,有了电,我们的生活充满了希望,有了电,我们的生活变的很精彩,现在我们离不开电,电给了我们很大的帮助,下面我们就说说1000w逆变器电路图,希望对你有帮助。
1000W逆变器工作原理及电路图该功率逆变器电路将提供非常稳定的“方波”输出电压。
操作频率由电位器决定,通常设置为60 Hz。
可以使用各种“现成的”变压器。
或者自定义风自己以获得最佳效果。
额外的MosFets可以并联以获得更高的功率。
建议在电源线上安装“保险丝”并始终连接“负载”,同时接通电源。
保险丝额定电压为32伏,每100瓦输出应大约为10安培。
电源引线必须足够重,以处理此高电流消耗!适当的散热器应该用在RFP50N06 Fets上。
这些Fets的额定电流为50安培和60伏特。
如果您愿意,可以替换其他类型的Mosfets。
有局限!我已经有过多次要求换电器1000瓦甚至更多。
对不起我觉得这不实用。
在1000瓦特和12伏电源下工作时,输入电流将接近100 AMPS。
这将需要HUGH大小的主线。
1000w逆变器电路图1000W电子白金机逆变器如何制作简单的一种逆变器自制方法,很容易的,基本不用调试,安装好元件就可以工作了。
自制6V转交流220V逆变器电路一、逆变器电路原理晶体管V,变压器T的N1、N2绕组和电容器C构成变压器耦合LC振荡电路。
电位器RP和电阻R为振荡管提供偏置电流。
二、元器件及制作V选用3DD59A,R用1/4W的普通电阻,C 选用0.22μF/50V,变压器需自制,N1、N2绕组用?0.9mm的漆包线,N3绕组用0.67mm的漆包线,绕组框架可用1mm厚的硬纸板制作,磁芯最好用铁氧体U型或环型,如没有,就用普通E型或F型硅钢片代替,直流电流G用6V蓄电池。
三、安装要求只要元器件良好,安装无误,即可调试,通电后调节RP可以控制电路的输出功率。
若电路不起振,可能是反馈绕组极性问题,用极性判别法进行判别或将绕组N1或N2反接后再试,图中有“·”标志的为同名端。
正弦波逆变器逆变主电路介绍主电路及其仿真波形图1主电路的仿真原理图图1.1是输出电压的波形和输出电感电流的波形。
上部分为输出电压波形,下面为电感电流波形。
图1.1输出电压和输出电感电流的波形图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。
图1.2 开关管波形从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。
图1.3放大的开关管波形图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。
从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。
图1.4工作模态仿真波形图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电感电流波形、S3驱动波形、S1驱动波形。
从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。
根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。
图1.5开关管的驱动电压波形和电感电流波形2 滤波环节参数设计与仿真分析2.1 输出滤波电感和电容的选取对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。
滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。
C f 越大,则THD小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。
纯正弦波逆变器电路图大全(数字式/自举电容/光耦隔离反馈电路图详解)纯正弦波逆变器电路图(一)基于高性能全数字式正弦波逆变电源的设计方案逆变电源硬件结构如图2所示。
主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器和点阵液晶构成。
其中,直流升压部分将输入电压升高至输出正弦交流电的峰值以上的母线直流电压,正弦逆变部分将母线直流电压逆变后经输出滤波电路得到正弦式交流电,采样电路则对母线电压、母线电流、输出电压、输出电流、输入电压进行采样,以实现短路保护、过压欠压保护、过流保护、闭环稳压等功能。
驱动电路的功能是将驱动信号的逻辑电平进行匹配放大,以满足驱动功率管的要求。
控制电路的功能是产生驱动信号,并对采样信号进行处理,以实现复杂的系统功能。
点阵液晶的功能是显示系统工作信息,如果输出电压、电流以及保护信息等。
1)主控制器主控制器选用STM32F103VE增强型单片机,STM32系列单片机是意法半导体公司专门为高性能、低成本、低功耗的嵌入式应用设计的产品。
此单片机采用哈佛结构,使处理器可以同时进行取址和数据读写操作,处理器的性能高达1.25 MIPS/MHz.支持单周期硬件乘除法,最高时钟频率72 M,最大可达512 kB片上Flash及64 kB片上RAM.同时具有多达30路PWM及3个12位精度的ADC等众多适合做逆变及电机驱动的外设。
在本系统中用于产生PWM、SPWM驱动信号,并对采样信号进行处理,以完成稳压反馈及保护功能,并驱动点阵液晶显示系统信息。
考虑实际的功率管及驱动芯片的速度,升压PWM波的频率为20 kHz,逆变SPWM波的频率为18 kHz.根据调制方法的不同,SPWM驱动信号形式可以分为:双极性、单极性和单极性倍频。
由于双极性调制失真度小,故本设计中SPWM 采用双极性驱动方式。
2)点阵液晶选用LPH7366型点阵液晶,具有超低功耗的特点。
用于显示系统当前的工作状态,如输出电压、输出电流、输入电压等信息。
ELECTRONIC GIANT EGS001 用户手册纯正弦波逆变器驱动板EG8010 芯片测试板旺旺 :qq453046836 电话:15825241006 QQ:453046836 答案666EGS001正弦波逆变器驱动板用户手册V1.2版本更新:V1.1:针脚定义中,将1HO、1LO和VS1的定义更改为右桥臂,将2HO、2LO和VS2的定义更改为左桥臂。
V1.2:更新原理图中短路保护电路。
1. 描述EGS001是一款专门用于单相纯正弦波逆变器的驱动板。
采用单相纯正弦波逆变器专用芯片EG8010为控制芯片,驱动芯片采用IR2110S。
驱动板上集成了电压、电流、温度保护功能,LED告警显示功能及风扇控制功能,并可通过跳线设置50/60Hz输出,软启动功能及死区大小。
EG8010是一款数字化的、功能很完善的自带死区控制的纯正弦波逆变发生器芯片,应用于DC-DC-AC两级功率变换架构或DC-AC单级工频变压器升压变换架构,外接12MHz晶体振荡器,能实现高精度、失真和谐波都很小的纯正弦波50Hz或60Hz逆变器专用芯片。
该芯片采用CMOS工艺,内部集成SPWM正弦发生器、死区时间控制电路、幅度因子乘法器、软启动电路、保护电路、RS232串行通讯接口和12832串行液晶驱动模块等功能。
2. 电路原理图EGS001驱动板原理图220V输出220V输出图2‐1. EGS001纯正弦波逆变器驱动板电路原理图3. 针脚及跳线3.1 EGS001正视图图3‐1. EGS001驱动板针脚定义3.2 针脚描述针脚序号针脚名称I/O描述1 IFB I 输出电流反馈输入端,引脚输入电压大于0.5V 时过流保护2 GND GND 接地端3 1LO O 右桥臂下管驱动门极输出4 GND GND 接地端5 VS1 O 右桥臂上下功率MOS 管中心点输出6 1HO O 右桥臂上管驱动门极输出7 GND GND 接地端8 2LO O 左桥臂下管驱动门极输出 9 VS2 O 左桥臂上下功率MOS 管中心点输出 10 2HO O 左桥臂上管驱动门极输出 11 GND GND 接地端12 +12V +12V +12V 电源电压输入,输入电压范围: 10V~15V 13 GND GND接地端 14 +5V +5V +5V 电源电压输入15 VFB I 输出电压反馈输入端,具体功能及电路请参照EG8010芯片手册17. FANCTR16. TFB15. VFB14. +5V13. GND12. +12V11. GND10. 2HO9. VS28. 2LO7. GND6. 1HO5. VS14. GND3. 1LO2. GND1. IFB16 TFB I 温度反馈输入端,引脚输入电压大于4.3V 时过热保护17 FANCTR O外接风扇控制,当T FB 引脚检测到温度高于45℃时,输出高电平“1”使风扇运行,运行后温度低于40℃时,输出低电平“0”使风扇停止工作3.3 跳线设置序号跳线名称标号设置说明JP1当JP1短路时,选择60Hz 输出 1 FRQSEL0JP5 当JP5短路时,选择50Hz 输出 JP2当JP2短路时,使能3秒软启动功能 2 SSTJP6 当JP6短路时,关闭软启动功能JP33 DT0JP7 JP44 DT1JP8当JP7和JP8同时短路时:死区时间为300ns 当JP3和JP8同时短路时:死区时间为500ns 当JP4和JP7同时短路时:死区时间为1.0us 当JP3和JP4同时短路时:死区时间为1.5us出厂时驱动板跳线默认设置为JP5、JP2、JP7、JP8短路,对应功能为50Hz 、3S 软启动、死区时间300nS ,用户可根据自己需求更改。
纯正弦波逆变器工作原理
纯正弦波逆变器是一种用于将直流电转换为交流电的电力装置。
它的主要工作
原理是通过电子器件对直流电进行调整和转换,从而获得高质量的交流电信号。
纯正弦波逆变器的核心部件是高频变压器和功率电子器件,如晶体管和二极管。
当直流电源输入到逆变器中时,通过控制电路控制功率电子器件的导通和断开,形成高频脉冲信号。
这些高频脉冲信号在高频变压器中经过变换和调整,最终形成纯正弦波形的交
流电信号。
通过逆变器内的滤波电路,消除高频脉冲的谐波成分,使得输出的交流电信号趋近于纯净的正弦波形。
纯正弦波逆变器的工作原理确保了其输出的交流电信号具有高质量和稳定性。
与其他类型的逆变器相比,纯正弦波逆变器能够提供更适合电器设备的交流电信号,从而避免了电器设备因低质量的电源信号而损坏或影响性能的风险。
纯正弦波逆变器广泛应用于需要高质量电源的领域,如家庭电器、工业设备以
及医疗器械等。
其工作原理的有效性和可靠性,使得电子领域中对高质量电源需求日益增长,并促进了纯正弦波逆变器技术的不断发展与创新。
总之,纯正弦波逆变器的工作原理是通过控制功率电子器件,将输入的直流电
转换为高频脉冲信号,然后通过变压器和滤波电路得到纯正弦波形的交流电信号。
其高质量和稳定性的输出信号,使其在电力转换领域具有广泛的应用前景。
纯正弦波逆变器原理图纯正弦波逆变器是一种将直流电源转换为交流电源的电子装置。
它可以将直流电源转换为质量较高的交流电源,广泛应用于各种领域,包括太阳能发电系统、风能发电系统、电力电子设备等。
在本文中,我们将介绍纯正弦波逆变器的原理图及其工作原理。
首先,让我们来看一下纯正弦波逆变器的原理图。
通常,纯正弦波逆变器由直流输入端、逆变桥、输出滤波器和控制电路组成。
直流输入端接收来自直流电源的输入,逆变桥将直流电源转换为交流电源,输出滤波器用于滤除逆变器输出的谐波成分,控制电路则用于控制逆变器的工作状态。
在纯正弦波逆变器的工作过程中,直流电源首先经过逆变桥,逆变桥由一组开关管组成,根据控制电路的信号,开关管会按照一定的规律进行开关,从而将直流电源转换为交流电源。
在逆变桥输出的交流电源经过输出滤波器后,可以得到近似纯正弦波形的交流电源。
纯正弦波逆变器的工作原理可以简单概括为,将直流电源经过逆变桥转换为交流电源,再经过输出滤波器滤除谐波成分,最终得到质量较高的近似纯正弦波形的交流电源。
这种高质量的交流电源可以满足各种对电源质量要求较高的场合,比如电力电子设备、医疗设备、通信设备等领域。
纯正弦波逆变器的原理图和工作原理为我们提供了一种将直流电源转换为高质量交流电源的有效手段。
通过逆变桥和输出滤波器的协同作用,我们可以得到近似纯正弦波形的交流电源,满足各种对电源质量要求较高的应用场合。
同时,控制电路的设计也可以进一步提高纯正弦波逆变器的性能,使其在实际应用中发挥更大的作用。
总之,纯正弦波逆变器的原理图和工作原理为我们提供了一种有效的电源转换方案,可以满足各种对电源质量要求较高的场合。
通过对纯正弦波逆变器的原理图和工作原理的深入理解,我们可以更好地应用和设计纯正弦波逆变器,为各种应用场合提供稳定、高质量的交流电源。
这个机器,BT是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器,也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和S P W M的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
这是SPWM驱动板的PCB,本方案用的是张工提供的单片机SPWM芯片TDS2285,输出部分还是用250光藕进行驱动,因为这样比较可靠。
也是为了可靠起见,这次二个上管没有用自举供电,而是老老实实地用了三组隔离电源对光藕进行供电。
因为上面的小变压器在打样,还没有回来,所以这块板子还没有装好。
本方案中的SPWM驱动也是灵活的,既可以用单片机,也可以用纯硬件,只要驱动板的接口设计得一致,都可以插到本方案的功率板上,甚至也可以做成方波逆变器。
H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。
这是TO220封装的快恢复二极管,15A 1200V,也是张工提供的,价格不贵。
我觉得它安装在散热板上,散热效果肯定比普通塑封管要强。
这次的变压器用的是二个EC49磁芯绕制的,每个功率500W,余量应该比较大的,初级并联,次级串联。
用二个变压器的理由是:1,有利于功率的输出,2.变比小了,可能头痛的尖峰问题会少一些。
对前级进行上电,空载电流近1A,查到是变压器的原因,后来换了磁芯,空载降到360MA(每个变压器180MH,基本可以接受),可见磁芯的重要性,而现在要买到几付好的磁性实在太难了。
所幸的是D极波形很好,这次的变压器应该做得还可以了,参数是:初级3+3,用*29的铜带,次级44T,用线二根。
下一步准备为前级加载,因为一台逆变器,能不能输出预定的功率,前级质量是决定因素。
只因那个大功率的开关电源还有一点小问题要解决,所以,加载可能还要过几天。
这照片上的稳压电源上显示电流为450MA,因为并不是完全空载,我在高压处挂了一个LED,用150K2W电阻降压,这个指示电路要消耗近1W功率,约增加90MA的电流。
对前级进行加载实验,前级为开环,也没有装储能电感,分二步:第一步:加载约630W,负载是一个200R、1KW的大电阻,这时工作电流为。
连续工作一小时,散热板和190N08大功率管及变压器只有微温,D极波形还比较好,尖峰刚露,不明显,这时母线高压为356V。
第二步:进一步加大负载,又挂上了二个串联的200W灯泡,这时工作电流左右,此时,实际输出功率在900W以上了,母线高压降至347V,D极波形有一路能看到明显的上冲尖峰。
工作半小时,散热板温度为45度, 4个190N08管壳温度:3个为46度,有一个为51度,变压器也有点热。
但快速二极管一点也不热。
如果要逆变输出1000W,前级起码要能输出1100W左右,从今天情况来看,温升好象快了些,温度主要集中在大功率MOS管和变压器。
因为这样的结构,换管子很麻烦,本来想把190N08换成2907,做一个对比实验。
变压器热,我还是认为磁芯质量不过关,因为在900W时,每个变压器单边绕组的电流不到20A,我用的是的铜带,有个平方MM,电流密度只有3A多一些,初级绕组是不应该发热的;次级有,900W时流过的电流不到3A,也不应该热。
看来磁芯实在太重要了。
明天准备用风机对散热板进行主动性散热,加载到1050W以上。
继续加大负载,再用二个150W灯泡串联接上去,因为考虑到大电流时线路的压降,把电源电压调高了,为,但到线路板还是只有(我的电源线是用二根10平方并联的)。
开机后,工作电流达到,母线电压为345V,母线电流为,此时,实际输出功率为1087W。
D极波形上的尖峰有点加高,达到45Vpp(因为我在设计PCB时,没有考虑用吸收回路,再加上尖峰也没有达到管子的耐压值,所以也就不去理它了)。
此时,功耗达到了1194W,前级的实际效率只有91%了。
变压器温升很明显了,因为我在散热板下面放了一个小风扇,所以,管子的温度一直在40度以下,我只让它工作了约20分种。
小结:前级的实验并没有结束,我还想用纳米晶磁环做一次实验,但年内肯定是没有时间了,过了年再试了。
看来BT在12V时,要提高功率和效率,瓶颈主要是:1.变压器,包括磁芯质量,绕制数据及工艺等;2.大功率MOS管,内阻一定要小;3.布线及结构,我PCB反面大电流路径都有15-20MM宽的铜箔,填锡达2MM,还加焊了几根4平方的铜线,结构方面主要是散热一定要顺畅,加小风扇是很好的办法。
今天的工作本来想把RU190N08和2907做一个对比测试,测试这二种管子在不同输出功率时的效率情况,于是,先调整了各种测试仪表,先把已经装在板子上的RU190N08做了测试,测试结果如下,看来黄工的这几个管子还是算挣气,一路测下来,效率情况良好。
接下来就是花了一个多小时换管子,装上了4个全新的IRFP2907,本是兴冲冲开机,希望是一个很好的结果,但万万没有想到的是------失败!在挂上1号负载时(二个150W灯泡串联),工作电流达,输入功率达,输出功率为,效率仅为:54%。
这可是做梦都没有想到的结果,2907管子很快发热在百思不解的情况下,查看D极波形,居然出现了长长的尖峰:一般情况下,出现这样的波形,肯定是怀疑变压器漏感太大,但我这二个变压器在用RU190N08时,工作得很好,在挂1号负载时,根本看不到尖峰。
我再测G极波形,发现驱动方波全部变成了梯形波,这才恍然大悟,原来是2907的驱动功率不足所致。
看来2907的结电容远远大于RU190N08,用3525直接推动4个2907有点困难。
为了证实我的想法,我把栅极电阻从原先的20R换成了10R,再开机,这时,在同样负载下,电流下降为(用RU190N08时只有,欠激是肯定的了,因为我的驱动板上没有装图腾柱输出,现在只好等重新做了驱动板再试了。
(驱动功率不足,D极会出现长长的尖峰,这可是第一次遇到,长见识了啊!)上图是栅极波形,这时电阻已经换成10R,在用20R时情况还要糟很多。
上图是从3525的11、14脚上测到的波形,已经有点变形。
画了一块带图腾柱输出的DC-DC驱动板带图腾柱输出的DC-DC驱动板的PCB终于来了,今天装了一块进行试机。
因为加了图腾柱输出,所以2907欠激的情况大为改善,但空载电流却比用190N08时要大很多,不去管它了,继续实验下去。
下面的表格是2907和190N80的工作情况对比下图是用2907时的空载波形:下图是用2907时,前级输出1100W时的波形照片:从上图可以看出,空载和满载时的波形差不多。
现在有二个问题弄不明白,请各位探讨:1.在变压器相同的前提下,用不同的功率管,D极的波形为什么会大不相同,用190N08时的尖峰要明显比用2907时要小,是不是结电容大小不同引起的2.用双变压器的前级,用2907时的空载电流接近1A,而用190N08时不到400MA,是什么原因小功率时,190N08的效率比2907要高,但在最大功率时,2907稍有优势。
但发热量,2907比190N08要小一些。
下图是今天刚装好的SPWM驱动板,经测试工作正常。
把SPWM驱动板插上去了,一开机,保护电路竟然误动作,蜂鸣器嘟嘟做响,后来请教了张工后,改了几个元件的数值,问题就解决了。
开机成功了(这次居然没有炸管子),正弦波波形良好,我用了二个200W一个150W的灯泡做负载,电参仪上显示输出功率为617W,算了一下,这时的效率大约在%左右(因为空载电流稍大,有点影响效率,可惜)。
本来准备明天继续加大负载到1000W左右,可是发现了一个问题,稳压部分不工作,调电位器没有反应,一查,发现是那个漂亮的取样变压器竟然没有输出,郁闷啊,因为要换变压器,就必须把整机全部拆下来,二个小时还不一定弄得好,烦啊!先花了近二个小时检查不稳压的原因,终于查到问题的症结,是一个PCB毛剌把取样变压器的次级接地了,可能是的变压器阻抗实在太大了,居然没有烧掉。
对PCB做了处理后,开机稳压功能就正常了,把空载输出调到230V左右,一切OK!下午去买了几个灯泡,慢慢加大了负载,直加到1000W以上,连续工作了30分钟,除了高频变压器有点热,其它一切正常(散热板下面放了一个小风扇)。
下面是照片:在1039W输出时,效率大约为90%%,从变压器发热情况看,我这台机器的效率瓶颈应该在变压器或变压器磁芯,如果有质量好的变压器,效率还可以提高些。
电参数仪显示1035W,在1035-1039之间跳动。
这是1000多W输出时的波形,还是非常漂亮!今天做了二个工作:1.我对前级DC-DC升压部分进行了调整,调R12使HV高压空载时限止在370V,这时,空载电流从近1A下降到160mA,加上SPWM驱动板的140mA,总共300mA。
2.试带了感性负载,手边只有一个600W的角向磨光机,试带了一下,发现波形和带灯泡时一样,没有出现变形毛刺等。
现在正在想:哪里有100升左右的冰箱,试试能不能启动。
试逆变器的负载能力:1.先启动一个100升的小冰箱,没有问题,二话没说,一下子就启动起来了----成功!2.接着试启动一支1000W的小太阳,冷阻很低的,一上电,闪了一下,我认为不行了,谁知一闪过后,竟然成功点亮了,哈哈,还不错。