债券的收益率与利率的期限结构
- 格式:pdf
- 大小:7.14 MB
- 文档页数:37
利率的期限结构一、利率期限结构的形式债务凭证的期限不同,利率也不同。
利率和债务凭证期限之间的关系,叫做利率的期限结构(term structure of interest rate )。
对于不同的债务凭证来说,利率期限结构可能是不同的。
概括来说,利率的期限结构有三种形式:第一种是利率不随着债务凭证期限的变化而变化。
不论债务凭证的期限是短是长,利率都保持不变。
这种利率期限结构叫做水平的期限结构(flat term structure)。
第二种是利率随着债务凭证期限的延长而提高。
债务凭证的期限越长,利率就越高。
这种利率期限结构叫做上升的期限结构(rising termstructure)。
第三种是利率随着债务凭证期限的延长而下降。
债务凭证的期限越长,利率就越低。
这种利率期限结构叫做下降的期限结构(declining term structure)。
投资者在投资侦务凭证的时候,最关心的是债务凭证的收益率。
虽然债务凭证的收益率和利率有所不同,但是它们存在着正相关的关系。
因此,在研究利率的期限结构时,实际上分析的是收益率的期限结构。
二、利率期限结构的理论解释利率的期限结构的理论有三种:市场预期理论,流动偏好理论和市场分割理论。
1.市场预期理论市场预期理论(The Market Expection Theory)是由费雪(IFisher)在18%年出版的(升值与利息》中提出来的。
希克斯(J. R. Hicks)等人对该理论的发展做出过贡献。
市场预期理论假定,债券投资者只关心如何获得最大利益,而不关心他所持有的债券的期限。
因此,不同期限的债券是可以相互替换的。
购买一张2年期限的债券(上海公积金提取)和先后购买两张1年期限的债券相比较,如果前者的收益率高于后者,投资者将选择前者;如果前者的收益率低于后者,投资者将选择后者。
市场预期理论据此提出,利率的期限结构是由人们对未来市场利率变化的预期决定的。
假设某投资者准备使用100美元进行为期2年的投资时,他可以有两种选择:第一种是购买一张2年期限的债券;第二种是先购买一张1年期限的债券,等待第一年结束时再购买一张I年期限的债券。
第2章利率的期限结构在经济全球化,金融一体化的今天,利率同我们中的大多数人息息相关,向银行贷款需要根据利率支付利息,在银行存款或购买债券以获取利息收益。
我们还知道,存款或贷款由于种类和期限(短期,长期)的不同有不同的利率,这些利率的不同不仅替现在数量上,而且还替现在计算的方法上。
同时利率由于受到经济环境(全球的或局部的),政府政策等因素的影响,利率是在不断变化的。
利率的期限结构反映了利率(或收益率)和期限之间的对应关系,在期限——收益率的坐标平面上它是一条收益率曲线,根据利率的期限结构,可以了解远期利率(将来某个时间的利率)和即期利率之间的关系.本章以债券的收益率为工具说明利率的期限结构,内容有第2.1节的固定收益证券的介绍,第2.2节讨论即期利率的计算,第2。
3节分析利率的期限结构的构建方法和即期利率曲线,第2.4节介绍远期利率以及远期利率曲线同期利率曲线之间的关系.§2.1 固定收益证券本小节对在金融市场作为融资工具的固定收益证券作一个简单的介绍。
固定收益证券(Fixed-income Securities)是借方在特定的时间内按预先规定的时间和方式向证券持有者支付利息和本金所发行的证券,也称固定收入债券。
债券的持有期一般比较长,持有者收入的现金流是固定的,其价值要随利率的波动而变化,因此具有利率风险。
债券定期支付利息,有半年支付一次的(如美国),一年支付一次的(如欧洲国家),还有按季度支付的。
对于一个确定的固定收益债券,有三个基本特征是投资者所关心的,它们是到期日(Maturity)、票面利率(Coupon Rate),每年付息次数和面值(Par Value,又称本金,Principle)。
到期日反映了证券的期限的长短,在到期日借方应按时向证券持有者归还证券所确定的利息和本金.票面利率又称息票率,它一般指的是年利率,票面利率和每年付息次数决定了每次付息时的付息率。
面值是指证券的票面价值,是借方在到期日或之前应该支付给证券持有者的不包含利息的金额.假设已知某固定收益证券的面值为V,息票率为r,每年付息次数为m,则每次支付利息为/Vr m。
收益率曲线与期限结构1. 引言收益率曲线是金融市场中非常重要的一项指标,它描述了不同期限债券的到期收益率之间的关系。
期限结构则是指在一定时间段内不同期限债券的到期收益率的相对水平。
研究收益率曲线与期限结构可以帮助我们更好地理解金融市场的运行机制,对投资决策和风险管理具有重要的指导意义。
2. 收益率曲线的定义与构建收益率曲线是描述在相同信用风险下、不同期限债券的到期收益率之间的关系的一种曲线。
通常情况下,债券的到期收益率与债券期限呈正相关关系,即较长期限的债券收益率较高,较短期限的债券收益率较低。
构建收益率曲线的方法主要有以下两种:2.1 静态分析法静态分析法是基于市场上已发行的债券价格来构建收益率曲线。
这种方法基于假设,即市场上所有的债券都具有相同的信用风险,不同期限债券的到期收益率只是理论上的差异。
通过观察和比较不同期限债券的市场价格,可以计算出相应的到期收益率,并绘制出收益率曲线。
2.2 动态模型法动态模型法是基于金融市场中的利率期限结构模型来构建收益率曲线。
这种方法认为,债券的到期收益率不仅受到市场流动性和供需关系的影响,还受到宏观经济变量、货币政策和资产定价模型等因素的综合影响。
通过建立数学模型,可以在给定市场条件下预测不同期限债券的到期收益率,并以此来构建收益率曲线。
3. 期限结构的解释与解读期限结构描述了在一定时间段内不同期限债券的到期收益率的相对水平。
根据期限结构理论,当预期通货膨胀率上升或市场利率上升时,较长期限债券的到期收益率会高于较短期限债券的到期收益率;当预期通货紧缩或市场利率下降时,较长期限债券的到期收益率会低于较短期限债券的到期收益率。
期限结构可以提供一些关于金融市场的重要信息:•经济周期预测:研究期限结构可以帮助预测经济周期的变化。
例如,当收益率曲线倒挂,即短期利率高于长期利率时,通常意味着经济可能面临衰退的风险。
•货币政策分析:货币政策制定者通常会密切关注期限结构,特别是长期利率。