人教版数学必修五(文)学案:1.1.1正弦定理
- 格式:doc
- 大小:154.38 KB
- 文档页数:2
1.1正弦定理、余弦定理习题课【学习目标】1.能够应用正、余弦定理进行边角关系的相互转化;2.能够利用正、余弦定理判断三角形的形状;3.能够利用正、余弦定理证明三角形中的三角恒等式【自主检测】1.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin ⎝⎛⎭⎪⎫2A -π4的值.2.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且3a =2c sin A .(1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值.【典型例题】例1.在四边形ABCD 中,已知AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.例2.设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,cos(A -C )+cos B =32,b 2=ac ,求B .【目标检测】1.在△ABC 中,已知b =a sin B ,且cos B =cos C ,则△ABC 的形状是( )A .等边三角B .等腰三角形C .直角三角形D .等腰直角三角形2.根据下列条件,判断三角形解的情况,其中正确的是( )A .a =8 b =16 A =30°有两解B .b =18 c =20 B =60°有一解C.a=5 b=2 A=90°无解 D.a=30 b=25 A=120°有一解3.已知△ABC中,AB=3,AC=1,且B=30°,则△ABC的面积等于( )A.32B.34C.32或 3 D.34或324*.在△ABC中,若tan A-tan Btan A+tan B=c-bc,求角A【总结提升】1.在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;2.三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用。
学科数学年级/册高一年级必修5教材版本人教版课题名称利用正弦定理解决实际问题难点名称根据实际问题建立数学模型难点分析从知识角度分析为什么难将实际的问题转化为数学模型需要理解专业术语,如仰角,俯角,和对方向角的认识,并且对题干的条件需要很强的概括能力从学生角度分析为什么难学生在根据题干中给出的条件建立模型时,难以准确给出其之间的正确关系,对于各个三角形之间交叉使用条件,有一定的难度。
难点教学方法1.在题的设计时,由浅入深,有一个循序渐进的的过程,逐渐引导学生寻找解题的思路。
2.通过小组合作交流,巩固本节的教学难点,增强学生战胜困难的信心教学环节教学过程导入知识回顾:正弦定理:)(2sinsinsin是外接圆的半径RRCcBbAa===正弦定理可以解决三角形中的问题:(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角(2)已知两角和一边,求其他角和边知识讲解(难点突破)题型一:测量距离例1:如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,求AB之间的距离。
解:由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°,∴AB=AC sin∠ACBsin B=50×2212=502(m).(利用正弦定理解决已知两角和一边,求其他角和边的问题)题型二:测量高度课堂练习(难点巩固)小试牛刀:一船以每小时15 km的速度向东航行,船在A处看到一个灯塔B在北偏东60°的方向上,行驶4 h后,船到达C处,看到这个灯塔在北偏东15°的方向上,这时船与灯塔的距离为________km.(本环节让学生独立思考,培养好的自主学习习惯,敢于挑战的品质)解:由题意知,∠BAC=30°,∠ACB=105°,∴B=45°,AC=60,由正弦定理得BCsin 30°=ACsin 45°,∴BC=302(km).小结实际问题推理演算数学模型的解实际问题的解还原说明。
高中数学必修5《1.1.1 正弦定理》教学设计1000字【教学设计】【教学目标】1. 理解正弦定理的概念,掌握求解三角形边长的方法。
2. 学会运用正弦定理求解实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
【教学内容】《数学必修5》第1章第1节,“正弦定理”(1.1.1)。
【教学过程】一、导入1. 引导学生思考:“三角形的边有什么特点?”2. 让学生回忆一下高中数学所学的定理,比如勾股定理和角平分线定理。
3. 引入正弦定理的概念,让学生对正弦定理有个初步的了解。
二、知识讲授1. 讲解正弦定理的概念及其公式。
2. 分别对三角形中的三角函数进行讲解,让学生对它们的定义有一个清晰的认识。
3. 通过图示让学生知道在不同情况下如何使用正弦定理解决问题。
4. 给学生提供几个具体例子,让他们练习运用正弦定理解决实际问题。
三、练习1. 让学生自主完成课本上的练习题,巩固所学知识。
2. 可以组织学生进行小组竞赛,比赛项目为用正弦定理解决实际问题,以此提高学生的兴趣和参与度。
四、复习与总结1. 以课堂小测验的形式检查学生对所学知识的掌握情况。
2. 对所学知识进行概括性总结,让学生对正弦定理的应用有更全面的了解。
【教学重点】1. 正确掌握正弦定理的概念和公式。
2. 熟练掌握正弦定理的运用方法。
【教学难点】1. 正弦定理的应用在实际问题中的具体运用。
2. 正确判断在不同情况下使用正弦定理的方法。
【教学方法】1. 讲解法:通过讲解,让学生明白正弦定理的概念和公式。
2. 案例法:通过实例让学生知道如何使用正弦定理解决问题。
3. 组织竞赛法:通过小组竞赛,让学生更加积极主动地参与课堂活动。
【学情分析】学生学习高中数学是从基础数学知识逐步深入的,正弦定理是高中数学重点内容之一,更为复杂的三角函数内容的基础。
学习正弦定理需要有良好的基础数学知识,同时也需要良好的逻辑思维能力,因此需要从基础知识入手,渐进进行教学。
【教学建议】1. 为了保证课堂效果,教师应该采用多样化的教学法,如讲解法、案例法、练习法等。
§1.1.1 正弦定理 班级 姓名 学号学习目标1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c b C B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin c C=.试试:(1)在ABC ∆中,一定成立的等式是( ).A .sin sin a A bB = B .cos cos a A b B =C . sin sin a B b A =D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)化边为角;(2)化角为边.(3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=;sin C = .(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆==中,求和.变式:在60,1,,ABC b B c a A C ∆===中,求和.三、总结提升※ 学习小结1. 正弦定理:sin sin a b A B =sin c C= 2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.3.应用正弦定理解三角形:①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 a b =2c R ==,其中2R 为外接圆直径.1. 在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,asin sin sin a b c A B C++++= .1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
第一章解三角形 1.1.1 正弦定理(第一课时)【教学目标】:1.了解正弦定理的推导过程,掌握正弦定及其变形2.能初步用正弦定理解三角形,并能判断三角形的形状.(第一种类型)【新课导入】工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【预习收获】1.正弦定理定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A =b sin B=______.2.解三角形一般地,把三角形的三个角和它们的______叫做三角形的元素.已知三角形的几个元素求__________的过程叫做解三角形.【问题解决】对定理的证明,课本给出了锐角三角形的情况.对于钝角三角形,应如何证明?(引导学生证明钝角三角形的情况,并总结归纳正弦定理的适应范围)【几何意义】在Rt△ABC中,若C=90°,你能借助所学知识导出asin A的具体值吗?在锐角三角形中这个结论成立吗?钝角三角形中呢?【探究结论】设任意△ABC的外接圆的半径为R,都有a sin A =bsin B=csin C=2R.【定理变形】1.正弦定理(1)定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A=bsin B=______.(2)变形:设△ABC的外接圆的半径为R,则有a sin A =bsin B=csin C=_____.①a:b:c=sin A:_____:sin C .②ab=sin Asin B,ac=sin Asin C,bc=______.③asin A=bsin B=csin C=a+b+csin A+sin B+sin C.④a=2R sin A,b=2R sin B,c=________.【例题讲解】类型一已知两角及一边解三角形[例1] 在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.【探究拓展】[例2] 在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知A:B:C=1:2:3,则a:b:c=________.【智能训练】今天的概念你清楚了吗?1.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它的对角的正弦的比是定值;④在△ABC中,sin A:sin B:sin C=a:b:c.其中正确的个数是( )A.1 B.2 C.3 D.4结合初中的概念,你的基础牢固吗?2.在△ABC中,sin A=sin C,则△ABC是( )A.直角三角形 B.等腰三角形C.锐角三角形 D.钝角三角形三角形中最重要的定理是什么?3.在△ABC中,sin2A+sin2B=sin2C,则C=________. 今天的知识你可以参加高考了吗?4.(2012·广东卷)在△ABC中,若A=60°,B=45°,BC=32,则AC=( )A.4 3 B.2 3C. 3D.3 2你知道如何判断最小边吗?5.在△ABC中,A=60°,B=45°,c=1,求此三角形的最小边.【探究发现】可以实际应用了吗?解决开头提出的问题:工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【课后作业】1.课本P4.1、(1)(2)2.课本 P10 1、(1)(2)3.配套课时作业1.1.1正选定理(一)精美句子1、善思则能“从无字句处读书”。
专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。
1.1。
1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程:一、复习引入:1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?2.在ABC ∆中,角A 、B 、C 的正弦对边分别是c b a ,,,你能发现它们之间有什么关系吗? 结论★: 。
二、讲授新课:探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理: sin A =c a sin B =c bsin C =1 即c =sin sin sin a b c A B C==. 探究二:能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =。
同理,sin sin a cA C=(思考如何作高?),从而sin sin sin a b cA B C==。
探究三:你能用其他方法证明吗?1. 证明一:(等积法)在任意斜△ABC 当中S △ABC =111sin sin sin 222ab C ac B bc A ==。
两边同除以12abc 即得:sin a A =sin bB =sin c C。
2.证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===, 同理sin bB=2R ,sin c C =2R 。
3.证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…。
.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R[理解定理] 1公式的变形:C R c B R b A R a sin 2,sin 2,sin 2)1(===C B A c b a sin :sin :sin ::)3(=,2sin ,2sin ,2sin )2(Rc C R b B R a A ===Bb Cc C c A a B b A a sin sin ,sin sin ,sin sin )4(===2.正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
1.1.1 正弦定理学习目标1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法.2.会运用正弦定理与三角形内角和定理解决解三角形的两类基本问题.3.从已有的几何知识出发,探究在任意三角形中,边与其对角的关系.4.通过观察、推导、比较,经历由特殊到一般的思维过程归纳出正弦定理.合作学习一、设计问题,创设情境问题1:在Rt△ABC中,角C为直角,我们知道sin A=,sin B=,sin C=1=.这三个式子中都含有哪个边长?问题2:那么通过这三个式子,边长c有几种表示方法?c=此关系式能不能推广到任意三角形?二、信息交流,揭示规律同学们猜想:在任意的△ABC中,各边和它所对角的正弦的比相等,即.通过实验后,猜想成立,即有下面的结论:在任意的△ABC中,各边和它所对角的正弦的比相等,即.问题3:正弦定理如何表述?问题4:观察正弦定理,我们可以解决什么问题?三、运用规律,解决问题【例1】在△ABC中,已知A=32.0°,B=81.8°,a=42.9cm,解三角形(边长精确到0.1cm).【例2】在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形(角度精确到1°,边长精确到1cm).四、变式训练,深化提高【例3】已知在△ABC中,c=10,A=45°,C=30°,求a,b和B.【例4】在△ABC中,c=,A=45°,a=2,求b和B,C.五、限时训练(一)选择题1.在△ABC中,a=10,B=60°,C=45°,则c等于()A.10+B.10(-1)C.+1D.102.在△ABC中,若,则B的值为()A.30°B.45°C.60°D.90°3.已知△ABC的面积为,且b=2,c=,则∠A等于()A.30°B.30°或150°C.60°D.60°或120°4.△ABC中,A,B的对边分别为a,b,且A=60°,a=,b=4,那么满足条件的△ABC()A.有一个解B.有两个解C.无解D.不能确定5.在△ABC中,已知a=x,b=2,B=60°,如果△ABC有两组解,则x的取值范围是()A.x>2B.x<2C.2<x<D.2<x≤(二)填空题6.在△ABC中,若A∶B∶C=1∶2∶3,则a∶b∶c=.7.在△ABC中,a=5,B=135°,C=15°,则此三角形的最大边长为,外接圆半径为.8.在△ABC中,A=60°,B=45°,a+b=12,则a=;b=.(三)解答题9.在△ABC中,已知AB=10,A=45°,在BC边的长分别为20,,5的情况下,求相应的角C.10.在△ABC中,b=,B=60°,c=1,求a和A,C.六、反思小结,观点提炼通过本节课的研讨,请大家谈谈自己的体会.(1)在本节课中,学习了哪些知识?(2)包含了哪些数学思想和数学方法?参考答案一、设计问题,创设情境问题1:都含有边长c.问题2:二、信息交流,揭示规律问题3:在一个三角形中,各边和它所对角的正弦的比相等.问题4:①已知任意两个角和一边,可以求出另一角和另外两边.②已知两边和其中一边的对角,可以求出另一边和另外两角.三、运用规律,解决问题【例1】解:根据三角形内角和定理,C=180°-(A+B)=180°-(32.0°+81.8°)=66.2°根据正弦定理,b=≈80.1(cm);根据正弦定理,c=≈74.1(cm).【例2】解:根据正弦定理,sin B=≈0.8999.因为0°<B<180°,所以B≈64°,或B≈116°.(1)当B≈64°时,C=180°-(A+B)≈180°-(40°+64°)=76°,c=≈30(cm);(2)当B≈116°时,C=180°-(A+B)≈180°-(40°+116°)=24°,c=≈13(cm).四、变式训练,深化提高【例3】解:∵c=10,A=45°,C=30°,∴B=180°-(A+C)=105°.由,得a==10;由,得b==20sin75°=20×=5+5.【例4】解:∵,∴sin C=.∵a<c,∴C=60°或120°.∴当C=60°时,B=75°,b=+1;∴当C=120°时,B=15°,b=-1.∴b=+1,B=75°,C=60°或b=-1,B=15°,C=120°.五、限时训练1.B2.B3.D4.C5.C6.1∶∶27.5 58.12(3-)12(-2)9.解:由正弦定理,得sin C=.(1)当BC=20时,sin C=,∵BC>AB,∴A>C,∴C=30°;(2)当BC=时,sin C=.∵AB·sin45°<BC<AB,∴C有两解,∴C=60°或120°;(3)当BC=5时,sin C=2>1,∴C不存在.10.解:∵,∴sin C=.∵b>c,B=60°,∴C<B,C为锐角,∴C=30°,A=90°,∴a==2.六、反思小结,观点提炼。
1.1.1正弦定理讲授新课[合作探究]师那么对于任意的三角形,关系式CcB b A a sin sin sin ==是否成立?(由学生讨论、分析)生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则B b A a sin sin =,同理,可得B bC c s i ns i n =.从而C cB b A a s i ns i n s i n ==.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin ==.师是否可以用其他方法证明这一等式? 生可以作△ABC 的外接圆,在△ABC 中,令BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明CcB b A a sin sin sin ==这一关系. 师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=RcB C 2sin sin ='=. ∴R Cc2sin =. 同理,可得R B bR A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式CcB b A a sin sin sin ==. 点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫. [知识拓展]师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢?生向量的数量积的定义式A ·B =|A ||B |C osθ,其中θ为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生 可以通过三角函数的诱导公式sinθ=Co s(90°-θ)进行转化. 师这一转化产生了新角90°-θ,这就为辅助向量j 的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j 垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j 垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得=+而添加垂直于的单位向量j 是关键,为了产生j 与、、CB 的数量积,而在上面向量等式的两边同取与向量j 的数量积运算,也就在情理之中了.师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.点评: (1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用. 向量法证明过程:(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C .由向量的加法原则可得=+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j j ∙=+∙)(由分配律可得j j ∙=∙+.∴Co s90°Co s(90°-C Co s(90°-A ).∴A sin C =C sin A .∴CcA a sin sin =. 另外,过点C 作与垂直的单位向量j,则j 与的夹角为90°+C ,j 与的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与的夹角为90°-C ,j与的夹角为90°-B )∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与垂直的单位向量j,则j 与的夹角为A -90°,j 与的夹角为90°-C .由=+,得j·+j·=j·, 即A ·Co s(90°-C )=C ·Co s(A -90°), ∴A sin C =C sin A . ∴CcA a sin sin = 另外,过点C 作与垂直的单位向量j,则j 与的夹角为90°+C ,j 与夹角为90°+B .同理,可得C cB b sin sin =.∴CcB b simA a sin sin ==(形式1). 综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立. 师在证明了正弦定理之后,我们来进一步学习正弦定理的应用. [教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使A =ksin A ,B =ksin B ,C =ksin C ;(2)C cB b A a sin sin sin == 等价于CcA aB bC c B b A a sin sin ,sin sin ,sin sin === (形式2). 我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题. ①已知三角形的任意两角及其中一边可以求其他边,如BAb a sin sin =.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P 4的例1就属于此类问题. ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如B baA sin sin =.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 师接下来,我们通过例题评析来进一步体会与总结. [例题剖析]【例1】在△ABC 中,已知A =32.0°,B =81.8°,A =42.9 c m,解三角形.分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B ,若求边C ,再利用正弦定理即可.解:根据三角形内角和定理, C =180°-(A +B )=180°-(32.0°+81.8°)=66.2°; 根据正弦定理,b =ooA B a 0.32sin 8.81sin 9.42sin sin =≈80.1(c m); c =osin32.02.66sin 9.42sin sin oA C a =≈74.1(c m). [方法引导](1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.(2)对于解三角形中的复杂运算可使用计算器.【例2】在△ABC 中,已知A =20c m ,B =28c m ,A =40°,解三角形(角度精确到1°,边长精确到1 c m ).分析:此例题属于B sin A <a <b 的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性.解:根据正弦定理,sin B =2040sin 28sin oa Ab =≈0.899 9.因为0°<B <180°,所以B ≈64°或B ≈116°.(1)当B ≈64°时,C =180°-(A +B )=180°-(40°+64°)=76°,C =ooA C a 40sin 76sin 20sin sin =≈30(c m). (2)当B ≈116°时,C =180°-(A +B )=180°-(40°+116°)=24°,C =ooA C a 40sin 24sin 20sin sin =≈13(c m). [方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.变式一:在△ABC 中,已知A =60,B =50,A =38°,求B (精确到1°)和C (保留两个有效数字).分析:此题属于A ≥B 这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B 为钝角的情形.解:已知B <A ,所以B <A ,因此B 也是锐角.∵sin B =6038sin 50sin oa Ab =≈0.513 1,∴B ≈31°.∴C =180°-(A +B )=180°-(38°+31°)=111°.∴C =ooA C a 38sin 111sin 60sin sin =≈91. [方法引导]同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B 所受限制而求出角B 的两个解,进而求出边C 的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解.变式二:在△ABC 中,已知a =28,b =20,A =120°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A 为钝角且A >B 的情形,有一解,可应用正弦定理求解角B 后,利用三角形内角和为180°排除角B 为钝角的情形.解:∵sin B =28120sin 20sin oa Ab =≈0.618 6, ∴B ≈38°或B ≈142°(舍去).∴C =180°-(A +B )=22°. ∴ C =︒︒=120sin 22sin 28sin sin A C a ≈12. [方法引导](1)此题要求学生注意考虑问题的全面性,对于角B 为钝角的排除也可以结合三角形小角对小边性质而得到.(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形.(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解. 师为巩固本节我们所学内容,接下来进行课堂练习:1.在△ABC 中(结果保留两个有效数字), (1)已知C =3,A =45°,B =60°,求B ;(2)已知B =12,A =30°,B =120°,求A .解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,CcB b sin sin =,∴B =︒︒=75sin 60sin 3sin sin C B c ≈1.6.(2)∵BbA a sin sin =,∴A =︒︒=120sin 30sin 12sin sin B A b ≈6.9. 点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的学生进行在黑板上解答,以增强其自信心. 2.根据下列条件解三角形(角度精确到1°,边长精确到1): (1)B =11,A =20,B =30°;(2)A =28,B =20,A =45°; (3)C =54,B =39,C =115°;(4)A =20,B =28,A =120°.解: (1) ∵B bA a sin sin =.∴sin A =1130sin 20sin ︒=b B a ≈0.909 1.∴A 1≈65°,A 2≈115°.当A 1≈65°时,C 1=180°-(B +A 1)=180°-(30°+65°)=85°,∴C 1=︒︒=30sin 85sin 11sin sin sin 1B C b ≈22.当A 2≈115°时,C 2=180°-(B +A 2)=180°-(30°+115°)=35°,∴C 2=︒︒=30sin 35sin 11sin sin 2B C b ≈13.(2)∵sin B =2845sin 20sin ︒=a A b ≈0.505 1,∴B 1≈30°,B 2≈150°.由于A +B 2=45°+150°>180°,故B 2≈150°应舍去(或者由B <A 知B <A ,故B 应为锐角). ∴C =180°-(45°+30°)=105°.∴C =︒︒=45sin 105sin 28sin sin A C a ≈38.(3)∵CcB b sin sin =, ∴sin B =54115sin 39sin ︒=c C b ≈0.654 6.∴B 1≈41°,B 2≈139°.由于B <C ,故B <C ,∴B 2≈139°应舍去. ∴当B =41°时,A =180°-(41°+115°)=24°,A =︒︒=115sin 24sin 54sin sin C A c ≈24. (4) sin B =20120sin 28sin ︒=a A b =1.212>1. ∴本题无解.点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍. 课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形. 布置作业(一)课本第10页习题1.1 第1、2题. (二)预习内容:课本P 5~P 8余弦定理 [预习提纲](1)复习余弦定理证明中所涉及的有关向量知识.(2)余弦定理如何与向量产生联系.(3)利用余弦定理能解决哪些有关三角形问题.板书设计正弦定理1.正弦定理:2.证明方法:3.利用正弦定理,能够解决两类问题:CcB b A a sin sin sin == (1)平面几何法 (1)已知两角和一边 (2)向量法 (2)已知两边和其中一边的对角。
1.1.1 正弦定理习题课【学习目标】会运用正弦定理与三角形内角和定理解斜三角形。
【自主学习与检测】1.在△ABC 中,已知a =52,c =10,A =30°,解此三角形。
2.在△ABC 中,a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,b =2,c =1,B =45°,则a =( ) A.6±22 B.6-22 C.6+24 D.6+22【典型例题】例1.在△ABC 中,,cos cos abB A =则△ABC 是( ) A .等腰三角形 B .等腰三角形或直角三角形 C .直角三角形D .等边三角形变式(1)已知在△ABC 中,,sin sin sin ,sin sin 222C B A C c B b +==试判断三角形的形状。
变式(2)在△ABC 中,已知a 2tan B =b 2tan A ,则此三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .直角或等腰三角形例2.在△ABC 中,a =1,A =30°,C =45°,求△ABC 的面积。
并总结三角形的面积公式。
【目标检测】1*.已知△ABC 中,a =x ,b =2,∠B =45°,若三角形有两解,则x 的取值范围是( )A .x >2B .x <2C .2<x <2 2D .2<x <2 3 2.在△ABC 中,a +b =12,A =60°,B =45°,求a 。
3.在锐角△ABC 中,已知AB =4,AC =1,S △ABC =3,求AB →²AC →的值【总结提升】(1)正弦定理灵活运用,sin :sin :sin ::C B A c b a =;::sin :sin :sin c b a C B A =(2)已知三角形两边及一边对角解三角形解的个数问题; (3)三角形的面积公式==C ab s sin 21B ac sin 21A bc sin 21=的运用。
课题:1.1.1正弦定理
【学习目标】
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法。
2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
【学习重点】正弦定理的探索和证明及其基本应用。
【学习难点】已知两边和其中一边的对角解三角形时判断解的个数。
【授课类型】新授课
【教具】课件、电子白板
【学习方法】
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形
ABC中,设BC=a,AC=b,AB=c, 根可分为锐角三角形和钝角三角形两种情况:
课题:1.1.1正弦定理
课题:1.1.1正弦定理。
第一章解三角形1.1.1正弦定理教材分析与导入三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学重点发现正弦定理、用几何法和向量法证明正弦定理。
正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。
正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。
教学难点用向量法证明正弦定理。
虽然学生刚学过必修4中的平面向量的知识,但是要利用向量推导正弦定理,有一定的困难。
突破此难点的关键是引导学生通过向量的数量积把三角形的边长和内角的三角函数联系起来。
用平面向量的数量积方法证明这个定理,使学生巩固向量知识,突出了向量的工具性,是向量知识应用的范例。
教学建议正弦定理是刻画三角形边和角关系的基本定理,也是最基本的数量关系之一。
此节内容从地位上讲起到承上启下的作用:承上,可以说正弦定理是初中锐角三角函数(直角三角形内问题)的拓广与延续,是对初中相关边角关系的定性知识的定量解释,即对“在任意三角形中有大边对大角,小边对小角”这一定性知识的定量解释,即正弦定理得到这个边、角的关系准确的量化的表示,实现了边角的互化。
它是三角函数一般知识和平面向量知识在三角形中的具体应用,同时教材这样编写也体现了新课标中“体现相关内容的联系,帮助学生全面地理解和认识数学”这一指导思想;启下,正弦定理解决问题具有一定的局限性,产生了余弦定理,二者一起成为解决任意三角形问题重要定理。
1.1.1 正弦定理
【学习目标】
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;
2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
【自主学习】
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c
=,sin b
B c =,又sin 1c
C c ==,则sin sin sin a
b
c
c A B C ===
从而在直角三角形ABC 中,sin sin sin a b c
A B C ==
思考:对于任意的三角形,以上关系式是否仍然成立?给出你的证明.
(1) 当∆ABC 是锐角三角形时,
(2) 当∆ABC 是钝角三角形时,
正弦定理: 在一个三角形中,各边和它所对角的 的比相等,
即
【自主检测】
1.在B b a C A c ABC 和求中,,,30,45,1000===∆
2.在C A a c B b ABC ,,1,60,30和求中,===∆
【典型例题】
例1.C B b a A c ABC ,,2,45,60和求中,===∆
例2. 已知△ABC ,B D为B 的平分线,求证:AB ∶BC =A D∶DC
【目标检测】
1.已知∆ABC 中, sin A : sin B : sin C =2: 3 : 4 ,则a : b : c =
2.已知△ABC 中,A ∶B ∶C =1∶1∶4,则 a ∶b ∶c 等于 .
3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A B 等腰直角三角形
C 等边三角形
D 等腰三角形 4*.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)
【总结提升】(1)正弦定理的表示形式:=sin sin a b A B =sin c
C
;或sin a k A =,sin b k B =,sin c k C =(0)k >(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。
应注意可能有两解的情形。