第11章-过渡金属有机配合物催化交叉偶联反应
- 格式:ppt
- 大小:2.78 MB
- 文档页数:92
过渡金属催化氟芳烃的交叉偶联反应金属离子作为路易斯酸,能催化Aldol、Mannich、酯的水解等多种类型的反应。
因其相对质子H具有更高的化学价态,能与多个官能团配位并且在反应体系中能够被还原的特性使得路易斯酸得到越来越广泛的应用。
过渡金属催化活化C-X(Cl、Br、I、OTf)键已经研究的相当深入,并且也取得了非常好的成绩。
然而C-F键的键能远大于其它C-X键,难以活化断裂,因此该领域的研究还在起步当中。
氟因其体积小、电负性高而具有的特殊化学性质引起广大化学工作者的兴趣和关注。
氟对人类有着积极重要的意义,它存在于许多特定的物质当中,比如多氟烯烃、氟利昂、光化纤维、医药、农用化学品等,这些化学品都具有非常独特的性质,是其它物质难以企及的。
C-F键的形成与C-F键的选择性活化是当今合成含氟有机化合物的两大主题。
C-F键的形成研究已经取得了重要的进展,通过设计合成优异的氟化试剂制备具有区域选择性、立体选择性和多官能团化的合成砌块。
而C-F键的活化研究还处于初步阶段,它包含脂肪族氟化合物的选择性脱氟、芳香族氟化合物的交叉偶联和多氟或全氟化合物的选择性脱氟。
C-F键的活化研究已成为有机氟化学研究的热点,然而C-F键活化引起的多氟烯烃的交叉偶联反应的研究报道并不多见。
过渡金属离子的高价态和良好的配位能力,能很好的插入到C-X键中而活化C-X键。
本文主要介绍Ni和Pt以及其它过渡金属催化的C-F键活化而引起的分子间交叉偶联反应。
镍催化的多氟烯烃的交叉偶联反应1973年,Tamao 和 Kumada报道了Grignard 试剂在Ni的磷配体催化下与芳基和炔基氟化合物的偶联反应(Scheme 1),这也是sp2-C-F键断裂形成C-C键的首次报道,但他们并没有进一步去优化条件提高产物的产率[1]。
Scheme 11977年Fahey 和Mahan 报道了几例三乙基磷镍(0)配合物对芳基、烯基以及酰基卤代物的氧化加成。
偶联反应及举例资料偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
在偶联反应中有一类重要的反应,RM(R=有机片段,M=主基团中心)与R'某的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。
[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2022年度诺贝尔化学奖。
[2]偶联反应大体可分为两种类型:交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯(PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。
自身偶联反应:相同的两个片段形成一个分子,如:碘苯(PhI)自身形成联苯(Ph-Ph)。
反应机理[编辑]偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。
第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。
最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。
不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。
中间体通常不倾向发生β-氢消除反应。
[3]在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。
[4]还原消除的速率高低如下:乙烯基-乙烯基>苯基-苯基>炔基-炔基>烷基-烷基不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基>乙烯基-烷基>烷基-烷基。
另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。
[5]§催化剂[编辑]偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。
钯催化剂当中常用的如:四(三苯基膦)钯等。
钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。