流体力学第一章 演示文稿
- 格式:ppt
- 大小:1.11 MB
- 文档页数:30
第一章 数学基础知识§1.1 场论一.物理量场: 充满物理量的空间。
充满流体的空间称为流场。
流体的物理量ρ、v 、p …构成密度、速度、压力场…, 如ρ、p 、浓度c 等构成标量场, 速度V 等构成矢量场,因此流场是复合参数场。
由时间t 、空间点及其对应的物理量确定的函数为场函数。
标量场、矢量场函数: φ=φ(r ,t)=φ(x,y,z,t)a =a (r ,t)=a (x,y,z,t) 定常场: 场函数与时间t 无关, 反之为非定常场φ=φ(r )=φ(x,y,z) a =a (r )=a (x,y,z) 0=∂∂t φ 0=∂∂ta均匀场: 场函数为常数, 反之为非均匀场。
流体的连续性模型认为,流场中各空间点充满流体,且各点、各物理参数存在连续的各阶导数。
二.Green-Gauss 公式(对于连续场)⎰⎰⎰⎰⎰⋅=∂∂+∂∂+∂∂A zy x dA d za y a x a a n ττ)(二维时 dL dA ya x a L yA x ⎰⎰⎰∙=∂∂+∂∂a n )(推广的Green-Gauss 公式有⎰⎰⎰⎰⎰=∂∂+∂∂+∂∂A dA d zy x φτφφφτn k j i )(⎰⎰⎰⎰⎰⨯=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂A x y z x y z dA d ya x a x az a z a y a a n k j i ττ)()()(三 梯度、散度与旋度1) 方向导数: 物理量φ场在M 点上沿L 方向的方向导数为L ∂∂φ=')()'(lim 0'MM M M MM φφ-→=)^cos(x L x ∂∂φ+)^cos(y L y ∂∂φ+)^cos(z L z ∂∂φ=(x ∂∂φI +y∂∂φj +z ∂∂φk )·l式中l 为沿L 方向的单位矢量。
2) 标量场的梯度grad φ: 标量场φ的梯度为上式括号中的矢量微分算式,为确定的矢量。