第一章 流体力学基础(10)
- 格式:ppt
- 大小:14.14 MB
- 文档页数:5
第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。
计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。
流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。
1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。
若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。
由上式可知,密度的单位是kg/m 3。
对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。
各种流体的具体密度值可查阅相关文献。
流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。
(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。
流体的重度单位为3N /m 。
(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。
(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。
流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。
凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。
例如,溶化的沥青、糖浆等流体均属于非牛顿流体。
流体力学基础第一节空气在管道中流动的基本规律一、流体力学基础第一节空气在管道中流动的基本规律第一章流体力学基础第一节空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的基础。
本章中心内容是叙述工程流体力学基本知识,主要是空气的物理性质及运动规律。
一、流体及其空气的物理性质(一) 流体通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15厘米的水滴中包含着3×107个水分子,在体积为1毫米3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
食品工程原理复习第一章 流体力学基础1.单元操作与三传理论的概念及关系。
不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥 等。
这些基本的物理过程称为 单元操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。
凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。
热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。
凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。
质量传递 : 两相间物质的传递过程即为质量传递。
凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究。
单元操作与三传的关系“三传理论”是单元操作的理论基础,单元操作是“三传理论”的具体应用。
同时,“三传理论”和单元操作也是食品工程技术的理论和实践基础2.粘度的概念及牛顿内摩擦(粘性)定律。
牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。
μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈大。
所以称为粘滞系数或动力粘度,简称为粘度3.理想流体的概念及意义。
理想流体的粘度为零,不存在内摩擦力。
理想流体的假设,为工程研究带来方便。
4.热力体系:指某一由周围边界所限定的空间内的所有物质。
边界可以是真实的,也可以是虚拟的。
边界所限定空间的外部称为外界。
5.稳定流动:各截面上流体的有关参数(如流速、物性、压强)仅随位置而变化,不随时间而变。
6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。
7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。
8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
流体力学基础知识(总15页) -本页仅作为预览文档封面,使用时请删除本页-第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,k g;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103k g/m32Ρ水银=×103k g/m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ=VG——流体的重量,N;V——流体的体积,m3。
∵G=m g∴γ=ρg常温,一个标准大气压下γ水=×103k g/m3γ水银=×103k g/m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+d u,d u为相邻流层的速度增值,设相邻流层的厚度为d y,则d u/d y叫速度梯度。
第一章流体力学基础知识本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。
然后介绍流体介质,气动力系数,矢量积分知识。
最后引入控制体,流体微团及物质导数的概念。
为流体力学及飞行器空气动力学具体知识的学习做准备。
1.1流体力学的基本任务和研究方法1.1.1流体力学的基本任务流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。
而空气动力学则是一门研究运动空气的科学。
众所周知,空气动力学是和飞机的发生,发展联系在一起的。
在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。
事实上,空气动力学研究的对象还不限于飞机。
空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。
在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。
研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。
1.1.2空气动力学的研究方法空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。
其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。
这些不同的方法不是相互排斥,而是相互补充的。
通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。
实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。