九年级数学总复习题六
- 格式:pdf
- 大小:705.95 KB
- 文档页数:10
最新九年级下册数学总复习练习试题1、若代数式有意义,则实数x的取值范围是()2、计算:(1﹣)÷=.3、若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是。
4、如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.5、某广场用同一种如图所示的地砖拼图案,第一次拼成形如图1所示的图案,第二拼成形如图2所示的图案,第三次拼成形如图3所示的图案,第四次拼成形如图4所示的图案…按照这样的规律进行下去,第n次拼成的图案共有地砖块.6、不等式组的解集为x<2,则k的取值范围为()7、某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?8、义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2C.1或D.或﹣9、已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0C.k>2,m>0 D.k<0,m<010、已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x <1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()个11、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()12、如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.13、如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B 以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()14、一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y 轴的垂线,垂足为C,则△PCO的面积为()15、一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.16、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.17、如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.18、如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()19、将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是( )A.x>-1 B.x>1C.x>-2 D.x>220、如图,在矩形ABCD中,AB=6cm,BC=3cm.点P沿边AB 从A开始向点B以1cm/s的速度移动,同时点Q沿矩形ABCD的边按A-D-C-B顺序以2cm/s的速度移动,当P、Q到达B点时都停止移动.下列图象能大致反映△QAP面积y(cm2)与移动时间x(s)之间函数关系的是()A.B.C.D.21、如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.22、如图,抛物线经过A (-1,0),B (5,0),C (0,25﹣)三点。
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
多边形与平面镶嵌一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.正十边形的每个外角等于()A.18° B.36° C.45° D.60°4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°二、填空题14.正n边形的一个外角的度数为60°,则n的值为.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.多边形与平面镶嵌参考答案与试题解析一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【专题】计算题.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.3.正十边形的每个外角等于()A.18° B.36° C.45° D.60°【考点】多边形内角与外角.【专题】常规题型.【分析】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.【解答】解:360°÷10=36°,所以,正十边形的每个外角等于36°.故选:B.【点评】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°【考点】多边形内角与外角.【专题】常规题型.【分析】先利用多边形的内角和公式(n﹣2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.【解答】解:(6﹣2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°﹣60°=120°.故选D.【点评】本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n﹣2)=360,解此方程即可求得答案.【解答】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n﹣2)=360,解得:n=4.∴这个多边形是四边形.故选A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n﹣2).6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:360÷36=10.故选C.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形【考点】平面镶嵌(密铺).【分析】根据密铺的知识,找到一个内角能整除周角360°的正多边形即可.【解答】解:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;故选:C.【点评】本题考查了平面密铺的知识,注意几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【解答】解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【点评】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能【考点】多边形内角与外角.【专题】压轴题.【分析】首先计算截取一个角后多边形的边数,然后分三种情况讨论.因为截取一个角可能会多出一个角,也可能角的个数不变,也可能少一个角,从而得出结果.【解答】解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选D.【点评】本题主要考查了多边形的内角和定理及多边形截去一个角有三种情况.11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=(180°﹣108°)÷2=36°,∵l∥BE,∴∠1=36°,故选:B.【点评】此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:(n﹣2).180° (n≥3)且n为整数.12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】平行四边形的判定.【分析】求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.【解答】解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.【点评】本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°【考点】旋转的性质;正多边形和圆.【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE 的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFE==120°,∴∠EFE′=180°﹣∠AFE=180°﹣120°=60°,∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,∴∠EFE′是旋转角,∴所转过的度数是60°.故选A.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.二、填空题14.正n边形的一个外角的度数为60°,则n的值为 6 .【考点】多边形内角与外角.【专题】探究型.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= 300°.【考点】多边形内角与外角.【专题】数形结合.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.【点评】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9 .【考点】正多边形和圆.【分析】分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.【解答】解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.【点评】此题主要考查正多边形的计算问题,属于常规题.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为 6 .【考点】平面镶嵌(密铺).【专题】应用题;压轴题.【分析】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【点评】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.【考点】多边形内角与外角.【专题】压轴题;数形结合.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15 .【考点】等腰梯形的性质;多边形内角与外角;平行四边形的性质.【专题】计算题.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为40 cm2.【考点】正多边形和圆.【专题】压轴题.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=20,四边形ABGH面积=(AH+BG)×HM=(+1)x2=10,∴正八边形的面积为:10×2+20=40(cm2).故答案为:40.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH面积是解题关键.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2.【考点】正多边形和圆.【专题】压轴题.【分析】延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.【解答】解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.【点评】本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.【考点】正多边形和圆;弧长的计算;旋转的性质.【分析】每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.【解答】解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm故答案为:4π.【点评】本题考查了正多边形和圆的、弧长的计算及旋转的性质,解题的关键是弄清正六边形的中心运动的路径.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是60 度.【考点】旋转对称图形.【分析】本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【解答】解:将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是=60度.【点评】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.。
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
最新九年级下册数学总复习练习试题数轴、相反数、绝对值、倒数、平方根、算术平方根、立方根 两个负数相比较,绝对值大的反而小。
1、在下列各数:Λ51525354.0、10049、2.0&、π1、7、11131、327、中,无理数的个数是 ( )A 、2B 、3C 、4D 、52、如图,点A ,B ,C 都是数轴上的点,点B ,C 关于点A 对称,若点A 、B 表示的数分别是2,19,则点C 表示的数为( )A .2−19B .19−2C .4−19D .19−43、估计419-的值在哪两个连续的正整数 和 之间。
4、在已知数﹣1、0、32和3中,最大的数是。
5、64的算术平方根是 ,平方根是 ,立方根是 。
6、计算:21201860tan 3202﹣)(π--﹣++︒同类项、合并同类项、去括号法则同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
因式分解1、常用的因式分解方法: (1)提取公因式法:)(c b a m mc mb ma ++=++ (2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+± (3)十字相乘法:))(()(2b x a x ab x b a x ++=+++1、若05y 3x 2=--。
则代数式6y -2x 2-6的值是 。
2、(1)先化简,再求值:(a +3)2-(a +2)(a +3),其中a =3.3、把a 2a 8a 823+-分解因式= 。
4、若1n n 4m 2m y x y x 3--和是同类项,则m+n= 。
5、如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2025的值为( )6、如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是( )A 、M="mn"B 、M="n (m+1)C 、M=mn+1D 、M=m (n+1) 7、已知4b1a1=-,则=+ab7b 2a 2bab 2a ---。
专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。
北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)一、单选题 1.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .62.反比例函数6y x=-的图像大致是( )A .B .C .D .3.列车从甲地驶往乙地,行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到( )km/h .A .180B .240C .280D .3004.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣225.关于函数2y x=-,下列说法中正确的是( )A .图像位于第一、三象限B .图像与坐标轴没有交点C .图像是一条直线D .y 的值随x 的值增大而减小6.某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+B .50y x =C .50y x=D .50=x y 7.如图,一次函数(y kx b k =+、b 为常数,0)k ≠与反比例函数4y x=的图象交于A (1,m ),B (n ,2)两点,与坐标轴分别交于M ,N 两点.则△AOB 的面积为( )A .3B .6C .8D .128.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( ) A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)9.对于反比例函数y =﹣5x,下列说法错误的是( )A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大 10.若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( ) A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)11.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )A .甲B .乙C .丙D .丁12.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题13.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.14.已知点(),A m n 在双曲线k y x =上,点(),B m n -在直线23y x k =-上,则21n m+的值为______.15.如图所示,矩形ABCD 顶点A 、D 在y 轴上,顶点C 在第一象限,x 轴为该矩形的一条对称轴,且矩形ABCD 的面积为6.若反比例函数ky x=的图象经过点C ,则k 的值为_________.16.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.17.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,//AB x 轴,//BC y 轴,反比例函数2y x =与2y x=-的图像均与正方形ABCD 的边相交,则图中阴影部分的面积之和是________.18.如图,若反比例函数1ky x=与一次函数2y ax b =+交于A 、B 两点,当12y y <时,则x 的取值范围是_________.19.如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB的面积为3,则k =_______.20.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.三、解答题21.如图,在平面直角坐标系中,反比例函数y kx=(x >0)的图象经过点A (2,6),将点A 向右平移2个单位,再向下平移a 个单位得到点B ,点B 恰好落在反比例函数y kx=(x >0)的图象上,过A ,B 两点的直线与y 轴交于点C .(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.23.如图是反比例函数y=52mx-的图象的一支.根据图象解决下列问题:(1)求m的取值范围;(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.26.如图,一次函数1y k x b =+与反比例函数2(0)k y x x=>的图象交于(1,6)A ,(3,)B n 两点. (1)求反比例函数的解析式和n 的值; (2)根据图象直接写出不等式21k k x b x+<的x 的取值范围; (3)求AOB 的面积.27.如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.28.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象相交于(1,)A m -,B 两点.(1)求反比例函数的表达式;(2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位(0)b >,使平移后的图象与反比例函数ky x=的图象有且只有一个交点,求b 的值.29.如图,一次函数1522y x =-+的图像与反比例函数k y x=(k >0)的图像交于A ,B 两点,过点A 做x 轴的垂线,垂足为M ,△AOM 面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P,使PA+PB 的值最小,并求出其最小值和P 点坐标.参考答案1.B2.C3.B4.D5.B6.C7.A8.B9.C10.C11.C12.C 13.k <0 14.-3 15.3 16.3 17.818.10,2x x <<>-19.6 20.421.解:(1)把点(2,6)A 代入ky x =,2612k =⨯=,∴反比例函数的解析式为12y x=,将点A 向右平移2个单位,4x ∴=, 当4x =时,1234y ==, (4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m nm n =+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩, 392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.22.(1)解:点A 的坐标为(6,4),点D 为OA 的中点, ∴点D 的坐标为(3,2),点D 在反比例函数ky x=的图象上, 326k ∴=⨯=;(2)解:由题意得,点C 的横坐标为6, ∴点C 的纵坐标为:616=, 413AC ∴=-=,OAC ∴∆的面积16392=⨯⨯=.23.(1)解:由图象可知,520k m =->, 解得52m <,∴m 的取值范围为52m <. (2)解:12<b b .理由如下:∵52m <,∴430m m -<-<,由反比例函数的图象与性质可知,当0x <时,y 随着x 的增大而减小,∴12<b b .24.(1)当0≤x ≤8时,设y =k 1x +b , 将(0,20),(8,100)的坐标分别代入y =k 1x +b 得,1208100b k b =⎧⎨+=⎩ 解得k 1=10,b =20.∴当0≤x ≤8时,y =10x +20.当8<x ≤a 时,设y =2k x, 将(8,100)的坐标代入y =2k x , 得k 2=800∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x. (2)将y =20代入y =800x , 解得x =40,即a =40;(3)当y =40时,x =80040=20. ∴要想喝到不低于40℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.(1)将点A (4,3)代入y =k x,得:k =12, 则反比例函数解析式为y =12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC =4、AC =3,∴OA 2243+,∵AB ∥x 轴,且AB =OA =5, ∴点B 的坐标为(9,3);(3)∵点B 坐标为(9,3),∴OB 所在直线解析式为y =13x , 由1312y x y x ⎧=⎪⎪⎨⎪=⎪⎩可得点P 坐标为(6,2),(负值舍去), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,则点E 坐标为(6,3),∴AE =2、PE =1、PD =2,则△OAP 的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5.26.解:(1)(1,6)A 在2k y x=的图象上, 26k ∴=, ∴反比例函数的解析式是6y x=. 又∵(3,)B n 在2k y x=的图象上,623n ∴==; (2)由图像可知:当01x <<或3x >时,21k k x b x +<; (3)(1,6)A ,(3,2)B 在函数1y k x b =+的图象上,∴11632k b k b +=⎧⎨+=⎩, 解得:128k b =-⎧⎨=⎩, 则一次函数的解析式是28y x =-+,设直线28y x =-+与x 轴相交于点C ,则C 的坐标是(4,0).∴AOB AOC BOC S S S =-△△△1122A B OC y OC y =⋅-⋅ 11464222=⨯⨯-⨯⨯ 8=.27.解:(1)把(6,1)A 代入反比例函数2m y x =得: m=6,∴反比例函数的解析式为26y x=, ∵(,3)B a -点在反比例函数2m y x =图像上, ∴-3a=6,解得a=-2,∴B (-2,-3),∵一次函数y 1=kx+b 的图象经过A 和B ,∴1632k b k b =+⎧⎨-=-+⎩,解得:122k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为1122y x =-; (2)∵(6,1)A ,(2,3)B --,一次函数的解析式为1122y x =-, 令y=0,解得:x=4,即一次函数图像与x 轴交点为(4,0),∴S △AOB =()141382⨯⨯+=, 故答案为:8;(3)由图象可知:12y y >时,即一次函数图像在反比例函数图像上方,x 的取值范围是:-2<x <0或x >6.28.(1)由题意,将点(1,)A m -代入一次函数5y x =+得:154m =-+=(1,4)A -∴将点(1,4)A -代入k y x=得:41k =-,解得4k =- 则反比例函数的表达式为4y x=-; (2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位得到的一次函数的解析式为5y x b =+- 联立54y x b y x =+-⎧⎪⎨=-⎪⎩整理得:2(5)40x b x +-+=一次函数5y x b =+-的图象与反比例函数4y x=-的图象有且只有一个交点 ∴关于x 的一元二次方程2(5)40x b x +-+=只有一个实数根∴此方程的根的判别式2(5)440b ∆=--⨯=解得121,9b b ==则b 的值为1或9.29.(1)反比例函数(0)k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1,∴11 2k=,k >,2k∴=,故反比例函数的解析式为:2yx =;(2)作点A关于y轴的对称点'A,连接'A B,交y轴于点P,则PA PB+最小.由15222y xyx⎧=-+⎪⎪⎨⎪=⎪⎩,解得12xy=⎧⎨=⎩,或412xy=⎧⎪⎨=⎪⎩,()1,2A∴,14,2B⎛⎫ ⎪⎝⎭,()'1,2A∴-,最小值'A B=设直线'A B的解析式为y mx n=+,则2142m nm n-+=⎧⎪⎨+=⎪⎩,解得3101710mn⎧=-⎪⎪⎨⎪=⎪⎩,∴直线'A B的解析式为3171010y x=-+,x∴=时,1710y=,P∴点坐标为17 0,10⎛⎫ ⎪⎝⎭.。
专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2①设应涨价x元;②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;【3】定价问题(问题为定价多少元或售价为多少元)(注意:无论是涨价还是降价,公式中的符号和位置都不变)①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为 千克、销售利润为 元;(2)若将这种水果每千克降价x 元,则每天的销售量是 千克(用含x 的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?【答案】(1)销售量:260,利润:312((2(100+200x (千克);(3)张阿姨应将每千克的销售价降至5元.【解析】【分析】(1)销售量=原来销售量+下降销售量(销售量×每千克利润=总利润(据此列式即可((2)销售量=原来销售量+下降销售量(据此列式即可((2)根据销售量×每千克利润=总利润列出方程求解即可(【详解】(1)销售量(100+20×0.80.1=100+160=260(利润((100+160((6(4(0.8(=312(则每天的销售量为260千克(销售利润为312元(故答案为260(312((2)将这种水果每千克降低x 元(则每天的销售量是100+0.1x ×20=100+200x (千克)( 故答案为(100+200x (((3)设这种水果每千克降价x 元(根据题意得((6(4(x ((100+200x (=300(2x 2(3x =1=0(解得(x =0.5或x =1( 当x =0.5时(销售量是100+200×0.5=200<240(当x =1时(销售量是100+200=300>240(∵每天至少售出240千克(∴x =1(6(1=5(答(张阿姨应将每千克的销售价降至5元(【点睛】本题考查了一元二次方程的应用(第一问关键求出每千克的利润(求出总销售量(从而利润.第二问(根据售价和销售量的关系(以利润做为等量关系列方程求解(2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【答案】每件童装应降价20元.【解析】【分析】设每件童装应降价x 元,则平均每天可售出4(20)2x 件,根据总利润=每件的利润⨯销售数量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论. 【详解】解:设每件童装应降价x 元,则平均每天可售出4(20)2x 件, 依题意,得:4(40)(20)12002x x , 整理,得:2302000x x -+=,解得:110x =,220x =.要求尽快减少库存,20x ∴=.答:每件童装应降价20元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?【答案】(1)30件;(2)每件衬衫应降价10元或20元【解析】【分析】(1)根据“每件衬衫降价1元,商场平均每天可多售出2件”直接计算即可得出答案;(2)设每件衬衫应降价x 元,商场每天要获利润1200元,可列方程求解.【详解】解:(1)∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价5元,可售出20+5×2=30(件);(2)设每件衬衫应降价x 元,据题意得:(40﹣x )(20+2x )=1200,解得:x =10或x =20.答:每件衬衫应降价10元或20元.本题考查了一元二次方程的应用,准确抓住题目中的相等关系,列出方程是解题的关键.4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?【答案】每辆车需降价2万元【解析】【分析】设每辆车需降价x 万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x 表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x 的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价x 万元,则日销售量为()82840.5x x +⨯=+辆, 依题意,得:(5)(84)48x x -+=,解得:11x =,22x =,∵要尽快减少库存,∴2x =.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x 元,则商场日销售量增加 件,每件商品盈利_________元(用含x 的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)2x ,50-x (0<x≤50,x 为正整数);(2)25元.【解析】【分析】(1)根据已知条件可得:当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50x 为正整数).(2)设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+再由日盈利为:2000元,可得到一个关于x 的一元二次方程,并解之即得.(1)解:(该商品每降价1元,则商场平均每天可多售出2件(当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50 x 为正整数). 故答案为:2x ,50-x (0<x≤50 x 为正整数).(2)解:设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+化简得:22701500x x -++(商场的日盈利为2000元(227015002000x x -++=化简得:2352500x x -+=分解因式得:(10)(25)0x x --=解之得:1210,25x x ==(当每件商品的价格降低10元或25元时,商场的日盈利可达利2000元.又∵商场需要尽快减少库存(当每件商品的价格降低25元时,商场的日盈利可达利2000元.故答案为:25元.【点睛】本题考查了根据实际问题,设定未知数,列一元二次方程;一元二次方程的解法中的因式分解法(首先应把该方程化为标准形式:20ax bx c ++=,其中a ,b ,c 为常数且a≠0,再将等式左边进行因式分解.6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?【答案】(1)1748元;(2)20元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值, 再根据尽快减少库存即可确定x 的值.【详解】解:(1)当天盈利:(50-4)×(30+2×4)=1748(元).答:若某天该商品每件降价4元,当天可获利1748元.(2)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.根据题意,得:(50-x)×(30+2x)=2100,整理,得:x2-35x+300=0,解得:x1=15,x2=20,∵商城要尽快减少库存,∴x=20.答:每件商品降价20元时,商场日盈利可达到2100元.【点睛】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或算式)是解题的关键.1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?【答案】售价为60元【解析】【分析】设售价为x元,由已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,列出方程,由且尽量减少库存得出方程的解,可得答案.【详解】设售价为x元由题意得:(x-30)[500-10(x-50)]=12000解得:x1=60,x2=70∵尽量减少库存∴售价应定为60元答:售价为60元【点睛】本题主要考查一元二次方程的实际应用,由已知条件列出方程式解题的关键.2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?【答案】(1)(505)x -;(2)17【解析】【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)根据销售量×每袋利润=总利润列出方程求解即可.【详解】解:(1)505505x x -=-(袋);故答案为:(505)x -;(2)根据题意得:(1812)(505)275x x -+-=,即:2450x x --=,解得:11x =-,25x =,当1x =-时,售价是18(1)17+-=元;当5x =时,售价是18523+=元.∵计划售价大于12元但不超过22元,∴1x =-,售价是17元.答:该商场每袋口罩的售价要定为17元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x 元(x 为非负整数),每周的销量为y 件. (1)求y 与x 的函数关系式及自变量x 的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?【答案】(1)10010=-y x ,05x ≤≤;(2)每件的售价是17元或者18元.【解析】【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y 与x 的函数关系式,然后根据x 的实际意义和售价每件不能高于20元即可求出x 的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:y 与x 的函数关系式为10010=-y x∵售价每件不能高于20元∴01520x x ≥⎧⎨+≤⎩∴自变量的取值范围是05x ≤≤;(2)解:设每件涨价x 元(x 为非负整数),则每周的销量为()10010x -件,根据题意列方程()()100101510560-+-=x x ,解得:122,3x x ==,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?【答案】为了使得该商品每天盈利1980元,每件定价应为21或23元【解析】【分析】首先根据题意列出方程(利用根的判别式判断方程实数根的情况(然后再求解即可(【详解】①设每件应降价x 元(根据题意得((20(x (12((240+40x ((1980整理得(x 2-2x +1.5=0(((=4(6=(2(0(∴原方程无实数根(②设每件应该涨价y 元(根据题意得((20+y (12((240(20y ((1980解得(y 1(3(y 2(1(当y =3时(20+y =20+3(23(元((当y =1时(20+y =20+1(21(元)(答(为了使得该商品每天盈利1980元(每件定价应为21或23元(【点睛】本题考查了一元二次方程的应用(解题的关键是能够分别表示出销售量和单件的销售利润(从而列出方程求解(解答过程中注意舍去不符合题意的根(2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?【答案】每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少【答案】60元【解析】【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x -40)[400-10(x -50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【答案】(1)450千克;(2)当月销售利润为元8750时,每千克水果售价为65元或75元;(3)当该优质水果每千克售价为70元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x 元,根据题意列方程解答即可;(3)设月销售利润为y 元,每千克水果售价为x 元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.【详解】解(()1当售价为55元/千克时,每月销售量为()50010555050050450-⨯-=-=千克.()2设每千克水果售价为x 元,由题意,得()()4050010508750,x x ⎡⎤=⎦-⎣-- 即2101400400008750,x x -+-=整理,得21404875,x x -=-配方,得()27049004875,x -=-解得1265,75.x x == ∴当月销售利润为元8750时,每千克水果售价为65元或75元()3设月销售利润为y 元,每千克水果售价为x 元,由题意,得()()405001050,y x x ⎡⎤=---⎣⎦ 即210140040(00040)100,y x x x =-+-≤≤配方,得()210709000,y x =--+ 100-<,∴当70x =时,y 有最大值∴当该优质水果每千克售价为70元时,获得的月利润最大(【点睛】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算(5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?【答案】(1)580;(2)70;(3)50【解析】【分析】(1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x 元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.【详解】(1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为x 元,则(x -30)[600-10(x -40)]=10000,解得x 1=50,x 2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.【点睛】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?【答案】该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【解析】【分析】设每件服装售价提高x元,则每天可售出(200﹣10x)件,根据总利润=每件服装的利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】设每件服装售价提高x元,则每天可售出(200﹣10x)件,依题意,得:(60+x﹣50)(200﹣10x)=2240,整理,得:x2﹣10x+24=0,解得:x1=4,x2=6,∴60+x=64或66.答:该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【答案】(1)250,3250;(2)当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【解析】【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,然后求解方程即可得出结论.【详解】解:(1)280﹣(43﹣40)×10=250(件),当天销售利润是250×(43﹣30)=3250(元),故答案为:250,3250;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=3450,整理,得:x 2﹣98x +2385=0,解得:x 1=53,x 2=45.答:当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【点睛】本题主要考查一元二次方程的应用,解此题的关键在于根据题意设出未知数,列出方程进行求解.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【解析】【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得: 55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?【答案】(1)302100=-+y x ;(2)52元.【解析】【分析】(1)根据销售量y 件=原销售量300件+降价(60-x )元后增加的销售量解答即可;(2)根据利润=每件利润×销售量即得关于x 的方程,解方程即可求出x ,检验后即得结果.【详解】解:(1)由题意得:()3003060302100y x x =+-=-+;(2)由题意,得()()403021006480x x --+=解得:1252,58x x ==,∵要尽快减少库存,∴每件售价应为52元.答:当每件售价定为52元时,该商店每天的销售利润为6480元.【点睛】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?【答案】(1)y=−5x+190;(2)每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【解析】【分析】(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意可得出y与x的关系式;(2)根据“总利润=每袋利润×日均销售量”列方程求解可得出答案.【详解】解:(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意得y=100−5(x−18)=−5x+190,即y=−5x+190;(2)设每袋售价定为x元时,商店销售该款口罩所得的日均毛利润为720元,根据题意可得:(x−12)(−5x+190)=720,解得:x1=20,x2=30,∵该款口罩的每袋售价不得高于22元,∴x=30舍去,∴x=20,答:每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【点睛】本题主要考查一次函数的实际应用,一元二次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程.4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?【答案】(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【解析】【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x -40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x -40)(-2x+200)=-2(x -70)2+1800,即可求解.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(40,120)、(60,80)代入一次函数表达式得:401206080k b k b +=⎧⎨+=⎩ 解得2200k b =-⎧⎨=⎩, 所以关系式为y=-2x+200;(2)由题意得:(x -40)(-2x+200)=1000解得x 1=50,x 2=90;所以当x=50时,销量为:100件;当x=90时,销量为20件;(3)由题意可得利润W =(x -40)(-2x+200)=-2(x -70)2+1800,∵-2<0,故当x <70时,w 随x 的增大而增大,而x≤65,∴当x=65时,w 有最大值,此时,w=1750,故销售单价定为65元时,该超市每天的利润最大,最大利润1750元.【点睛】考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y (台)和销售单价x (万元)对应的点(x ,y )在函数y =kx + b 的图象上,如图:(1)求y 与x 的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多。
2021中考数学复习专题【实际问题与一元二次方程】复习专练1.某社区“百果园”水果店一直销售的是沙漠蜜瓜,1月份新引进一种金美人蜜瓜,其中金美人蜜瓜的销售单价是沙漠蜜瓜的倍,1月份,沙漠蜜瓜和金美人蜜瓜总计销售400kg,金美人蜜瓜的销售额为8640元,沙漠蜜瓜的销售额为4320元.(1)求金美人蜜瓜,沙漠蜜瓜的销售单价各为多少;(2)受疫情影响,水果销量急剧下降,于是百果园在4月推出“心享会员”活动,充值金额后不仅返还现金券,所有水果还可享受降价a%的折扣,非心享会员则需按原价购买,就金美人蜜瓜而言,4月销量比1月销量增加了a%,其中遇过心享会员购买的销量占4月金美人蜜瓜总销量的,不计会员充值费用以及返还的现金券,4月金美人蜜瓜的销售总额比1月金美人蜜瓜的销售总额提高了a%,求a的值.2.水蜜桃,因其鲜嫩多汁,香甜可口深受广大市民喜爱.近期是水蜜桃大量上市的日子,某水果店以12元每千克购进水蜜桃100千克进行销售.若在运输过程中质量损耗10%,其他费用忽略不计.(1)问每千克水蜜桃售价至少定为多少元,才能使销售完后的利润率不低于20%?(2)因水蜜桃销售情况良好,很快一抢而空,水果店本周又购进了第二批水蜜桃400千克,第二批水蜜桃的购进价格比第一批上涨了a%,由于天气原因,第二批水蜜桃在运输过程中质量损耗提高到a%,所以水果商决定提高售价,比第一批的最低售价提高a元,这样,第二批水蜜桃销售完后比第一批水蜜桃多赚1480元,求a的值.3.为了满足师生的阅读需求,某校图书馆藏书总量由2017年5万册增加到2019年7.2万册.(1)求该校图书馆这两年藏书总量的年均增长率;(2)经统计知:在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书总量的年均增长率,2019年中外古典名著册数占藏书总量的10%,而在2017年中外古典名著册数仅占当年藏书总量的m%,请求出m的值.4.某小区物业一直用洗涤剂和消毒水对小区进行清洁消毒,已知1桶洗涤剂和4桶消毒水的价格为150元,2桶洗涤剂和2桶消毒水的价格为140元,该小区原来一周会消耗2桶洗涤剂和4桶消毒水.(1)求1桶洗涤剂和1桶消毒水的售价各是多少元?(2)新冠疫情期间物业加大了小区清洁消毒力度,现在该小区每周消耗洗涤剂的数量在原来一周的基础上增加了2m%,每周消耗的消毒水数量比原来一周消耗的多桶.疫情期间洗涤剂价格上涨了m%,因异地购买每桶还需另付邮费5元;每桶消毒水的价格上涨了50%,也因异地购买每桶还需另付邮费10元,现在该小区疫情期间每周购买洗涤剂和消毒水的费用(含邮费)比原来每周费用的4倍还少m元,求m的值.5.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?6.“过雨荷花满院香,沉李浮瓜冰雪凉”,炎热的夏季正是各种水果大量上市的季节,香果园大型水果超市的江安李子和山东烟台的红富士苹果很受消费者的欢迎,苹果售价24元/千克,李子售价16元/千克.(1)若第一周苹果的平均销量比李子的平均销量多200千克,且这两种水果的总销售额为12800元,则第一周销售苹果多少千克?(2)该水果超市第一周按照(1)中苹果和李子的销量销售这两种水果,并决定第二周继续销售这两种水果,第二周苹果售价降低了a%,销量比第一周增加了a%,李子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了a%,求a的值.7.为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,体育局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了340名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是,并补全频数分布直方图;(2)2015年全市中小学生约18万人,按此调查,可以估计2015年全市中小学生每天锻炼超过1h的约有万人;(3)在(2)的条件下,如果计划2017年全市中小学生每天锻炼未超过1h的人数减少到8.64万人,求2015年至2017年锻炼未超过1h人数的年平均降低的百分率.8.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.9.某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.10.“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka 公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.参考答案1.解:(1)设沙漠蜜瓜的销售单价为x元,则金美人蜜瓜的销售单价为x元,依题意,得:+=400,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x=36.答:金美人蜜瓜的销售单价为36元,沙漠蜜瓜的销售单价为27元.(2)1月份金美人蜜瓜的销售数量为8640÷36=240(千克).依题意,得:36(1﹣a%)××240(1+a%)+36×(1﹣)×240(1+a%)=8640(1+a%),整理,得:a2﹣20a=0,解得:a1=20,a2=0(不合题意,舍去).答:a的值为20.2.解:(1)设每千克水蜜桃售价为x元,依题意,得:100×(1﹣10%)x﹣12×100≥12×100×20%,解得:x≥16.答:每千克水蜜桃售价至少定为16元,才能使销售完后的利润率不低于20%.(2)依题意,得:(16+a)×400(1﹣a%)﹣12(1+a%)×400=12×100×20%+1480,整理,得:a2﹣80a+1200=0,解得:a1=20,a2=60,又∵a%>10%,∴a>40,∴a=60.答:a的值为60.3.解:(1)设该校图书馆藏书总量从2017年至2019年的年平均增长率为x,由题意得:5(1+x)2=7.2,解得:x1=0.2,x2=﹣2.2(舍去),∴x=0.2=20%,答:该校图书馆这两年藏书总量的年均增长率为20%.(2)由题意知:(7.2﹣5)×20%+5×m%=7.2×10%,解得:m=5.6.4.解:(1)设1桶洗涤剂的售价为x元,1桶消毒水的售价为y元,依题意,得:,解得:.答:1桶洗涤剂的售价为元,1桶消毒水的售价为元.(2)依题意,得:[(1+m%)+5]×2(1+2m%)+[(1+50%)+10]×(4+)=4×(×2+×4)﹣m,整理,得:13m2+6600﹣357500=0,解得:m1=,m2=(不合题意,舍去).答:m的值为.5.解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.6.解:(1)设第一周李子销售量为x千克.则苹果的平均销量为y千克,根据题意得:,解得:,答:第一周销售苹果400千克;(2)根据题意得:24(1﹣a%)×400(1+a%)+16×200(1+a%)=12800(1+a%),∴a1=60,a2=0(舍去).答:a的值为60.7.解:(1)∵随机调查了340名学生,∴锻炼未超过1h的中小学生有340×=255人,又∵不喜欢的人数和其他的人数分别是120和20,∴“没时间”的人数为255﹣120﹣20=115人,频数分布直方图如图所示:(2)根据扇形统计图知道:每天锻炼超过1h的百分比为18×=4.5万人.故估计2015年全市中小学生每天锻炼超过1h的约有4.5万人;(3)设2015年至2017年锻炼未超过1h人数的年平均降低的百分率为x.由题意得:18×0.75(1﹣x)2=8.64,解得x=0.2,x=1.8(舍去).答:2015年至2017年锻炼未超过1h人数的年平均降低的百分率为20%.故答案为:115;4.5.8.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.9.解:(1)设第一次购进甲种水果x千克,购进乙种水果y千克,依题意,得:,解得:.答:第一次购进甲种水果200千克,购进乙种水果150千克.(2)依题意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,整理,得:0.4m2+40m﹣690=0,解得:m1=15,m2=﹣115(不合题意,舍去).答:m的值为15.10.解:(1)设该公司计划在线下销售量为x万件,则3000﹣x≥25%x解得:x≤2400∴该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣25m=0解得:m1=0(不合题意,舍去),m2=25∴m的值为25.。
专题复习(六) 几何综合题1.(2016·某某)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形. (1)如图1,四边形ABCD 中,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA =PB ,PC =PD ,∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD. ∵E 、H 分别是AB 、AD 的中点, ∴EH =12BD ,EH ∥BD.∵F 、G 分别是BC 、CD 的中点, ∴FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD,∴∠APB +∠APD=∠CPD+∠APD,即∠BPD=∠APC. 又∵PA=PB ,PC =PD ,∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点, ∴EF =12AC ,FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形, ∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时,如图3,AC与BD交于点O,BD与EF,AP分别交于点M,Q,中点四边形EFGH是正方形.理由如下:由(2)知:△APC≌△BPD,∴∠PAC=∠PBD.又∵∠AQO=∠BQP,∴∠AOQ=∠APB=90°.又∵EF∥AC,∴∠OMF=∠AOQ=90°.又∵EH∥BD,∴∠HEF=∠OMF=90°.又∵四边形EFGH是菱形,∴中点四边形EFGH是正方形.2.(2016·某某)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数;(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=23CM+233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED,∴AC=BC,CD=CE. ∵∠CAB=∠CBA=∠C DE=∠CED,∴∠ACB=∠DCE.∴∠ACD=∠BCE.∴△ACD≌△BCE(SAS).∴AD=BE.②由①得△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE , ∴∠DCM =12∠DCE=60°,DM =EM.在Rt △CDM 中,DM =CM·tan ∠DCM =CM·tan 60°=3CM ,∴DE =23CM. 由(1),得∠ADC =∠BEC=150°,AD =BE , ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中,BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD ,∴AE =23CM +233BN.3.(2016·东营)如图1,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长DB 交CF 于点H ,交AF 于点N. ①求证:BD⊥CF;②当AB =2,AD =32时,求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC ,∠BAD =∠CAF=θ,AD =AF , ∴△ABD ≌△ACF(SAS ).∴BD =CF. (2)①证明:由(1)得,△ABD ≌△ACF , ∴∠HFN =∠ADN. 又∵∠HNF=∠AND, ∴∠NHF =∠NAD=90°. ∴HD ⊥HF ,即BD⊥CF.②连接DF ,延长AB 交DF 于点M. 在△MAD 中,∵∠MAD =∠MDA=45°, ∴∠BMD =90°.∵AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,FD =6.∴MB =3-2=1,DB =12+32=10. 在Rt △BMD 和Rt △FHD 中, ∵∠MDB =∠HDF, ∴△BMD ∽△FHD. ∴MD HD =BD FD ,即3HD =106.∴DH=9105.4.(2016·某某)在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD.若两个点同时运动的时间为x 秒(0<x≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值; (2)是否存在x 的值,使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形,∴BC =AD =4,CD =AB =3. 当运动x 秒时,则AQ =x ,BP =x , ∴BQ =AB -AQ =3-x ,CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x ,S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2,S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12,∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4,即S =12(x -2)2+4.∴S 为开口向上的二次函数,且对称轴为直线x =2.∴当0<x≤2时,S 随x 的增大而减小; 当2<x≤3时,S 随x 的增大而增大, 又当x =0时,S =6,当S =3时,S =92.但x 的X 围内取不到x =0,∴S 不存在最大值. 当x =2时,S 有最小值,最小值为4.(2)存在,理由:由(1)可知BQ =3-x ,BP =x ,CP =4-x. 当QP⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC, ∴∠BPQ =∠PDC.又∵∠B=∠C, ∴△BPQ ∽△CDP. ∴BQ PC =BP CD ,即3-x 4-x =x 3,解得x =7+132(舍去)或x =7-132. ∴当x =7-132时,QP ⊥DP.5.(2016·某某)(1)已知:△ABC 是等腰三角形,其底边是BC ,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC =∠DCE,若∠A=60°(如图1),求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图2),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其他条件不变,则EB AD 的值是多少?(直接写出结论,不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形,∠A =60°, ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC ,∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF ,∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°,∴∠DFC =∠DBE. 又∵∠FDC=∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形, ∴AD =DF ,∠AFD =60°.∵∠DBE =∠ABC=60°,∴∠DBE =∠AFD. ∵∠FDC =∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3,过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形,∠A =90°, ∴∠ABC =∠ACB=45°, ∴∠DBE =180°-45°=135°. ∵DG ∥BC ,∴∠GDC =∠DCE,∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC, ∴ED =CD ,∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°,∠A =90°, ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·某某)【探究证明】(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.求证:EF GH =ADAB ;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M ,N 分别在边BC ,CD 上.若EF GH =1115,则BNAM 的值为________;【联系拓展】(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF,交CD 于点P ,过点B 作BQ∥GH,交AD 于点Q. ∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF ,GH =BQ. 又∵GH⊥EF,∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形,∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH,AM ⊥BN ,∴由(1)中的结论可得EF GH =AD AB ,BN AM =ADAB ,∴BN AM =EF GH =1115.故答案为1115. (3)连接AC ,过点D 作AB 的平行线交BC 的延长线于点E ,作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°,∴四边形ABEF 是矩形.易证△ADC≌△ABC,∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠EC D =90°,∴∠FDA =∠ECD. 又∵∠E=∠F, ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x ,则AF =2x ,DF =10-x.在Rt △ADF 中,AF 2+DF 2=AD 2,即(2x)2+(10-x)2=100,解得x 1=4,x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·某某)在△ABC 中,P 为边AB 上一点. (1)如图1,若∠ACP=∠B,求证:AC 2=AP·AB; (2)若M 为CP 的中点,AC =2.①如图2,若∠PBM=∠ACP,AB =3,求BP 的长;②如图3,若∠ABC=45°,∠A =∠BMP=60°,直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B,∠CAP =∠BAC, ∴△ACP ∽△ABC. ∴AC AB =AP AC,即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q ,则∠PBM=∠Q. ∵∠PBM =∠ACP,∴∠ACP =∠Q. 又∠PAC=∠CAQ,∴△APC ∽△ACQ. ∴AC AQ =AP AC,即AC 2=AP·AQ. 又∵M 为PC 的中点,BM ∥CQ ,∴设BP =x ,则BQ =x.∴AP=3-x ,AQ =3+x. ∴22=(3-x)(3+x),解得x 1=5,x 2=-5(不合题意,舍去).∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0. ∵AC =2,∴AQ =1,CQ =BQ = 3.设AP 0=x ,则P 0Q =PQ =1-x ,BP =3-1+x , ∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0, ∴△AP 0C ∽△MPB ,∴AP 0MP =P 0CBP.∴MP ·P 0C =12P 0C 2=(3)2+(1-x )22=AP 0·BP =x(3-1+x).解得x =7-3或x =-7-3(舍去). ∴BP =3-1+7-3=7-1.8.(2016·某某)数学活动——旋转变换(1)如图1,在△ABC 中,∠ABC =130°,将△ABC 绕点C 逆时针旋转50°得到△A′B′C,连接B B′.求∠A′B′B 的大小;(2)如图2,在△ABC 中,∠ABC =150°,AB =3,BC =5,将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C ,连接BB′.以A′为圆心,A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系,并证明你的结论; ②连接A′B,求线段A′B 的长度;(3)如图3,在△ABC 中,∠ABC =α(90°<α<180°),AB =m ,BC =n ,将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B 和BB′.以A′为圆心,A ′B ′长为半径作圆.问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°,CB =CB′,∠BCB ′=50°, ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°,CB =CB′,∠BCB ′=60°, ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°,即B′B⊥A′B′. 又A′B′为半径, ∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3,B ′C =BC =5,∠BCB ′=60°, ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中,A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中,∠BB ′C =180°-2β2=90°-β,∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°,∴∠A ′B ′B =α+β-90°=180°-90°=90°,即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中,B ′D =B′C·s in β=B C·sin β=n sin β,∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形,∴A ′B =(A′B′)2+(BB′)2=m 2+(2n sin β)2=m 2+4n 2sin 2β.9.(2016·某某)在△ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH ,AD ,当GH⊥AD 时,请判断四边形AGDH 的形状,并证明; ②当四边形AGDH 的面积最大时,过A 作AP⊥EF 于P ,且AP =AD ,求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2,∴∠BAC =90°.又∵△DEF∽△ABC,∴∠D =∠BAC =90°.(2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N.∵△DEF ∽△ABC ,∴∠E =∠B.又∵EF∥BC,∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA.同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°,∴四边形AGDH 是矩形.又∵AD⊥GH,∴四边形AGDH 是正方形.②当D 点在△ABC 内部时,四边形AGDH 的面积不可能最大.其理由是:如图1,点D 在内部时,延长GD 到D′,过D′作MD′⊥AC 于点M ,则四边形GD′MA 的面积大于矩形AGDH 的面积,∴当点D 在△ABC 内部时,四边形AGDH 的面积不可能最大.按上述理由,只有当D 点在BC 边上时,面积才有可能最大.图1 图2如图2,D 在BC 上时,易证明DG∥AC,∴△GDB ∽△ACB.∴BG BA =GD AC ,即BA -AG BA =AH AC . ∴6-AG 6=AH 8,即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12. 当AG =3时,S 矩形AGDH 最大,此时DG =AH =4.即当AG =3,AH =4,S 矩形AG DH 最大.在Rt △BGD 中,BD =BG 2+DG 2=5,则DC =BC -BD =5.即D 为B C 上的中点时,S 矩形AGDH 最大.∴在Rt △ABC 中,AD =BC 2=5,∴PA =AD =5. 延长PA 交BC 于点Q ,∵EF ∥BC ,QP ⊥EF ,∴QP ⊥BC.∴QP 是EF 、BC 之间的距离.∴D 到EF 的距离为PQ 的长.在Rt △ABC 中,12AB·AC=12BC·AQ, ∴AQ =4.8.又∵△DEF∽△ABC,∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·某某)(1)发现如图1,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于CB 延长线上时,线段AC 的长取得最大值,且最大值为a +b .(用含a ,b 的式子表示)图1(2)应用点A 为线段BC 外一动点,且BC =3,AB ,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE. ①请找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下:∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CA E=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.∴△CAD≌△EAB.∴DC=BE.②BE长的最大值是4.(3)AM的最大值为3+22,点P的坐标为(2-2,2).提示:如图3,构造△BNP≌△MAP,则NB=AM,易得△APN是等腰直角三角形,AP=2,∴AN=2 2.由(1)知,当点N在BA的延长线上时,NB有最大值(如备用图).∴AM=NB=AB+AN=3+2 2.过点P作PE⊥x轴于点E,PE=AE= 2.又∵A(2,0),∴P(2-2,2).。
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
第一节圆的基本性质考点1 圆周角定理及其推论1.[2018某某聊城]如图,☉O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是( )A.25°B.27.5°C.30°D.35°(第1题) (第2题)2.[2018某某]如图,△ABC是☉O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与☉O相交于点D,连接BD,则∠DBC的大小为( )A.15°B.35°C.25°D.45°3.[2017某某某某]如图,在☉O中,AB是直径,CD是弦,AB⊥CD,垂足为点E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )A.AD=2OBB.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD4.(9分)[2018某某某某中考改编]如图,在△ABC中,AB=AC. 以AB为直径的半圆交AC于点D,交BC于点E.延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求cos∠BAD的值.考点2 圆内接四边形的性质5.[2018某某某某]如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( )A.100°B.110°C.120°D.130°(第5题) (第6题)6.[2017某某某某]如图,已知☉O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则☉O的半径长为( )A. B.C. D.7.[2018某某某某]如图,已知☉O的半径为2,△ABC内接于☉O,∠ACB=135°,则AB=.(第7题) (第8题)8.[2017某某永州]如图,四边形ABCD是☉O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=°.9.(9分)[2018某某某某]如图,四边形ABCD内接于☉O,AB=17,CD=10,∠A=90°,cos B=,求AD的长.1.[2018某某一模]如图,已知AB是☉O的直径,BC是弦,∠ABC=40°,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB为( )A.20°B.25°C.30°D.35°2.[2018某某地区模拟]如图,在☉O中,∠AOB的度数为160°,C是优弧AB上一点,D,E是上不同的两点(不与点A,B重合),则∠D+∠E的度数为( )A.160°B.140°C.100°D.80°(第2题) (第3题)3.[2017某某地区模拟]如图,四边形ABCD内接于☉O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°4.[2018某某某某一模]如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是( )A.=B.=C.=(第4题) (第5题)5.[2018某某三模]如图,以△ABC的边BC为直径的☉O交AB,AC于点D,E,连接OD,OE,若∠DOE=40°,则∠A的度数为.6.(9分)[2018某某瑶海区一模]如图,在半径为4的☉O中,AB,CD是两条直径,M为OB的中点,CM的延长线交☉O于点E,且EM>MC.连接DE,DE=.(1)求证:AM·MB=EM·MC;(2)求EM的长.7.(9分)[2017某某一模]如图,在△ABC中,以AB为直径的☉O交AC,BC于点D,E.连接ED,若ED=EC.(1)求证:AB=AC;(2)填空:①若AB=6,CD=4,则BC=;②连接OD,当∠A=°时,四边形ODEB是菱形.8.(9分)[2018某某二模改编]如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC 边上一动点,连接AD,以AD为直径作☉O,☉O交边AB,AC于点E,F,连接OE,OF,DE,DF,EF.(1)求的值;(2)当∠BAD=°时,四边形OEDF正好是菱形,请说明理由;(3)点D运动过程中,线段EF的最小值为(直接写出结果).第二节与圆有关的位置关系考点1 点与圆的位置关系1.[2017某某枣庄]如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),若以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值X围为( )<r< B.<r<3C.<r<5D.5<r<2.[2018某某某某]如图,☉M的半径为2,圆心M的坐标为(3,4),点P是☉M上的任意一点,PA⊥PB,且PA,PB与x轴分别交于A,B两点,若点A,B关于原点O对称,则AB的最小值为( )A.3B.4(第2题) (第3题)3.[2016某某中考改编]如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为.考点2 直线与圆的位置关系4.[2018某某湘西州中考改编]已知☉O的半径为5 cm,圆心O到直线l的距离为6 cm,则直线l与☉O的位置关系为( )5.[2018某某某某]已知直线y=kx(k≠0)经过点(12,-5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的☉O相交(点O为坐标原点),则m的取值X围为.6.(9分)[2018某某仙桃]如图,在☉O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO 于点D,交AC于点E,交☉O于点F,M是GE的中点,连接CF,CM.(1)判断CM与☉O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.考点3 切线的性质7.[2018某某某某]如图,点P为☉O外一点,PA为☉O的切线,A为切点,PO交☉O于点B,∠P=30°,OB=3,则线段BP的长为( )A.3B.3(第7题) (第8题)8.[2017某某某某]如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于( )A.20°B.35°C.40°D.55°9.[2018某某某某]如图,AB是☉O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=.(第9题) (第10题)10.[2018某某某某]如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心、PM的长为半径作☉P.当☉P与正方形ABCD的边相切时,BP的长为. 11.(9分)[2018]如图,AB是☉O的直径,过☉O外一点P作☉O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC.若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.12.(9分)[2018某某随州]如图,AB是☉O的直径,点C为☉O上一点,为☉O的切线,连接AC,BC,过点O作OM⊥AB,分别交AC,于D,M两点.(1)求证:MD=MC;(2)若☉O的半径为5,AC=4,求MC的长.考点4 切线的判定13.(9分)[2018某某某某]如图,已知A,B,C,D,E是☉O上五点,☉O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是☉O的切线.14.(9分)[2018某某]如图,在△ABC中,O为AC上一点,以点O为圆心、OC的长为半径作圆,与BC相切于点C,过点A作AD⊥BO,交BO的延长线于点D,且∠AOD=∠BAD.(1)求证:AB为☉O的切线;(2)若BC=6,tan∠ABC=,求AD的长.考点5 三角形的内切圆和外接圆15.[2017某某某某]如图,☉O是△ABC的内切圆,则点O是△ABC的( )16.[2017某某某某]已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为( )A.B. C.17.[2018某某]如图,点I为△ABC的内心,AB=4,AC=3,BC=2.将∠ACB平移,使其顶点与点I 重合,则图中阴影部分的周长为( )A.4.518.[2018某某某某]如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.(第18题) (第19题)19.[2017某某某某]如图,在平面直角坐标系xOy中,点A,B,P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.20.(9分)[2018某某某某]如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.21.(9分)[2018某某某某]结果如此巧合!下框中是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC,BC相切于点E,F,CE的长为x,根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x,根据勾股定理,得(x+3)2+(x+4)2=(3+4)2,整理,得x2+7x=12,所以S△ABC=AC·BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗? 请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC·BC=2mn,求证:∠C=90°.改变一下条件……(3)若∠C=60°,用m,n表示△ABC的面积.考点6 正多边形和圆22.[2017某某达州]以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.B.C.D.23.[2018某某株洲]如图,正五边形ABCDE和正三角形AMN都是☉O的内接多边形,则∠BOM=.24.[2018某某某某]X徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设☉O的半径为1,若用☉O 的外切正六边形的面积S来近似估计☉O的面积,则S=.(结果保留根号)1.[2018某某外国语模拟改编]如图,☉O是△ABC的外接圆,弦AC的长为2,sin B=,则☉O 的直径为( )A.4B.3(第1题) (第2题)2.[2018某某地区模拟]如图,☉O的半径为2,△ABC是☉O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为( )B.3 D.3.[2018某某某某姜堰区二模改编]如图,☉C经过正六边形ABCDEF的顶点A,E,点P是优弧AE上一点,则∠APE=°.4.(9分)[2018某某二模]如图,AB为☉O的直径,CD切☉O于点D,AC⊥CD于点C,交☉O于点E,连接AD,BD,ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.5.(9分)[2018某某二模]如图,AB是☉O的直径,且AB=6,点M为☉O外一点,且MA,MC分别切☉O于点A,C.点D是直线BC与AM延长线的交点.(1)求证:DM=AM;(2)填空:①当CM=时,四边形AOCM是正方形;②当CM=时,△CDM为等边三角形.6.(9分)[2018某某二模]如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP的中点,连接AM并延长,交PC于点C,连接OC,BC,AP.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=°时,四边形AOCP是菱形;②连接BP,当∠ABP=°时,PC是☉O的切线.第三节与圆有关的计算考点1 弧长的计算1.[2017某某某某]如图,☉O的半径为3,四边形ABCD内接于☉O,连接OB,OD,若∠BOD=∠BCD,则的长为( )A.πB.(第1题) (第2题)2.[2017某某某某]如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的☉O交CD于点E,则的长为( )A.πB.πC.πD.π3.[2018某某某某A]如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧AB的长是.(结果保留π)(第3题) (第4题)4.[2018某某潍坊]如图,点A1的坐标为(2,0),过点A1作x轴的垂线,交直线l:y=x于点B1,以原点O为圆心、OB1的长为半径画弧,交x轴的正半轴于点A2;再过点A2作x轴的垂线,交直线l于点B2,以原点O为圆心、OB2的长为半径画弧,交x轴的正半轴于点A3……按此作法进行下去,则的长是.5.(9分)[2018某某荆州]问题:已知α,β均为锐角,tan α=,tan β=,求α+β的度数. 探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数.延伸:(2)设经过图中M,P,H三点的圆弧与AH交于R,求的长度.考点2 扇形面积的计算6.[2018某某某某]一个扇形的圆心角为135°,弧长为3π cm,则此扇形的面积是cm2.7.[2017某某日照]如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心、BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则图中扇形的面积是.考点3 阴影部分面积的计算8.[2018某某]如图,正方形ABCD内接于☉O,☉O的半径为2,以点A为圆心,AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积是( )9.[2017某某莱芜]如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕点A顺时针旋转90°得到Rt△ADE,则BC扫过部分的面积为( )A. B.(2-)πC.10.[2017某某某某]如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A'B'CD'的位置,AB=2,AD=4,则阴影部分的面积为.(第10题) (第11题)11.[2017某某某某]已知:如图,△ABC内接于☉O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则阴影部分的面积为.12.[2018某某某某]如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC 绕点A按顺时针方向旋转到△O'AC',使得点O'的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.1.[2018某某一模]如图,在扇形AOB中,∠AOB=90°,正方形OCED的顶点C,D分别在半径OA,OB上,顶点E在上,以点O为圆心、OC的长为半径作.若OA=2,则阴影部分的面积为( )A.πB.C.(第1题) (第2题)2.[2018某某二模]如图,在矩形ABCD中,AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D',点A'恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)的面积为( ) A.-C.-D.3.[2017某某二模改编]如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合,则圆心O运动路径的长度等于.4.[2017某某二模]如图,在Rt△ABC中,∠ACB=90°,AC=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.(第4题) (第5题)5.[2017某某一模]如图,在圆心角为90°的扇形AOB中,半径OA=3,OC=AC,OD=BD,F是弧AB 的中点.将△OCD沿CD折叠,点O落在点E处,则图中阴影部分的面积为.6.[2017潍坊二模改编]如图所示的图形是由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1,S2,S3,…,S20,则S1+S2+S3+…+S20=.(第6题) (第7题)7.[2018某某一模]如图,在圆心角为90°的扇形OAB中,半径OA=2 cm,C为弧AB的中点,D 是OA的中点,则图中阴影部分的面积为cm2.8.[2018某某宛城区二模]如图,AC是半圆O的一条弦,将弧AC沿AC折叠后恰好过圆心O,☉O 的半径为2,则图中阴影部分的面积为.(第8题) (第9题)9.[2018某某三模]如图,在△ABC中,∠C=90°,AC=BC=8,点D为边AB的中点.以点B为圆心、BD的长为半径作弧,交BC于点E;以点C为圆心、CD的长为半径作弧,交AC于点F,则图中阴影部分的面积为.10.[2018某某二模]运用图形变化的方法研究下列问题:如图,EF是☉O的直径,CD,AB是☉O 的弦,且AB∥CD∥EF,EF=20,CD=16,AB=12.则图中阴影部分的面积是.(第10题) (第11题)11.[2017某某地区模拟]如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,连接AD,则图中阴影部分面积是.参考答案第一节圆的基本性质AC,∴∠ABC=∠BCA=65°,∴∠A=180°-∠ABC-∠ACB=50°,∴∠BDC=∠BAC=50°.∵CD∥AB,∴∠ABD=∠BDC=50°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.故选A.3.D ∵2OB=AB≠AD,故选项A错误;由垂径定理可知,点E是CD的中点,由圆周角定理及其推论可知,∠COB=2∠BAD=40°,∴∠OCE=50°,∴CE≠EO,故选项B,C错误,选项D正确.∴∠AEB=90°.∵AB=AC,∴CE=BE.又∵EF=AE,∴四边形ABFC是菱形.(3分)(2)设CD=x,则AB=AC=7+x.连接BD,∵AB为半圆的直径,∴∠ADB=90°,∴AB2-AD2=CB2-CD2,即(7+x)2-72=42-x2,解得x1=1,x2=-8(舍去),(6分)∴AB=7+x=7+1=8,∴cos∠BAD==.(9分)5.B∵∠BOC=40°,OB=OC,∴∠OBC=∠OCB=(180°-40°)=70°,∴∠D=180°-∠OBC=110°.故选B.6.D 如图,作直径BM,连接DM,BD,则∠BDM=90°.∵∠BCD=120°,∴∠A=60°,∴∠M=60°.又AB=AD=2,∴BD=2 .在Rt△BDM中,sin M===,∴BM=,∴OB=BM=,故☉O的半径长为.故选D.如图,连接OA,OB,在优弧AB上任取一点D,连接AD,BD.∵∠ACB=135°,∴∠ADB=45°,∴∠AOB=2∠ADB=90°.∵OA=OB=2,∴AB=2.8.100 连接AE.∵点D是的中点,∴∠AED=∠CED=40°,∴∠AEC=80°.∵四边形ADCE是☉O的内接四边形,∴∠ADC+∠AEC=180°,∴∠ADC=180°-∠AEC=100°.9.如图,连接BD,分别延长AD,BC交于点E.(1分)∵∠A=90°,∴BD是☉O的直径,∴∠ECD=∠BCD=90°.∵四边形ABCD内接于☉O,∴∠ABC+∠ADC=180°.∵∠ADC+∠EDC=180°,∴∠EDC=∠ABC,(3分)∴cos∠EDC=cos∠ABC=,∴=,即=,解得ED=.(4分)在Rt△EDC中,由勾股定理,得EC==.(6分)易得△ECD∽△EAB,∴=,即=,解得EA=,∴AD=EA-ED=-=6.(9分)模拟提升练设OD交BC于点E.∵OD⊥BC,∴∠OEB=90°,∵∠ABC=40°,∴∠BOD=50°,∴∠DCB=∠BOD=25°.故选B. 如图,连接OC.∵∠AOB=160°,∴∠AOC+∠BOC=360°-∠AOB=200°.∵∠D=∠AOC,∠E=∠BOC,∴∠D+∠E=∠AOC+∠BOC=(∠AOC+∠BOC)=100°.故选C.3.B ∵四边形ABCD内接于☉O,∠ABC=105°,∴∠ADC=180°-∠ABC=180°-105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC-∠DCE=75°-25°=50°.故选B.4.A 如图,连接OC,BC,过O作OE⊥AC于点D,交半圆O于点E.由折叠可知OD=OE.∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC.∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=12 0°,∴=.故选A.5.70°连接BE.∵∠DOE=40°,∴∠ABE=∠DOE=20°.∵BC为☉O的直径,∴∠BEA=∠BEC=90°,∴∠A=90°-∠ABE=90°-20°=70°.6.(1)证明:连接AC,EB,则∠CAM=∠BEM.又∵∠AMC=∠EMB,∴△AMC∽△EMB,∴=,即AM·MB=EM·MC.(4分)(2)∵DC为☉O的直径,且DC=4×2=8,∴∠DEC=90°,EC===7.∵OA=OB=4,M为OB的中点,∴AM=6,BM=2.设EM=x,则CM=7-x.由(1)知AM·MB=EM·MC,得6×2=x(7-x). 解得x1=3,x2=4.∵EM>MC,∴EM=4.(9分)7.(1)证明:∵ED=EC,∴∠EDC=∠C.∵四边形ABED是☉O的内接四边形,∴∠EDC=∠B,∴∠B=∠C,∴AB=AC.(3分)(2)①4(7分)②60(9分)解法提示:①连接AE,∵AB为☉O的直径, ∴AE⊥BC,又∵AB=AC,∴BE=EC.∵∠C=∠C,∠CDE=∠B,∴△CDE∽△CBA,∴=,即=,∴BC=4.②∵四边形ODEB是菱形,∴OB=BE=OD=ED=OE,∴∠BOE=∠EOD=60°,∴∠BOD=120°,∴∠A=60°.8.(1)∵∠BAC=60°,∴∠EOF=120°.过点O作OH⊥EF于点H,则EH=FH.设OE=x,则OF=x,FH=EH=x,∴EF=x,∴=.(3分)(2)30(4分)理由:∵四边形OEDF是菱形,∴OE=ED=DF=FO.又∵OE=OD=OF,∴OE=ED=DF=FO=OD,∴∠OED=∠EOD=∠DOF=∠DFO=60°.∵AD是☉O的直径,∴∠DEA=∠DFA=90°,∴∠AEO=∠OFA=30°,又∵OE=OA=OF,∴∠EAO=∠OAF=30°.(7分)(3)5(9分)解法提示:由(1)可知EF=OE=AD,故当AD最短,即AD⊥BC时,EF有最小值.∵AB=10,∠B=45°,AD⊥BC,∴AD=10÷=10,∴EF的最小值为10×=5.第二节与圆有关的位置关系真题分点练1.B 给各点标上字母,如图所示,则AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴当<r<3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.故选B.2.C 连接OP.∵PA⊥PB,∴∠APB=90°.∵点A,B关于原点O对称,∴AO=BO,∴AB=2PO.若要使AB取得最小值,则OP需取得最小值.连接OM,交☉M于点P',当点P与P'重合时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,又∵MP'=2,∴OP'=3,∴AB的最小值为2OP'=6,故选C.3.2∵AB⊥BC,∴∠ABC=90°,∴∠ABP+∠PBC=90°.∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠A PB=90°,∴点P在以AB为直径的圆上.设AB的中点为O,连接OC,交☉O于点P,此时PC最小.在Rt△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC=5,∴PC=OC-OP=5-3=2,即PC的最小值为2.4.C ∵6>5,∴直线和圆相离.故选C.5.0<m<把点(12,-5)代入直线y=kx,得-5=12k,∴k=-.直线y=-x向上平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=-x+m(m>0),设直线l与x轴,y轴分别交于点A,B,则A(m,0),B(0,m),即OA=m,OB=m.在Rt△OAB中,AB===m,过点O作OD⊥AB于点D,∵S△ABO=OD·AB=OA·OB,∴OD·m=×m2,解得OD=m.由直线l与☉O相交可知m<6,解得m<,即m的取值X围为0<m<.6.(1)CM与☉O相切.(1分)理由如下:如图,连接OC.∵OC=OA,∴∠A=∠1.∵GD⊥OA,∴∠A+∠2=∠A+∠3=∠1+∠3=90°. (2分) ∵AB为☉O的直径,∴∠ACB=90°,∴∠GCE=90°.∵M是GE的中点,∴MG=ME=MC,(3分)∴∠3=∠MCE,∴∠1+∠MCE=90°,∴OC⊥MC,∴CM与☉O相切.(4分)(2)如图,∵∠GCE=90°,∴∠G+∠3=90°.又∵∠A+∠3=90°,∴∠A=∠G.(5分)∵MG=MC,∴∠4=∠G+∠MCG=2∠G.∵∠5=2∠A,∴∠4=∠5,∴∠3=∠MCE=∠EFC,△ECF∽△EMC,∴CE=CF,=.(6分)∵EM=CM=6,EC=CF=4,∴EF===,∴MF=EM-EF=6-=.(9分)7.A 连接OA,根据切线的性质可得,OA⊥AP,∵∠P=30°,∴OP=2OA.又∵OA=OB=3,∴OP=6,∴BP=OP-OB=3.故选A.8.A ∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°-∠ABC=125°,∠BAC=90°-∠ABC=35°.由题易得∠MCA=∠ABC=55°,∠AMC=90°.∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC-∠AMC=35°,∴∠AC D=∠MCA-∠DCM=55°-35°=20°.故选A.9.44°连接OB.∵BC是☉O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°.∵OC⊥OA,∴∠A+∠APO=90°.∵OA=OB,∠OAB=22°,∴∠OBA=∠OAB=22°,∴∠APO=∠CBP=68°.∵∠APO=∠CPB,∴∠CPB=∠CBP=68°,∴∠OCB=18 0°-68°-68°=44°.∵AB=8,点M是AB的中点,∴BM=4.当☉P与CD相切于点C时,如图(1),设PM=PC=r,则BP=8-r.在Rt△BPM中,根据勾股定理,得BM2+BP2=PM2,即42+(8-r)2=r2,解得r=5,∴BP=8-5=3;当☉P与AD相切于点E时,如图(2),连接PE,则PE⊥AD,∴PE=CD=8,∴PM=8.在Rt△BPM中,根据勾股定理,得BP===4 .综上可知,BP=3或4.图(1) 图(2)11.(1)证明:如图,连接OC,OD.∵PC,PD为☉O的两条切线,∴PC=PD.又∵OC=OD,∴OP垂直平分CD,即OP⊥CD.(4分)(2)如图,∵OD=OA,∠DAB=50°,∴∠ADO=∠DAB=50°.∵四边形ABCD为☉O的内接四边形,∠CBA=70°,∴∠ADC=180°-∠CBA=110°,∴∠ODC=∠ADC-∠ADO=60°.∵OP⊥CD,∴∠ODC+∠DOP=90°,∴∠POD=30°.∵PD为☉O的切线,OD为半径,∴∠ODP=90°.∵OA=2,∴OD=OA=2.在Rt△ODP中,OP===.(9分)12.(1)证明:连接OC.∵为☉O的切线,∴OC⊥CM,∴∠OCA+∠ACM=90°.∵OM⊥AB,∴∠OAC+∠ODA=90°.∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC.(3分)(2)依题意可知AB=5×2=10.∵AB为☉O的直径,∴∠ACB=90°,∴BC==2.∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴=,即=,得OD=.(6分)设MC=MD=x,则OM=x+,在Rt△OCM中,由勾股定理得(x+)2=x2+52,解得x=,即MC=.(9分)13.(1)如图,连接DE.∵BE为☉O的直径,∴∠BDE=90°.∵B,C,D,E四点共圆,∴∠BCD+∠BED=180°,∴∠BED=60°,∴BD=BE·sin 60°=2×=3.(4分)(2)证明:如图,连接AE.∵BE为☉O的直径,∴BA⊥AE.∵点A为的中点,∴BA=AE.(6分)又∵AB=AP,∴AB=AE=AP,∴△BEP为直角三角形,∴PE⊥EB,∴直线PE是☉O的切线.(9分)14.(1)证明:过点O作OE⊥AB于点E,则∠OEB=90°.∵BC切☉O于点C,∴∠OCB=90°.∵AD⊥BD,∴∠ADB=90°.∵∠AOD=∠BOC,∴∠CBD=∠OAD.∵∠AOD=∠BAD,∴∠OAD=∠ABD,∴∠ABD=∠CBO.在△OEB和△OCB中,∴△OEB≌△OCB,∴OE=OC,∴AB为☉O的切线.(4分)(2)∵BC=6,tan∠ABC=,∠ACB=90°,∴AC=BC·tan∠ABC=8,∴AB===10.∵AB与BC均为☉O的切线,∴BE=BC=6,∴AE=AB-BE=10-6=4.设OC=OE=x,在Rt△AEO中,AO2=AE2+OE2,即(8-x)2=42+x2,解得x=3,∴OB===3.∵S△BOA=AB·OE=BO·AD,∴AB·OE=BO·AD,∴AD===2.(9分)15.B ∵☉O是△ABC的内切圆,∴点O到△ABC三边的距离相等,∴点O是△ABC三条角平分线的交点.故选B.16.C 如图,BC=5,AB=7,AC=8,设内切圆的半径为R.过点A作AD⊥BC于点D.设BD=x,则CD=5-x.由勾股定理得:AB2-BD2=AC2-CD2,即72-x2=82-(5-x)2,解得x=1,所以AD==4.由面积公式可知,S△ABC=BC·AD=(AB+BC+AC)·R,即×5×4=×(7+5+8)R,解得R=.故选C.17.B 如图,连接AI,BI.∵点I是△ABC的内心,∴∠CAI=∠IAD.根据平移的性质,可知DI∥AC,∴∠AID=∠CAI,∴∠AID=∠IAD,∴ID=AD.同理可得IE=BE,故阴影部分的周长为ID+IE+DE=AD+BE+DE=AB=4.故选B.18.能够将△ABC完全覆盖的最小圆形纸片是如图所示的△ABC的外接圆☉O.连接OB,OC,则∠BOC=2∠BAC=120°.过点O作OD⊥BC于点D,则∠BOD=∠BOC=60°.由垂径定理得BD=BC=cm,∴OB==(cm),故能够将△ABC完全覆盖的最小圆形纸片的直径是 cm.19.(7,4),(6,5)或(1,4) ∵点A,B,P的坐标分别为(1,0),(2,5),(4,2),∴PA=PB==.∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB==,则点C的坐标为 (7,4),(6,5)或(1,4).20.(1)证明:由折叠可得△ADE≌△ADC,∴∠AED=∠ACD,AE=AC.∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB.(3分)(2)如图,过点A作AH⊥BE于点H.∵AB=AE,BE=2,∴BH=EH=1,∠ABE=∠AEB=∠ADB.又cos∠ADB=,∴cos∠ABE=,∴=,∴AC=AB=3.∵∠BAC=90°,AC=AB,∴BC=3.(9分)21.设△ABC的内切圆分别与AC,BC相切于点E,F,CE的长为x,由题易得AE=AD=m,BF=BD=n,CF=CE=x.(1)在Rt△ABC中,根据勾股定理,得(x+m)2+(x+n)2=(m+n)2,整理,得x2+(m+n)x=mn,所以S△ABC=AC·BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn.(3分)(2)证明:由AC·BC=2mn,得(x+m)(x+n)=2mn,整理,得x2+(m+n)x=mn,所以AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=m2+n2+2mn=(m+n)2=AB2,根据勾股定理的逆定理,可得∠C=90°.(6分)(3)如图,过点A作AG⊥BC,垂足为点G.在Rt△ACG中,AG=AC·sin 60°=(x+m),CG=AC·cos 60°=(x+m), 所以BG=BC-CG=x+n-(x+m).在Rt△ABG中,根据勾股定理,得AG2+BG2=AB2,即[(x+m)]2+[x+n-(x+m)]2=(m+n)2,整理,得x2+(m+n)x=3mn,所以S△ABC=BC·AG=(x+n)·(x+m)=[x2+(m+n)x+mn]=(3mn+mn)=mn.(9分)22.A 如图(1),∵☉O的半径OC=2,∴边心距OD=2×sin 30°=1;如图(2),∵☉O的半径OB=2,∴边心距OE=2×sin 45°=;如图(3),∵☉O的半径OA=2,∴边心距OD=2×cos 30°=,则该三角形的三边长分别为1,,.∵12+()2=()2,∴该三角形是直角三角形,其面积为×1×=.故选A.图(1) 图(2) 图(3)23.48°连接OA.∵五边形ABCDE是正五边形,∴∠AOB==72°.∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°.如图,∵六边形ABCDEF为正六边形,∴△ABO为等边三角形.∵☉O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6×××1=2.模拟提升练1.B 如图,作直径AD,连接CD,则∠ACD=90°,∠D=∠B,∴sin D=sin B=,在Rt△ADC中,AC=2,∴AD==3,∴☉O的直径为3.故选B.2.C ∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=180°.∵∠BAC=∠BOC,∴∠BOC=120°.如图,过点O作OD⊥BC,垂足为点D,则BD=CD,∠DOC=∠BOC=60°,∴DC=OC·sin60°=2×=,∴BC=2DC=2,故选C.3.30 如图,连接AC,EC.∵六边形ABCDEF是正六边形,∴∠BAF=∠F=∠DEF=∠B=∠D==120°,AB=BC=CD=DE,∴∠BAC=∠BCA=(1 80°-∠B)=30°,同理∠CED=30°,∴∠CAF=∠BAF-∠BAC=120°-30°=90°,同理∠CEF=90°.在四边形ACEF中,∠ACE=360°-90°-90°-120°=60°,∴∠APE=∠ACE=30°.4.(1)证明:如图,连接OD,OE.∵CD切☉O于点D,∴OD⊥CD.又∵AC⊥CD,∴OD∥AC.∴∠EAO=∠DOB,∠AEO=∠EOD.又∵∠EAO=∠AEO,∴∠DOB=∠EOD,∴BD=ED.(4分)(2)∵AC⊥CD,∴∠ACD=90°.又∵CE=3,CD=4,∴ED=5.∵BD=ED,∴BD=5.∵AB为☉O的直径,∴∠ADB=90°,∴∠ACD=∠ADB.∵四边形ABDE内接于☉O,∴∠CED=∠B,∴△CDE∽△DAB,∴=,即=,解得AB=.(9分)5.(1)证明:如图,连接OM.(1分)∵MA,MC分别切☉O于点A,C,∴MA⊥OA,MC⊥OC.在Rt△MAO和Rt△MCO中,∴Rt△MAO≌Rt△MCO,∴MC=MA.(3分)∵OC=OB,∴∠2=∠B,又∵∠1+∠2=90°,∠D+∠B=90°,∴∠1=∠D,∴DM=MC,∴DM=AM. (5分)(2)①3(7分)②(9分)解法提示:①由四边形AOCM是正方形,可知CM=OA=AB=×6=3.②由△CDM为等边三角形,可知∠CMD=60°.由(1)得,Rt△MAO≌Rt△MCO,∴∠CMO=∠AMO=(180°-∠CMD)=60°,∴CM==.6.(1)证明:∵点M是OP的中点,∴OM=PM.∵PC∥AB,∴∠AOM=∠CPM.在△AOM和△CPM中,∴△AOM≌△CPM,(3分)∴PC=OA.∵OA=OB,∴PC=OB.又∵PC∥OB,∴四边形OBCP是平行四边形.(5分)(2)①120(7分)②45(9分)解法提示:①∵四边形AOCP是菱形,∴AO=AP,又∵AO=OP,∴△AOP是等边三角形,∴∠AOP=60°,∴∠BOP=120°.②∵PC∥OB,∴∠CPB=∠OBP,又∵OP=OB,∴∠OPB=∠OBP,∴∠OPB=∠BPC.∵PC是☉O的切线,∴∠OPC=90°,∴∠ABP=∠OPB=∠OPC=×90°=45°.第三节与圆有关的计算真题分点练1.C ∵四边形ABCD内接于☉O,∴∠BCD+∠A=180°.∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,∴∠A=60°,∴∠BOD=120°,∴的长为=2π.故选C.2.B 连接OE,如图所示.∵四边形ABCD是平行四边形,∴∠D=∠B=70°,AD=BC=6,∴OA=OD=3.∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°-2×7 0°=40°,∴的长为=π.故选B.3.π∵∠C=55°,∴∠AOB=2∠C=110°, ∴劣弧AB的长为=π.4.根据题意可得OA1=2,A1B1=2,∴tan∠A1OB1=,∴∠A1OB1=60°,OB1=4,∴OA2=OB1=4=22,∴OB2=8,∴OA3=OB2=8=23.依此规律,可得OA2 019=22 019,∴的长是=.5.(1)连接MH,MA,则tan∠PHM==tan α,∴∠PHM=α.易得AM=MH=,AH=,∵AM2+MH2=AH2,∴△AMH是等腰直角三角形,∴∠AHM=45°,∴α+β=∠PHM+∠PHA=∠AHM=45°. (4分)(2)设MH交QN于点O,连接MR,RO,则点O是M,P,H三点所在圆的圆心,MH为☉O的直径,∴∠MRH=90°.∵∠AHM=45°,∴△MRH是等腰直角三角形,∴∠RMO=45°,RO⊥MH,∴的长度=×π=.(9分)6.6π设扇形的半径为r cm,则=3π,解得r=4,所以扇形的面积为×3π×4=6π(cm2).7.6π∵四边形AECD是平行四边形,∴AE=CD.∵BE=AB=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴S扇形ABE==6π.8.A 由圆及正方形的对称性可知,阴影部分的面积为扇形EAF的面积减去△ABD的面积,即S2-×2×4=4π-4.故选A.阴影=S扇形EAF-S△ABD=×π×49.D 在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,∴AC=2,AB=4.由旋转可知,S△ABC=S△ADE,∠DAE=∠CAB=30°,AE=AC=2,AD=AB=4,∠CAE=∠DAB=90°,∴S阴影部分=S扇形BAD+S△ABC-S扇形CAE-S△ADE=S扇形BAD-S扇形CAE=-=π.故选D.10.π-2如图,连接CE.∵四边形ABCD是矩形,∴BC=AD=4,CD=AB=2,∠BCD=∠ADC=90°,由旋转可知CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得DE=2,∴S阴影部分=S扇形ECB'-S△CDE=-×2×2=π-2.-π∵OC⊥AB,∠A=∠BCD=30°,∴∠O=60°,=,∴BC=AC=2,△OBC是等边三角形,∴∠OCB=60°,∴∠OCD=∠OCB+∠BCD=60°+30°=90°,∴CD=OC=2,∴S阴影=S△OCD-S扇形BOC=×2×2-=2-π.12.如图,过点O'作O'M⊥OA于点M,则∠O'MA=90°,∵点O'的坐标是(1,),∴O'M=,OM=1,∵AO=2,∴AM=2-1=1,∴tan∠O'AM==,∴∠O'AM=60°,∴∠CAC'=∠OAO'=60°.∵把△OAC绕点A按顺时针方向旋转到△O'AC',∴S△OAC=S△O'AC',∴S阴影部分=S扇形OAO'+S△O'AC'-S△OAC-S扇形CAC'=S扇形OAO'-S扇形CAC'=-=.模拟提升练1.D 连接OE,由题分析可知,S阴影部分=S扇形BOE+S△COE-S扇形COD.∵四边形OCED是正方形,∴∠BOE =45°,S扇形BOE===.在Rt△OCE中,CE=OC==,∴S△OCE=OC·CE=1.又∵S扇形COD==,∴S阴影部分=S扇形BOE+S△COE-S扇形COD=+1-=1,故选D.2.A 如图,连接BD,BD',在Rt△A'BC中,A'B=AB=,BC=1,由勾股定理得A'C=1,∴BC=A'C,∴∠A'BC=45°,∴∠ABA'=45°, ∠DBD'=45°.在Rt△ABD中,由勾股定理得BD=,∴S阴影=S梯形ABA'D-S扇形ABA'+S扇形DBD'-S△A'BD-S△A'BD'=(-1+)×1-+-(-1)×1-××1=--+-+=.故选A.3.5π如图,由题意可知,圆心O的运动路径为线段OO1和,即圆心O运动路径的长度为×2π×5+×2π×5=5π.由旋转可知AD=BD,∵∠ACB=90°,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=AC=4,∴S阴影部分=××4×4=4.5.如图,连接OF,过点C作CH⊥OF于点H.∵OA=OB=OF=3,OC=AC,OD=BD,∴OC=,OD=1.∵F是弧AB的中点,∠COH=45°,∴CH=OH=,∴S阴影=S扇形FOB+S△COF-2S△COD=+×3×-2×××1=.6.195π由题可知,S1=π·12=π;S2=π·(32-22)=π+π;S3=π·(52-42)=π+2π;…;S20=π+19π;∴S1 +S2+S3+…+S20=5π+(1+2+3+…+19)π=195π.7.如图,连接OC,过点C作CE⊥OA于点E.∵∠AOB=90°,C为弧AB的中点,∴∠COE=45°,∴CE=OC×sin∠COE=,∴S阴影部分=S扇形AOB-S△BOD-(S扇形AOC-S△COD)=-×1×2-+×1×=.8.如图,过点O作OE⊥AC,分别交AC,半圆于点D,E,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°.∵AB是☉O的直径,∴∠ACB=90°,∴∠B=60°.∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC的面积=弓形BC的面积,∴S阴影=S△OBC=×2×=.9.16 ∵在△ABC中,∠C=90°,AC=BC=8,∴∠B=∠A=45°,AB=8,又∵点D是AB的中点,∴BD=AD=CD=4,S△BCD=S△ABC,∴S阴影部分=S△BCD-S扇形DBE+S扇形DCF=-+=16.10.50π如图,连接AO,BO,CO,DO.∵AB∥CD∥EF,∴S△ABE=S△AOB,S△CDF=S△COD,∴S阴影=S扇形AOB+S扇形COD.连接AO并延长,交☉O于点G,连接BG,则∠ABG=90°,∴BG===16,∴BG=CD,即∠COD=∠BOG,∴S扇形COD=S扇形BOG,∴S阴影=S扇形AOB+S扇形BOG=S半圆=×π×()2=50π.11.8-π如图,过点D作DH⊥AE于点H,∵∠AOB=90°,OA=3,OB=2,∴AB==.由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,S阴影部分=S△ADE+S△EOF+S扇形AOF-S扇形DEF=×5×2+×2×3+-=8-π.。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
2021-2022年北师大版九年级数学上册期末压轴题综合复习题1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择题.A题:当点E是AB的中点时,矩形EFGH的面积是.B题:当BE=时,矩形EFGH的面积是8.3、在△ABC中,∠ABC=90°,ABnBC,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BM.PQ BQ②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.4、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C 出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择题.A.若四边形BGEH为菱形,则BD的长为.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.7、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为.(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.17、如图,直线y=x+n交x轴于点A(﹣8,0),直线y=﹣x﹣4经过点A,交y轴于点B,点P是直线y=﹣x﹣4上的一个动点,过点P作x轴的垂线,过点B作y轴的垂线,两条垂线交于点D,连接PB,设点P的横坐标为m.(1)若点P的横坐标为m,则PD的长度为(用含m的式子表示);(2)如图1,已知点Q是直线y=x+n上的一个动点,点E是x轴上的一个动点,是否存在以A,B,E,Q为顶点的平行四边形,若存在,求出E的坐标;若不存在,说明理由;(3)如图2,将△BPD绕点B旋转,得到△BD′P′,且旋转角∠PBP′=∠OCA,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.18、如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.19、在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.20、如图①,已知点A(﹣1,0),B(0,﹣2),▱ABCD的边AD与y轴交于点E,且E为AD的中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图③),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当点T在AF上运动时,的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.参考答案1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.1、【解答】(1)证明:∵∠PGB=∠EHP=∠BPE=90°,∴∠PBG=∠EPH(同角的余角相等),∴△PGB∽△EHP;(2)解:连接BE,∵PE⊥PB,∴∠BPE=90°,∵∠BCE=90°,∴∠BCE+∠BPE=180°,∴P,B,E,C四点共圆,∴∠PBE=∠PCE,在Rt△BPE与Rt△ADC中,∠D=∠BP E=90°,∠ACD=∠PBE,∴Rt△BPE∽Rt△ADC,∴=,即==;(3)设AP的长为x.∵AD=3,AB=4,∴由勾股定理得到:AC===5∵cos∠GAP===,∴AG=AP=x.同理,sin∠GAP===.则GP=x.在Rt△PBG中,PB2=BG2+PG2=(4﹣x)2+(x)2=x2﹣x+16,∵==.∴PE=PB,∴S矩形BPEF=PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择A或B题.A题:当点E是AB的中点时,矩形EFGH的面积是9.B题:当BE=2或4时,矩形EFGH的面积是8.2、【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AB=BC=CD=AD,∴∠A+∠B=180°,∵BE=BF=DH=DG,∴AE=AH=CF=CG,∴∠AEH=∠AHE=(180°﹣∠A),∠BEF=∠BFE=(180°﹣∠B),∴∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,同法可证:∠EFG=∠EHG=90°,∴四边形EFGH是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),由题意:x•(6﹣x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.3、在△ABC中,∠ABC=90°,ABnBC=,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BMPQ BQ=.②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.3、【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH ∥BQ , ∴==.②简解:(射影定理)证2BM PM AM = 由BM =CM 得2CM PM AM = 则△PMC ∽△CMA 可得∠BPQ =∠BAC4、已知:矩形OABC 的顶点O 在平面直角坐标系的原点,边OA 、OC 分别在x 、y 轴的正半轴 上,且OA =3cm ,OC =4cm ,点M 从点A 出发沿AB 向终点B 运动,点N 从点C 出发沿CA 向终点A 运动,点M 、N 同时出发,且运动的速度均为1cm /秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t 秒. (1)当点N 运动1秒时,求点N 的坐标;(2)试求出多边形OAMN 的面积S 与t 的函数关系式;(3)t 为何值时,以△OAN 的一边所在直线为对称轴翻折△OAN ,翻折前后的两个三角形所组成的四边形为菱形?4、【解答】解:(1)∵t =1∴CN =1,AM =1 过N 作NE ⊥y 轴,作NF ⊥x 轴 ∴△CEN ∽△COA ,∴,即,∴EN =.(1分) 由勾股定理得:,,∴.(2分)(2)由(1)得,∴∴N 点坐标为. ∵多边形OAMN 由△ONA 和△AMN 组成 ∴=(3分) =(4分) ∴多边形OAMN 的面积S =.(0≤t≤4)(5分)(3)①直线ON为对称轴时,翻折△OAN得到△OA′N,此时组成的四边形为OANA′,当AN=A′N=A′O=OA,四边形OANA’是菱形.即AN=OA,∴5﹣t=3∴t=2.(6分)②直线OA为对称轴时,翻折△OAN得到△OAN′,此时组成的四边形为ONAN′,连接NN′,交OA于点G.当NN′与OA互相垂直平分时,四边形ONAN′是菱形.即OA⊥NN′,OG=AG=,∴NG∥CO,∴点N是AC的中点,∴CN=,∴(7分)③直线AN为对称轴时,翻折△OAN得到△O′AN,此时组成的四边形为ONO′A,连接OO’,交AN于点H.当OO′与AN互相垂直平分时,四边形ONO’A是菱形.即OH⊥AC,AH=NH=,由面积法可求得OH=,在Rt△OAH中,由勾股定理得,AH=.∴,∴.(8分)综上所述,t的值为.5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.5、【解答】解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t)=(3﹣t),∴AM=AQ+QM=t+(3﹣t)=(t+3)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴∴t=1(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择A题.A.若四边形BGEH为菱形,则BD的长为5.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.6、【解答】(1)证明:∵四边形ABCD和四边形BEFG是菱形,∴CD∥AG∥FH,BC∥GF,∠ABD=∠ABC,∠BGE=∠BGF,∴∠ABC=∠BGF,∴∠ABD=∠BGE,∴BH∥GE,∵EH∥BG,∴四边形BGEH是平行四边形;(2)解:A、∵四边形ABCD和四边形BGEH为菱形,∴AB=AD,∠ABD=∠CBD=∠GBE=60°,∴△ABD是等边三角形,∴BD=AB=5;故答案为:A,5;B、如图所示:∵四边形BHCF为矩形,∴CE=BE,∵EH∥BG,∴EH∥CD,∴EH是△BCD的中位线,∴BH=BD=3,∴CF=3;故答案为:3;8、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为(1,2).(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.7、【解答】解:(1)∵点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5,∴点B(1,2),故答案为:B(1,2);(2)如图1,过点B作BD⊥CO,则点D(1,0),∴OD=1,BD=2,∵AC⊥x轴,点A(﹣4,2),∴AC=2,CO=4,∴,且∠ACO=∠ODB=90°,∴△ACO∽△ODB,∴当点D为(1,0)时,△AOC与△BOD相似;∵△ACO∽△ODB,∴∠AOC=∠OBD,∠CAO=∠BOD,∵∠AOC+∠CAO=90°,∴∠AOC+∠BOD=90°,∴AO⊥BO,∵AC=2,CO=4,∴AO===2,∵OD=1,BD=2,∴OB===,过点B作BD'⊥OB,交x轴于D',∵∠ACO=∠OBD',∠BOD=∠CAO,∴△ACO∽△OCD',∴,∴OD'==5,∴D'(5,0)综上所述:当点D为(1,0)或(5,0)时,△AOC与△BOD相似;(3)连接DO,∵将△AOB折叠,使得点A刚好落在O处,∴AD=DO,∵DN2+ON2=DO2,∴DN2+4=(4﹣DN)2,∴DN=,∴点D坐标(﹣,2),∴BD=2+=,∵四边形BDPQ的周长=BD+PQ+PD+BQ=++PD+BQ,∴当PD+BQ最小时,四边形BDPQ的周长有最小值,作点B关于AO的对称点B'(﹣1,﹣2),过点D作DH∥AO,且DH=,∴H(,1),∴B'H为PD+BQ的最小值,∴B'H==,∴四边形BDPQ的周长最小值=++=.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.8、【解答】证明:(1)如图2,∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴▱OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形,理由是:由(1)得:四边形OEMF是平行四边形,∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵EM∥OC,∴∠EMB=∠OCB,∴∠EMB=∠OBC,∴BE=EM,∵BM=MC,EM∥OC,∴BE=OE,∴OE=EM,∴▱OEMF是菱形;故答案为:菱形;(3)如图4,ME=OB+MF,理由是:由(2)得:OB=OC,∴∠OBC=∠OCB,∵MF∥BE,∴∠OBC=∠BMF,∴∠OCB=∠BMF,∵∠OCB=∠FCM,∴∠FCM=∠BMF,∴FC═FM,由(1)得四边形OEMF是平行四边形,∴OF=EM,∵OF=OC+FC=OB+FM,∴ME=OB+MF.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.9、【解答】解:(1)∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D,∴在△GAB和△GC′D中,,∴△GAB≌△GC′D(AAS),∴BG=DG;(2)∵△GAB≌△GC′D,∴AG=C′G,设C′G=x,则GD=BG=8﹣x,∴x2+62=(8﹣x)2,解得:,∴;(3)∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,∴在Rt△ABD中,BD=10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是AB=AD.11、【解答】证明:(1)如图(2),∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,由折叠得:G、E、M将AD四等分,∴ED=BF,∵∠EOD=∠FOB,∴△EOD≌△FOB,∴OE=OF;(2)由(1)得:△EOD≌△FOB,∴OD=OB,连接AC,∴A、O、C共线,∵GT∥EO,∴=1,∴DT=OT,∵AE=ED,OT=DT,∴ET∥AC,ET=AO,即EQ∥AC,同理得:TQ=OC,∴EQ=AC,同理得:PF=AC,PF∥AC,∴PF=EQ,PF=EQ,∴四边形EPFQ是平行四边形,∵PF∥AC,F是BC的中点,∴P为AB的中点,同理得:Q为DC的中点,∴AP=QD=AB,∵AE=AD,∠BAD=∠ADC=90°,∴△APE≌△DQE,∴PE=EQ,∴▱EPFQ是菱形.(3)当AB=AD时,四边形EPFQ是正方形,理由是:∵E是AD的中点,P是AB的中点,∴AE=AD,AP=AB,∵AB=AD,∴AP=AE,∴△APE是等腰直角三角形,∴∠AEP=45°,同理∠QED=45°,∴∠PEQ=90°,由(2)得:四边形EPFQ是菱形,∴四边形EPFQ是正方形;故答案为:AB=AD.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形12、【解答】解:(1)∵AB,CD为边作菱形ABEF和菱形CDGH,∴EF∥AB,EF=AB,HG∥CD,HG=CD,∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∴FG=EH;(2)A、如图2,延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴∠BAF+∠DAM=90°,∠CDG+∠ADM=90°,∵∠BAF=60°,∠CDG=30°,∴∠DAM=30°,∠ADM=60°,∴∠ADM=180°﹣∠DAM﹣∠ADM=90°在Rt△ADM中,∠DAM=30°,AD=4,∴DM=AD=2,AM=2,∵AF=DG=4,∴FM=AF +AM=4+2,MG=MD +DG=6,∴S 四边形AFGD =S △FMG ﹣S △MAD=×FM ×GM ﹣×AM ×DM=×(4+2)×6﹣×2×2=12+4,B 、方法1、如图3.连接FD ,AG (简化图),∵∠BAF=∠CDG ,∴∠DAF=∠ADG在△ADF 和△ADG 中,,∴△ADF ≌△ADG ,∴∠ADF=∠DAG ,DF=AG ,∴∠ADF=(180°﹣∠AOD )在△AFG 和△DGF 中,, ∴△AFG ≌△DGF ,∠AGF=∠DFG ,∴∠DFG=(180°﹣∠FOG )∵∠FOG=∠AOD ,∴∠ADF=∠DFG ,∴AD ∥FG ,∵AB ⊥AD ,∴AB ⊥FG ,∵AB ∥EF ,∴EF ⊥FG ,∴∠EFG=90°,由(1)知,四边形EFGH 为平行四边形,∴平行四边形EFGH 是矩形,即:四边形EFGH是矩形.方法2、延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∵∠BAF=∠CDG,∴∠MAD=∠MDA,∴MA=MD,∵四边形ABCD是正方形,∴AB=CD,∵四边形ABEF,CDGH是菱形,∴MF=MG,∠AFE=∠DGH,∴∠EFG=∠HGF,由(1)知,四边形EFGH是平行四边形,∴∠AFE+∠HGF=180°,∴∠EFG=90°,∴平行四边形EFGH是矩形.13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.13、【解答】解:(1)特例探究:AF=DE.理由:如图2,∵四边形ABCD是正方形,∴AD=BA,∠DAE=∠B=90°,∵∠AOE=∠ADC=90°,∴∠ADE+∠DAO=∠BAF+∠DAO=90°,∴∠ADE=∠BAF,∴在ADE和△BAF中,,∴△ADE≌△BAF(ASA),∴AF=DE;(2)类比解答:AF与DE的数量关系为AF=DE.理由:如图1,在AB上取点M使得DM=DA,连接DM,交AF于N,则∠DAM=∠DMA,DM=AD=AB,∵∠DAB+∠B=180°,∠DMA+∠DME=180°,∴∠DME=∠B,∵∠AOE=∠ADC,∴∠ADO+∠DAO=∠ADO+∠CDO,∴∠DAO=∠CDO,又∵CD∥AB,AD∥BC,∴∠CDO=∠MED,∠DAO=∠BFA,∴∠MED=∠BFA,在△MED和△BFA中,,∴△MED≌△BFA(AAS),∴AF=DE;(3)拓展延伸:=.如图3,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵平行四边形ABCD的面积=AB×GM=BC×HN,∵AB=a,AD=b,∴=,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°,∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∴△GME∽△HNF,∴==.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.14、【解答】解:(1)如图1中,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,根据对称性可知,AE=AB,BE⊥AD,∴B、A、E共线,∵AF∥BC,∴EF=FC,∴BF=EC.(2)A、如图2中,当E、D、C共线时,由(1)可知:DE=DC,∵EB⊥AD,AD∥BC,∴EB⊥BC,∴∠EBC=90°,∴BD=DC=DE=CB,∴△BDC是等边三角形,∴∠C=60°,∵AB∥CD,∴∠ABC=180°﹣60°=120°.B、(1)中结论成立.理由如下:如图3中,设BE交AD于H.∵B、E关于AD对称,∴BE⊥AD,EH=BH,∵AD∥BC,∴BE⊥BC,∴∠EBC=90°,∵EH=HB,HF∥BC,∴EF=FC,∴BF=EC.故答案为A或B.(3)A、如图4中,作FH⊥CD于H.∵∠ABC=135°,AD∥BC,∴∠EAF=∠BAF=45°,∠ADC=135°,∠ADG=45°,∴∠AGD=90°,∵∠FHC=90°,∴∠FHC=∠EGC=90°,∴FH∥FG,∵FE=FC,∴HC=HG,∴FH=EG,∵△DFH是等腰直角三角形,∴DF=FH,∴EG=DF,∴=.B、如图5中,作FH⊥CD于H.同法可证:EG=2FH,DF=FH,∴=.故答案为A或B.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=b 或b(用含m,n,b的式子表示).15、【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择A或B题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.16、【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4﹣4,∴GH=AE=8﹣4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,。