振动学习题中设计的材料力学计算
- 格式:docx
- 大小:80.19 KB
- 文档页数:2
材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
习 题3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。
解:系统具有一个自由度,选复摆转角ϕ为广义坐标,原点及正方向如如题4-1图所示。
复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =ϕ其中)(22a gP J C O +=ρ 得到复摆运动微分方程为 ϕϕρcos )(22Pa a gP C =+ 或0cos )(22=-+ϕϕρga a C3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。
解:系统具有一个自由度,选θ为广义坐标。
半圆柱体在任意位置的动能为:222121ωC C J mv T +=用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω =2C C m J ρ=故2222221)cos 2(21θρθθ Cm Re R e m T +-+=系统具有理想约束,重力的元功为题3-1图题3-2图θθδd mge W sin -= 应用动能定理的微分形式W dT δ=θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=⎥⎦⎤⎢⎣⎡+-+ θθθθθθθθθθρd mge d mRe d mRe d R e m C sin sin cos 2)(2222-=+-++ 等式两边同除dt ,θθθθθθθθθθρ sin sin cos 2)(2222mge mRe mRe R e m C -=+-++ 0≠θ ,等式两边同除θ故微分方程为0sin sin )cos 2(2222=+++-+θθθθρθmge mRe Re R e m C ①若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为0])[(22=++-θθρge r R C要点及讨论(1)本题也可以用平面运动微分方程求解。
请打双面习题与综合训练 第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有 "m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12c o s s i n ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kkk k++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4 求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
材料力学的基本计算公式材料力学是研究材料在力的作用下的行为和性能的学科。
在材料力学中,有一些基本的计算公式,可以用于分析材料的力学性质。
下面是一些常用的材料力学的基本计算公式。
1.弹性应变材料在受力作用下会发生变形,这种变形可以用应变来描述。
弹性应变是材料在弹性阶段的变形量与初试长度之比。
可以通过以下公式计算弹性应变:ε=δL/L其中,ε为弹性应变,δL为变形量,L为初始长度。
2.弹性模量弹性模量衡量了材料在弹性阶段的刚度,可以用于描述材料的抗拉强度。
对于线性弹性材料,弹性模量可以通过以下公式计算:E=σ/ε其中,E为弹性模量,σ为应力,ε为弹性应变。
3.科尔莫戈洛夫方程科尔莫戈洛夫方程可以用于计算材料在复合应力状态下的应变。
对于一般的受应力状态(平面应力和轴对称应力),科尔莫戈洛夫方程可以表示为:σ=S*ε其中,σ为应力,S为应力-应变刚度矩阵,ε为应变。
4.拉伸和压缩应力拉伸和压缩应力计算公式分别如下:拉伸应力:σ=F/A压缩应力:σ=-F/A其中,σ为应力,F为作用力,A为受力面积。
5.剪切应力材料在受剪力作用下会发生剪切变形。
剪切应力可以通过以下公式计算:τ=F/A其中,τ为剪切应力,F为剪切力,A为受力面积。
6.杨氏模量杨氏模量衡量了材料的刚度,可以用于描述材料的弹性性能。
对于拉伸应力-应变状态,杨氏模量可以通过以下公式计算:E=σ/ε其中,E为杨氏模量,σ为拉伸应力,ε为拉伸应变。
7.泊松比泊松比衡量了材料在受力作用下沿垂直方向的变形。
可以通过以下公式计算:ν=-εv/εl其中,ν为泊松比,εv为垂直应变,εl为拉伸应变。
8.巴拉赫公式巴拉赫公式可以用于计算材料的抗拉强度,可以表示为:σy=K*σr^n其中,σy为抗拉强度,K和n为材料的参数,σr为引伸计测得的真实应力。
这些公式是材料力学的基本计算公式,可以用于分析材料的力学性质。
在实际应用中,还会根据具体情况考虑材料的非线性和多轴受力等因素,进行更为深入的分析和计算。
简支层合板的自由振动1、问题描述:四边简支的正交铺设对称矩形层合板,单层厚度为0.3mm ,a=800mm ,b=200mm 。
已知各单层特性:121221185,10.5,7.3,0.28E GPa E GPa G GPa ν====,密度为2500kg/m 3,考虑层合板在惯性力作用下的自由振动。
铺设角度:()290,0,90,0t s t t t ︒︒︒︒2、ANSYS 求解: Step1:选取单元Step2:材料属性Step3:定义尺寸Step4:铺层设置Step5:划分网格Step6:分析类型Step7:选取10阶固有频率Step8:列出前10阶固有频率Step9:第1阶振型结果3、解析法求解对中间铺设角度为0时的层合板的解进行验证: 因为0ijB =,162616260A A D D ====,振动频率和振型由下列振动方程描述:D 11δω,xxxx +2 D 11+2D 66 δω,xxyy +D 22δω,yyyy +ρδω,u =0(1) 边界条件为:11,12,12,22,0,:0,00,:0,0x xx yy y xx yy x a w M D w D w y b w M D w D w δδδδδδδδ===--====--= (2)选取:δωωωδω(x,y,t)=(Acos t+Bsin t)(x,y)(3)将此问题分为时间和空间两部分。
为使式(3)满足方程(1)和边界条件(5),进一步选取sin sin m x n xa bππδω(x,y)=即sin sin m x n xa bππδωωω(x,y,t)=(Acos t+Bsin t)将上式带入方程(1)得442224111266222(2)()()()m m n n D D D D a a b b πωρ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦式中,各频率ω对应于不同振型4、结果比较对于中间层是0度角的铺层计算结果对比:0163.86176.46100%100%7.68%163.86a a ωωη--=⨯=⨯=5、附录:求解中面是0度的层合板计算程序:t=0.2e-3; a=0.8;b=0.2; p=2500; E1=185e9; E2=10.5e9; G12=7.3e9; V21=0.28; V12=0.01589; Q11=E1/(1-v12*v21); Q12=v21*E2/(1-v12*v21); Q22=E2/(1-v12*v21); Q66=G12;D11=(t^3)/12*(99*Q11+244*Q22); D12=343*(t^3)/12*Q12;D22=(t^3)/12*(99*Q22+244*Q11);D66=343*(t^3)/12*Q66;for m=1:10w=sqrt(pi^4/p*(D11*(m/a)^4+2*(D12+2*D66)*(m/a)^2*(1/b)^2+D22*(1/b)^4) );disp(w);endδ。
三、(补)势力场、势能、动能定理从能量的角度来描述物体的运动现象。
现我们将力所作的功的概念进一步推广,可由能量的观点可推出拉格朗日方程。
(一)、势力场与势函数如果质点在某空间内任何位置都受有一个大小,方向完全确定的作用力。
即质点所受到的力仅与质点的位置有关,记为:F x y z (,,) 那么这个空间称之为力场。
将F 向坐标轴投影就有:),,(z y x F X x = , ),,(z y x F Y y = , ),,(z y x F Z z =设上述的函数是单值、连续、并且具有一阶偏导数。
现我们计算F 在力场中运动时所作的功,由功的定义知道:⎰++=Lz y x dz F dy F dx F W )( (其中L 为质点运动的轨迹)一般地讲,这个积分与质点运动的路径有关。
现仅讨论与路径无关的情况。
这对于理解物体运动的本质是很有意义的。
如果上述的线积分仅与质点的起始位置与终了位置有关,而与路径无关。
由高等数学知该微分三项式为某一函数的全微分,即)(dz F dy F dx F dU z y x ++=。
显然U 是坐标x ,y ,z 的函数,则定义: ),,(z y x U U =———力场的势函数。
如果质点从M 0运动到M ,则代入上述的线积分则有:),,(),,(00000z y x U z y x U dU W M M M M -=⎰=→→并且 x U F x ∂∂= ; yU F y ∂∂= ; z U F z ∂∂=(二)、势能、势能函数前面我们纯粹从数学的角度引进了势函数,通过势函数,我们可方便地计算有势力的功。
势函数的概念比较抽象,但在矢量场的分析中具有普遍的意义。
在我们力学分析中,还经常用到物理意义较为明显的势能函数,由势能函数来代替势函数。
现我们来看两者的关系。
首先来定义势能的概念。
所谓势能即:势能——当物体在势力场中某一位置时,具有作功的能量。
显然,势能具有相对的意义。
选取不同的基准位置,则同一位置的势能具有不同的数值。
材料力学计算题(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除计算题一等截面杆在轴向拉力P 作用下,测得杆件A 点处的横向线应变0.00003ε'=-,已知杆的横截面积2300A mm =,材料的弹性模量5210E MPa =⨯、泊松比0.28μ=,试求(1)轴向拉力的数值;(2)图1所示A 点在图2截面处的正应力和剪应力。
30解:(1)E Eεσεμ'==-= N P F A E A EA εσεμ'====-=×103N (2)在A 点取单元体,并画A 点的应力状态图 21.43MPa x σσ==0y xy στ==cos 2sin 222cos602216.07MPax yx yxy x xασσσσσατασσ+-=+-=+=sin 2cos 22sin 6029.28MPax yxy xασστατασ-=+==计算题杆件上同时作用有如图所示的轴向力和横向力,大小均为10kN P =,杆件的截面为方形截面,截面边长为a =100mm ,杆件长度为l =1m 。
试求出杆件的最大、最小正应力的大小。
解答:画出其轴力图和弯矩图。
杆件的轴向应力为2/PP A a σ==轴(拉应力) 杆件的最大弯矩为max M Pl =maxmax M y Iσ=弯曲max 412a I = max 2a y =±带入可得max 436212M a Pla a σ=±=±弯曲max则最大、最小正应力为:max max 2423min6212M P a P Pl a a a a σσσ=±=±=±弯曲max 轴计算题承受均布荷载作用的矩形截面木梁如图所示,已知l=4m ,b=140mm ,h=210mm ,q=2kN/m ,弯曲时木材的容许正应力[]10MPa σ=,(1)校核该梁的强度;(2)计算该梁能承受的极限荷载。
材料力学公式总结材料力学是研究材料在外力作用下的力学性质和行为的学科。
它的研究对象包括材料的强度、刚度、塑性变形、断裂等方面的性质。
材料力学公式是用来描述和计算材料力学性质的数学表达式。
下面是材料力学公式的总结。
1. 杨氏模量(Young's modulus):杨氏模量是衡量材料刚度的指标,表示材料在拉伸或压缩过程中的应力和应变之比。
杨氏模量的计算公式为:E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。
2. 泊松比(Poisson's ratio):泊松比是描述材料压缩应变时的纵向收缩和横向膨胀之间的比例关系。
泊松比的计算公式为:ν=-ε横向/ε纵向其中,ν为泊松比,ε横向为横向应变,ε纵向为纵向应变。
3. 斯特劳斯公式(Stress-Strain Curve):斯特劳斯公式描述了材料的应力和应变之间的关系。
在弹性阶段,应力和应变线性相关,即:σ=E*ε其中,σ为应力,E为杨氏模量,ε为应变。
4. 屈服强度(Yield Strength):屈服强度是材料在超过弹性极限后开始发生塑性变形的应力。
屈服强度一般用屈服点上的应力值表示。
5. 弹性极限(Elastic Limit):弹性极限是指材料在不发生塑性变形的最大应力值。
超过弹性极限后,材料将开始发生塑性变形。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸过程中最大的抗拉应力,表示材料抵抗破坏的能力。
7. 断裂强度(Fracture Strength):断裂强度是材料发生破裂时所承受的应力。
它是材料在强度和脆性方面的一个重要指标。
8. 斯特劳斯硬化指数(Strain Hardening Exponent):斯特劳斯硬化指数描述了材料在塑性变形时硬度增加的速率。
该指数可以通过材料力学实验和测试获得。
9. 塑性应变(Plastic Strain):塑性应变是材料在超过弹性极限后发生塑性变形的应变量。
10. 线膨胀系数(Linear Expansion Coefficient):线膨胀系数描述了材料在温度变化下长度变化的比例关系。
振动学习题中设计的材料力学计算
悬臂梁,已知EJ则有δs=mgl3/3EJ
固有频率的静变形法计算:mg=kδs,ω2=k/m=g/δs
小球做纯滚动,此时设其质量为m,则其转动惯量Jc=mr2/2。
注意1p a=1n/m2
简支梁,抗弯刚度为EJ,中点受重力mg,则静变形ym=(mgl3)/(48EJ)
分析自由端B不同方向的刚度:
在x方向的刚度:在B处沿x方向施加一力F, B点在x方向的位移为:
拉压刚度k=EA/l
在y方向的刚度:在B处沿y方向施加一力P, B点在y方向的位移为:
抗弯刚度k=3EJ/l3
在绕x轴转动方向的刚度:在B端绕x轴转动方向施加一扭矩M,等直物体作扭转运动,产生扭角θ:
扭转刚度k=GJp/l
转动惯量:
杆绕端点:I=ml2/3,杆绕中点:I=ml2/12,平行轴公式md2.
弹簧:弹簧丝直径d,螺圈平均半径R(或直径D),圈数n,剪切弹性模量G,则刚度为:k=(Gd4)/(8nD3)= (Gd4)/(8n(2R)3)。